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Abstract

Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome
Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated
instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer
(Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled
analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital
exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance
detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test
our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic
specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses
showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA
data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in
the context of whole-exome sequencing data.
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Introduction

Copy number alterations (CNA) are common events occurring

in leukaemias and solid tumors. Comparative Genome Hybrid-

ization (CGH) is presently considered the gold standard technique

for CNA analysis. However, CGH requires dedicated instruments

and it is able to perform only low resolution Loss of Heterozygosity

(LOH) analyses. Recently, the development of high-throughput

sequencing instruments able to generate hundreds of Gigabases

per run allowed the development of completely new approaches to

the analysis of cancer genomes [1,2]. Among them, whole-exome

sequencing has been extensively used in the last few years to

analyze the coding regions of cancer genomes in order to detect

the presence of somatic variants. In a recently published paper [3],

however, Lonigro and colleagues formally demonstrated that

exome sequencing data can be also used to perform CNA analyses.

Subsequently, several bioinformatics pipelines dedicated to the

analysis of exome data have been proposed [4–8]. These tools

proved to be efficient in detecting copy number variations,

however they typically require complex command line commands,

lack a graphical interface, require complex installation procedures,

generally relying on multiple dependencies, and run on costly

server-sized machines. Moreover, these tools report no or limited

information about allelic imbalance (AI) events (Table 1). There-

fore, no graphical, user-friendly bioinformatics tools dedicated to

the coupled CNA/AI analysis of exome sequencing data are

actually available. To overcome this limitation we developed

CEQer (Comparative Exome Quantification analyzer), a new,

graphical, event-driven tool for CNA/AI-coupled analysis of

exome sequencing reads. By using case-control matched exomes,

CEQer generates CNA data through a comparative digital exonic

quantification and then couples this information with exome-wide

LOH and AI detection. This data is used to build mixed

statistical/heuristic models allowing the identification of CNA/AI

events at exome level. CEQer runs on standard 32 or 64 bit

desktop/notebook PC and accepts the most widely used

alignment/pileup file formats (Pileup/BED, SAM and BAM) as

input. Being totally graphical and event driven, it requires no a

priori bioinformatics or scripting knowledge. It manages either

single or multiple jobs by using a dedicated batch tool and

generates interactive graphical views as well as textual reports.

CEQer was tested using a large set of in silico and real exome data:

the results are presented here.
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Materials and Methods

Ethics statement
All the investigations were performed in accordance with the

principles embodied in the declaration of Helsinki. Bone marrow

(BM) or peripheral blood (PB) samples were collected after written

informed consent. The study was specifically approved by the San

Gerardo Hospital (Monza, Italy) ethics committee.

Algorithms
CEQer bioinformatics algorithms (Figure S1 in file S1) can be

divided into two main groups: 1) Static algorithms extracting raw

coverage and LOH/AI data from input files: these steps are

typically performed when new exome data is processed. 2) Real-

time algorithms processing raw data from step 1 by applying user-

defined filters and parameters (detailed description in the ‘Real-

time algorithms for CNAs detection’ section) on-the-fly, generating

CNA and LOH/AI data and displaying them in graphical

modules.

Static algorithms for raw coverage and LOH/AI

preprocessing. CEQer accepts either Pileup/BED, SAM or

BAM files as input. As a first step, positions in the input case and

control files are scanned in order to identify all the exonic bases.

To increase the efficiency of this step, data is processed using

parallel programming techniques. The specific coverage of each

exonic position is calculated by using algorithms optimized for the

different input files and using a dedicated exonic database. During

this step exons are automatically identified and annotated using

the information stored in the database. The use of SAM and BAM

files leads to a computational overhead, required to generate

pileups for each exonic position starting from individual read

coordinates and, limited to BAM, to decompress BGZF file

sections. Positions and coverage are stored in a dedicated

dictionary object. After the completion of the first step, this object

is analyzed in order to generate three different datasets: 1) Mean

coverage of each exon; as a direct measure of the internal

variability of each exonic count, a per-exon coverage standard

deviation is also computed. 2) Whole-exome case and control

median and mean coverage. Median coverage will be subsequently

used to perform coverage normalization between case and control

datasets. Mean and median information for case and control are

stored in dedicated files. 3) During the analysis of the control data,

‘raw’ heterozygosity candidates, initially defined as positions where

more than a single base is present with a fixed coverage of $5, are

stored in a dedicated dataset. Case coverage information

pertaining to all the exonic positions for the 4 bases are initially

saved in a temporary file and then filtered according to the control

set. This paired case/control dataset is subsequently used to call

the heterozygous positions using dedicated statistical tests and

heuristic algorithms, as described in the next section. The static

filters available in this section are: 1) ‘Mean Read Quality Filter’,

allowing to set a Phred-based read quality threshold applied to the

mean quality of individual reads; 2) Individual Base Quality

Threshold, allowing to define a per-base read quality threshold; 3)

Maximum number of low quality bases, which sets the number of

bases with an Individual Base Quality Threshold lower than a user

defined threshold that are accepted in each read. Filter 1 and 3 are

only applied to read-centered input data, such as SAM and BAM

files. Filter 2 is applied also to Pileup files, where each position is

tested individually.

Real-time algorithms for CNAs detection. After the

completion of the initial step or whenever the user loads a

previously preprocessed CEQer analysis, real-time algorithms

process raw data, identify CNAs and LOH/AI according to user-

defined filters and parameters and display data.

The case/control coverage of each exon is initially normalized

using the median whole-exome coverage generated during the

previous step. The normalized coverage is then used to calculate

the case/control coverage ratio and the Log2 Ratio. In-depth

analysis of each step can be performed using dedicated modules

allowing the user to visualize all the phases of the analysis,

comprising pre-normalized, normalized, ratio and Log2 Ratio

exonic views.

In order to detect the CNA regions, CEQer uses a combined

statistical and heuristic approach, where normalized case and

control data are initially compared using a non-parametric

Wilcoxon matched-pairs test.

Let N indicate the number of data pairs; x
(case)
i and x

(control)
i

indicate the measurements. For each pair, (1) is calculated.

Dx(case)
i {x

(control)
i D ð1Þ

All the pairs where Dx(case)
i {x

(control)
i D~0 are discarded. All the

remaining pairs (Nr) are then sorted in ascending order according

with (1) and ranked (Ri) starting from 1. Pairs with identical score

are assigned a rank equal to the average of the ranks they span.

The test statistic W is calculated as follows:

Table 1. Summary of the main characteristics of 6 copy number analysis tools.

Software OS GUI Language
External
dependencies Input

Interactive
Output

Real-time Filters/
Settings Detects

ExomeCopy L/W/M NO R YES BAM NO NO CNV

ExomeCNV L/W/M NO R YES Coverage NO NO CNV/LOH

CoNIFER L NO Python YES RPKM NO NO CNV

ExomeDepth L/W/M NO R YES BAM NO NO CNV

VarScan2 L/W/M NO JAVA NO2 Pileup NO NO CNV/LOH

CEQer L/W/M1 YES C# NO3 SAM/BAM/ Pileup YES YES CNV/AI/ LOH

L/W/M: Linux/Windows/MacOS.
1L/W/M for processing. W is required for visualization and real-time filtering.
2The Java Runtime is required.
3The. NET framework Runtime is required. If not present in the system, it is automatically installed during CEQer setup.
doi:10.1371/journal.pone.0074825.t001
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W~
XNr

i~1

sgn x
(case)
i {x

(control)
i

� �
:Ri

h i
ð2Þ

As the size of N increases, the distribution of W approximates a

normal distribution. When Nr.10, the approximation is close

enough to calculate a z-ratio with Yates continuity correction as

follows:

z~
DW D{0:5

sW

ð3Þ

Where sw, the standard deviation of the normal distribution, is

calculated according to (4).

sW ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nr Nrz1ð Þ 2Nrz1ð Þ

6

r
ð4Þ

Under this approximation, CEQer calculates the p-value associ-

ated with the z-ratio by estimating the error function (5)

erf xð Þ~ 1ffiffiffiffi
P
p

ðx

{x

e{t2 dt ð5Þ

of the normal distribution of W using the Abramowitz and Stegun

approximation equation 7.1.26 [9], as indicated in (6),

erf (x)&1{ a1tza2t2za3t3za4t4za5t5
� �

e{x2 ð6Þ

where a1 = 0.254829592; a2 = 20.284496736; a3 = 1.421413741;

a4 = 21.453152027; a5 = 1.061405429; q = 0.3275911;

t~
1

1zqx
.

The p-value is finally calculated by estimating the error function

at x~
zffiffiffi
2
p .

If Nr #10, then the p-value is calculated using an exact sampling

distribution by enumerating all the possible combinations of W

given Nr.

The main advantages of this approach are 1) that differences in

the pull-down and sequence efficiency among different exons are

intrinsically eliminated by initially performing matched compar-

isons between identical case and control exons and 2) that no a

priori exon coverage distribution must be assumed. Statistical

analyses are performed on sliding exonic windows of user-defined

length. However, instead of using individual windows as static

placeholders for CNA regions, regions with significant p-values are

used as ‘seed’ sequences: after the identification of all the CNA

seeds, CEQer tries to expand the CNA area on both ends and

performs further matched-pairs statistical tests, as described, to

check whether the difference in the normalized case/control

coverage of the expanded CNA area is still significant. If two seed

regions are successfully expanded over two contiguous exons, the

two regions are automatically merged in a single CNA. CNA

identification is one of the most critical algorithms, therefore

CEQer exposes a wide set of filters and parameters to control this

process. Specifically, the following user-defined filters/parameters

can be applied:

– CNA p-value: it allows to set a specific threshold p-value

for CNA identification.

– Window size: this parameter controls the size of the

seeding window. Smaller windows require slightly longer

computational times and are ideal to identify short CNAs.

– Coverage Correction Factor (CCF): CEQer adds the CCF

to all the case/control normalized exonic coverage data

before calculating the coverage ratio. It is used to

smoothen the effect of low coverage data, however setting

very high CCF will decrease the overall sensitivity of the

statistical test.

– Coverage Filter: can be used to filter out exons

characterized by a very low coverage. If either the

normalized case or control coverage falls below the

threshold, both case and control data is discarded.

Although useful to smoothen low coverage data, it can

potentially cover up the presence of two-copies deletions.

– Relative Exon Standard Deviation Filter (RESDF): during

the preprocessing step, exonic coverage is calculated

together with the intra-exonic coverage standard devia-

tion, which is used to measure how variable is the

coverage distribution within individual exons. The

RESDF filter allows to discard exons whose standard

deviation is higher than a defined threshold.

– Standard Deviation Filter (SDF): CEQer internally

calculates the overall standard deviation of individual

chromosomes as a surrogate measure of the intrinsic signal

noise. The SDF is expressed as standard deviation-fold

threshold. CNA candidates whose mean falls below the

threshold are discarded. The SDF is very useful to filter

noisy data in order to detect short CNA regions, however

it may reduce the sensitivity to large CNAs, because the

presence of large abnormalities may increase the back-

ground standard deviation.

Although the full filter set is available to the end-users, to

increase the easiness of the process, CEQer is also able to auto-

select all the filters/parameters based on the expected CNA size,

which allows to maximize the detection of very small, small,

medium and large CNAs (3–20, 20+, 100+, 500+ exons).

Real-time algorithms for LOH/AI detection. Raw control

heterozygosity candidates, generated by using a fixed coverage of

$5 for at least two different bases and stored in the temporary

control dataset, are initially parsed in order to retrieve the

coverage of each base. All the positions in the prefiltered control

dataset are individually processed to identify the two most frequent

bases for each position. The information pertaining the remaining

bases is discarded. Subsequently, Goodness-of-fit statistical tests

modeling a perfect heterozygosity are generated for each

candidate in order to identify control positions compatible with

an heterozygous status. The whole set of bona fide heterozygous

positions are then tested in the matched case dataset. For each

position, the two most frequent bases in the case dataset are

annotated together with their coverage; the information pertaining

the other bases is discarded. New Goodness-of-fit statistical tests

are performed to check whether the heterozygosity is conserved in

the case sample. If the relative coverage of the two case alleles is

compatible with an heterozygous status, the position is deemed to

be in ‘conserved heterozygosity’ and the information is stored in a

dedicated object. If the coverage distribution of the two bases in

the case exome does not fit with an heterozygous distribution, then

the position is considered a LOH/AI. To further characterize the

LOH/AI status, the coverage of the case LOH/AI position is

CEQer: Copy Number Detection Tool for Exome Data
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initially normalized according to the whole-exome median case/

control coverage and then compared to the corresponding control

heterozygous position by using fixed thresholds: in presence of a

case coverage #0.75 fold the control coverage, the LOH/AI event

will be considered as a putative ‘Copy Number Loss’; between

0.75 and 1.25 as a putative ‘Copy Neutral Loss’; between 1.25 and

1.75 as a ‘+1 Copy Number Gain’; over 1.75 as a ‘+2 or more

Copy Number Gain’. CEQer can optionally process LOH/AI

data by applying a sliding window smoothing algorithm whose size

is controlled by a Window Size parameter. It can be used in

presence of noisy LOH/AI data to identify real LOH regions.

Data visualization
CNA and LOH/AI are shown in real-time in dedicated

visualization modules. To allow a realistic visualization, the

position of each exon is proportional to its real position in the

genome.

Several views are available to facilitate data analysis and quality

control. Specifically, the whole-exome View, where the Log2-

Ratios of all the chromosomes are shown in a single panel, allows

the user to directly inspect the whole dataset and to quickly move

to individual chromosomes. Among the chromosome views the

most critical is the Log2Ratio View, where the Log2Ratio of

individual chromosomes is shown. Here, the CNA regions are

plotted and parameters/filters can be set to refine the analysis and

the results in real-time. LOH/AI data can be visualized in the

same view, which allows to easily link CNA and LOH/AI

information. LOH/AI view can be fully customized to show only

specific LOH events, such as ‘Copy Number Loss’, ‘+1 Copy

Gain’, ‘+2 or more Copy Gain’, ‘Copy Neutral Allelic Imbalance’

and Conserved Heterozygous positions, custom combination of

them or the whole LOH/AI set. To allow a thorough, in-depth

analysis of exome data, CEQer also generates Raw, Normalized

and Ratio Coverage views. Finally, a Whole-Exome Coverage

View reports critical information about case and control exonic

coverage, thus allowing to easily detect coverage imbalance

problems and facilitating the generation of quality reports.

All views can be saved as raster or vector files and data from

each view can be also exported as tabular files. Many visualization

parameters, such as background color and gradient style, exon size

and color, LOH/AI and CNA markers are fully customizable.

Each view can be freely zoomed-in and out to focus on specific

regions; complete information about single exons and LOH/AI

loci are shown as tooltip text.

Generation of in silico data
To perform extensive in silico simulations, a test-generator

(CopyNumberTester) has been developed. This tool generates

CNA data by simulating the output of a standard CEQer

preprocessing step. By using this approach, data generated by

CopyNumberTester can be directly processed by CEQer. In our

models, copy number was calculated according to the following

equation:

CNobs~CNex+CNex:RndCN:RndEff ð7Þ

where CNobs represents the final copy number value, as stored in

the output file; CNex is the expected, theoretical copy number

value in absence of any stochastic effect, RndCN is a user-defined,

positive floating-point factor defining the maximum extent of the

copy number variability and a second factor RndEff is a random

floating-point ranging from 0 to 1 and controlling the real extent

of each random effect. The activation of a CNA event is controlled

by a set of 3 user-defined probability factors for +/21, +/22, and

.2 copies CNA events.

In silico LOH/AI data is controlled by the following equation:

FA~
Cov

2
:RndAI :RndEff ð8Þ

where FA represents the coverage of the first allele at heterozygous

positions; Cov models the overall coverage, RndAI is a user-defined,

positive floating-point factor defining the maximum amount of

stochastic noise in the calculation of the allelic ratio and RndEff is

defined as in CNA equation.

Exome Sequencing
All the exome libraries were generated from 1 mg gDNA

extracted with Invitrogen PureLink Genomic DNA (gDNA) Kit

(Invitrogen, Life technology, Grand Island, NY, USA). Only non-

degraded gDNA (A260/280 ratio between 1.8 and 2.0 and A260/

230 ratio .2.0) was used. gDNA was fragmented to a size of 500–

100 bp using a Bandelin Sonopuls sonicator (Cycles: 50;

Processing time: 10 sec; Pulsation: 20%; Power (amplitude):

10%) and then processed according to standard Illumina

TruSeqTM DNA Sample Preparation Kit protocol, with selection

of a 200–300 bp fragment on 2% agarose gel. Multiplexed

genomic libraries were then pooled and enriched for exome

sequences using two rounds of hybridizations with capture probes

of target regions provided in the Illumina TruSeqTM Exome

Enrichment Kit. The libraries were subsequently sequenced on an

Illumina Genome Analyzer IIx with 76 bp paired-end reads using

Illumina TruSeqTM SBS kit v5.

Accession codes
High-throughput sequencing data have been deposited in the

Sequence Read Archive (SRA) under accession SRA096103.

CEQer
CEQer is implemented entirely in C# under the. NET

framework v.4.0. The static algorithms, which represent the most

time consuming steps, can be run on 64/32 bit Windows, Linux or

Mac (under Mono: http://www.mono-project.com/CSharp_

Compiler) operative systems; all the real time and visualization

steps require a 64/32 bit Windows operative system (successfully

tested under Windows 7, Vista and XP). CEQer has been

designed using streaming and parallel programming technologies

requiring a limited memory footprint. It runs on standard dual or

quad core, 4 Gbytes memory desktop/notebook PC. The typical

timing required to complete an analysis using 806coverage Pileup

datasets as input is 50 minutes on a 4 Gbytes, QuadCore Intel i7

X 940 Notebook.

Patients
Leukemic cells were obtained by separation on a Ficoll-Paque

Plus gradient (GE Healthcare, UK) from BM or from the buffy

coat fraction of PB samples followed by the lysis (155 mM NH4Cl,

10 mM KHCO3 and 0.1 mM EDTA) of erythrocytes. The

phenotype was evaluated by FACS analysis. As source of normal

cells, samples obtained after complete cytogenetic remission or

lymphocytes obtained culturing cells with 2,5 mg/ml Phytohe-

magglutinin-M (PHA-M, Roche- Switzerland) and 200 UI/ml

Interleukin-2 (IL-2, Aldesleukin, Novartis – Switzerland) for 3–

4 days followed by 2–3 weeks incubation with IL-2 only were

used. The phenotype was evaluated by FACS analysis and

CEQer: Copy Number Detection Tool for Exome Data
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lymphoid cells (CD3, CD4, CD5, CD8, CD19) resulted to be

.80% of total cells.

Array CGH Analysis
Genomic copy number analysis was performed by a-CGH using

an Agilent Human Genome CGH Microarray 26400 K kit

(Agilent TechnologiesTM, Santa Clara CA, United States)

following the manufacturer’s recommendations. The microarray

contains 411,056 probes with 5.3 Kb overall median probe

spacing (4.6 Kb for Refseq genes). Target and reference DNA

were extracted from the same patient, cancer tissue (target) was

hybridized against normal tissue (reference). Target DNA was

labeled with cyanine Cy3 (emission in green fluorescence) and

reference DNA was labeled with cyanine Cy5 (emission in red

fluorescence). The analysis was performed using Feature Extrac-

tion v10.7 and DNA Analytics v6.5 software (Agilent Technolo-

giesTM, Santa Clara CA, United States) applying ADM2

algorithm with a threshold of 5, minimum absolute average log2

ratio in called intervals of DLRS (Derivative Log2Ratio Spread)

value and a minimum of 3 consecutive probes. Putative

chromosome copy number changes were defined by intervals of

3 or more adjacent probes and were considered as being

duplicated or deleted when results exceeded the 6DLRS-value

range.

All nucleotide positions were referred to the Human Reference

Sequence Assembly Mar 2006 NCBI36/hg18 of UCSC (http://

genome.ucsc.edu/).

Fluorescent In Situ Hybridization
Cytogenetic investigation was carried out on bone marrow cells

according to standard methods; metaphases were treated for QFQ

banding and analyzed using epifluorescent microscope and

Macktype 5.5.4 (PSI, US); chromosomal abnormalities were

defined using the recommendations of the International Systems

for Human Cytogenetic Nomenclature (ISCN 2005). Interphase

fluorescent in situ hybridization (FISH) analysis was performed

using locus specific probe LSI BCR/ABL Dual color Dual Fusion

Probe (Abbott Molecular, Illinois, US) according to manufactur-

er’s instructions; a total of 100 nuclei were counted.

PCR-based Sanger sequencing
100 ng of genomic DNA were amplified with FastStart Taq

DNA Polymerase (Roche-Applied-Science, Germany) according

to manufacturer instructions. The primers used for the amplifica-

tion were: rs7021384 – Chr9-132543814-Fw TGT GGA GGG

GTG CTC AGA GAC, Chr9-132543814-Rw CCT CTC TGC

CTC TCT CAT TCT CTC; rs16936946 – Chr9-131609353-Fw

GCT CTG ACC TCG TCC TTC AGT G, Chr9-131609353-Rw

GGC TTG ATT GCG TCA ATG ATC; rs735115 – Chr9-

131677533-Fw CTC ACC CCA CAG GAA GAG CAG, Chr9-

131677533-Rw GTG GGA GCA GAG GAA GGT CTG;

rs1503375 -Chr9-131663114-Fw AGC CCC TCT GTT CAC

TGT TTT C, Chr9-131663114-Rw GGT TTC CAG CCT CCA

GAT GAG; rs11792431 -Chr9-131555068-Fw GAC GTG GAG

AGA AGC AAG TAT GAC, Chr9-131555068-Rw CCC CTC

CCA CTT TGT GCT TTC; rs74487784 – Chr22-22655095-Fw

GGAACTTGTCCTCCAGCCATTG, Chr22-22655095-Rw

CCAGGTGAGGAGAGCCATCTG. Amplified products were

run on agarose gels, purified with QIAquick Gel extraction kit

(Qiagen Sciences, USA) and sequenced through standard Sanger

sequencing. Sequences were analyzed using Vector NTI 7.0

(Invitrogen, Carlsbad, CA, US).

Results

To assess the ability of our tool to detect CNA and AI events, a

wide set of in silico exome data was initially generated and

analyzed. Subsequently, CNA/AI analyses were performed in the

context of real cancer exomes. The main advantages of this

approach over a direct analysis of patient specimens are that 1) by

using in silico modeled data, the exact number of CNA loci and the

characteristics of each event are a priori known; therefore, reliable

tests can be generated. 2) Fine tuning of each model can be

performed by modulating critical parameters, such as case and

control coverage, background and allelic ratio noise, length and

frequency of each CNA locus.

In silico analyses
To assess whether CEQer is able to correctly identify and report

the presence of large CNA regions, we generated a first CNA

model where we enforced the presence of copy number alterations

of +/21 exon with a fixed CNA size of 80 exons. In order to

accurately assess CEQer ability to identify CNA events, a total of

10 tests were run. A correct identification for this and the following

tests was considered whenever CEQer identified a CNA region

with at least 80% region overlap with the modeled event. In this

simulation, CEQer identified all the abnormalities (158/158),

either copy gain or loss, scoring 100% sensitivity and 100%

positive predictive value, with no false positive events (Table S1 in

file S1). We subsequently modeled +/21 CNA events of 10 and 4

exons. In line with the first analysis, we ran 10 simulations per

each test. In the ‘10 exons’ simulations a total of 170 CNAs were

generated. Of them, 165 were correctly identified by CEQer (true

positive), with an overall sensitivity of 97.1%. Only 2 false positive

events were reported, with a positive predictive value of 99%

(Table S1 in file S1). In the ‘4 exons’ simulations, a total of 145

CNAs were generated. Of them, 112 tested positive, with a

sensitivity of 77.2%. No false positive events were reported, with a

positive predictive value of 100% (Table S1 in file S1). Similar

results were achieved with a ‘3 exons’ simulation, were a total of

163 CNA events were generated and 142 correctly detected

(sensitivity: 87.1%; positive predictive value: 98%).

A critical issue when analyzing copy number data is that, in

presence of large CNA regions, the predicting algorithms may

become less reliable, leading to phenomena such as CNA

hypersegmentation, were large individual CNA events are

erroneously segmented into smaller fragments. To assess whether

CEQer is able to correctly identify and report the presence of

chromosome-sized CNA regions, we ran 10 simulations using a

new CNA model where we enforced the presence of a total of 105

extremely large CNA events with a mean length of 8000 exons. In

presence of these conditions, CEQer detected all the CNA regions

(Table S1 in file S1) with 100% sensitivity, no false positives and in

absence of hypersegmentation.

To further put our tool under test in a more complex scenario,

we modeled the co-existence of long (80 exons) and short (4 exons)

CNA events in a set of 4 new simulations (Table S1 in file S1). A

total of 22 events was modeled; of them, 11 were long and 11 short

CNAs.

In 3 out of 11 long CNAs, evidence of a limited hypersegmenta-

tion was detected: the CNA region was split into two subregions

comprising, in total, over 90% of the original CNA. Globally,

CEQer identified 21/22 events, with a sensitivity of 95% and a

positive predictive value of 88%.
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Coverage imbalance
When whole-exome sequencing is used to identify copy number

variants, ‘case’ sequencing data is normalized using a matched

control. This allows to compensate for the effects of inter-exon

pull-down and sequencing efficiency and of germline indels.

However, due to specific experiment design (e.g. lower coverage of

the control dataset) or to fluctuations of the whole-exome

sequencing quality, the coverage of the matched case and control

exomes can be largely different, which may in turn impair our

ability to efficiently use exome sequencing for CNA detection. To

assess the effect of highly imbalanced case/control coverage, we

generated two new models where we enforced a 46 case/control

coverage ratio in favor of the case or of the control, respectively,

and in presence of 10-exons CNA events. Ten simulations per

model were generated, with a mean exonic coverage of 100 and 25

for case and control (T100H25: 86 events in total) or vice versa

(T25H100: 93 events in total). Coverage reports generated by

CEQer (Fig. S2a, b in file S1) allowed to easily identify the

presence of highly imbalanced exomes. In the T100H25 and

T25H100 tests, a significant coverage drop was detected by

CEQer in the control or case exome, respectively, at 256
(Fig. S2b in file S1), as expected. In line with coverage reports, raw

per-exon coverage data confirmed the presence of highly

imbalanced data (Fig. S2c in file S1; chromosome 2 is shown as

example). To deal with coverage imbalance, CEQer performs a

whole-exome median coverage normalization (see Materials and

Methods for details), whose effect is reported in the normalized

case/control counts report window (Fig. S2d in File S1) and in the

case/control ratio window (Fig. S2e in file S1) for in-depth data

analysis. Despite the presence of highly imbalanced exome data,

analysis of the T100H25 dataset (Fig. S2f and g in file S1:

chromosome 2 and whole genome view of simulation #1 are

shown as example) using CEQer led to the identification of 71

CNAs, with a sensitivity of 82.6% and a 100% positive predictive

value (Table S1 in file S1). The same analysis on T25H100 led to

the detection of 90/93 real events, with an overall sensitivity of

96.8% and a positive predicting value of 97% (Table S1 in file S1).

Allelic imbalance
One of the critical advantages of exome sequencing-based copy

number analyses over CGH is that it is possible to co-detect CNA

events together with AI/LOH. To analyze AI events, CEQer

initially scans the control sequences in order to generate a map of

all the heterozygous positions throughout the exome. Subsequent-

ly, the heterozygosity of these positions is tested in the ‘case’ exome

by using a combined statistical and an heuristic approach which

takes into account the allelic ratio of case and control samples, the

median case/control exonic coverage and the absolute total

coverage at the specified nucleotide position (see Materials and

Methods for details). Using this approach, CEQer analyzes each

heterozygous position and outputs a predicted case allelic status

among: ‘Conserved Heterozigosity’, ‘Loss of 1 or 2 allele (s)’, ‘Loss

of Heterozigosity with conserved copy number’, ‘Gain of 1 allele’

and ‘Gain of 2 or more alleles’. Notably, CEQer automatically

merges the AI/LOH analysis together with the CNA data to

facilitate the integration of the combined information. Thanks to

the optimization of the analytical procedures, CEQer is able to

compute the effect of all the CNA and AI/LOH filters in real-

time, which allows the end-user to perform an extensive fine-

tuning of all the experiment settings.

To test the ability of our tool to detect AI/LOH events, we

modeled a new set of in silico experiments where we generated

CNA events involving, on average, 200 exons and a mean case

and control exonic coverage of 1006. We modeled the effect of

CNA events in terms of predicted allelic imbalance, enforcing an

increasing stochastic effect (RndAI, see Materials and Methods for

details) on the coverage of the two alleles. To model the real effect

of the allelic ratio variability, the stochastic effect was not limited

to the CNA regions but extended to all the heterozygous positions

throughout the exome, which allowed also to assess the specificity

of our tool in discriminating between real AI/LOH and spurious

imbalances due to the stochastic variability of the allelic counts.

The RndAI parameter was initially set at 0.05 and then increased

up to 0.30. Five in silico tests per each RndAI setting were

generated. The analysis was limited to a single chromosome (Chr4)

where a total of 3 CNA events were modeled: a single copy

deletions, a +1 and a +2 copy gain. A total of 22 heterozygous

positions were present in the 3 CNA regions: 10 in the 21, 6 in the

+1 and 6 in the +2 CNA. The ability to discriminate among the

different AI events is dependent on three factors: 1) the

heterozygous positions calls occurring in the control dataset, 2)

the AI calls occurring in the case dataset and 3) the ability to

correctly categorize each AI event. The sensitivity of the

heterozygous calling algorithm in the 3 CNA regions was 97.8%

at 0.05 RndAI and 97.6% at 0.30 (Fig. S3a in file S1). No false

positive heterozygous calls were detected in the 3 CNA regions

(Table. S1 in file S1). The AI calling algorithm was very sensitive

in presence of low background noise (95.6% with 0.05 RndAI), with

100% detection of single copy loss and +2 copy gain events and

86.7% of the +1 gain (Fig. S3b in file S1). In presence of high

background noise (0.3), the overall sensitivity was 65.1%, with

62% detection of the single copy loss, 83.3% of the +2 copy gain

and 50% of the +1 gain. No false positive AI calls were detected in

the 3 CNA regions (Table S1 in file S1). AI categorization was

correct in 100% of the single copy loss and of the +2 copy gain and

in 86.7% of the +1 gain at 0.05 RndAI, while it dropped to 46, 83.3

and 50% at 0.3 RndAI (Fig. S3c in file S1).

In silico analyses using real whole-exome data
We then sought to simulate very small CNA events in the

context of real exonic data. We used matched whole-exome data

from patient aCML-007 (Table S2 in File S1), where no evidence

of copy number events could be detected. We artificially generated

simulations of 4-exons duplications/deletions occurring in either

chromosome 1 or in chromosome X. Ten CNA events per

simulation were generated; of them on average 5 were duplications

and 5 deletions. Data analysis for chromosome 1 simulations

revealed that, on a total of 40 CNA events, CEQer was able to

correctly identify 29, with an overall sensitivity of 72.5%. A total of

4 regions were erroneously identified as copy number abnormal-

ities (false positive), with a positive predictive value of 88%

(Table S1 in file S1). The same analysis performed on chromo-

some X led to the identification of 36/40 events, with an overall

sensitivity of 90%. A total of 3 regions were erroneously identified

as CNAs (false positive), with a positive predictive value of 92%

(Table S1 in file S1).

Patient samples
We then sought to verify whether our tool was similarly able to

identify CNA events using real whole-exome data. Therefore, a

total of 40 exomes were generated from 20 leukemic specimens

and corresponding matched controls (Table S2 in file S1). Of

them, 12 were from classical Chronic Myeloid Leukemia (CML)

and 8 from Atypical Chronic Myeloid Leukemia (aCML) [10]

patients. Among the CML patients, 9 were in chronic phase (CP)

at onset of the disease and before any leukemia-related treatment

and 3 were in blast crisis (BC). According to the literature [11], the

genome of chronic myeloid neoplasms is characterized by a

CEQer: Copy Number Detection Tool for Exome Data

PLOS ONE | www.plosone.org 6 October 2013 | Volume 8 | Issue 10 | e74825



limited chromosomal instability. The opposite occurs in BC, where

the genome of the leukemic cells is typically unstable [12].

On average 9 Gigabases were generated for each exome, with a

mean exonic coverage of 80x. As expected, the analysis of CML-

CP and aCML patients revealed the presence of a limited number

of CNAs (Fig. 1). Specifically, copy number events could be

detected (Fig. 2a, b) only in one aCML (aCML-002) and one CML

patient (CML-CP-003). Sample CML-CP-003 was particularly

Figure 1. Whole-genome view of CML-CP (a, CML-CP-001 to 009) and aCML samples (b, aCML-001 to 008). The two black arrows point
to a deletion occurring in patient CML-CP-003; the red arrow points to an amplification of the whole chromosome 11 in patient aCML-002.
doi:10.1371/journal.pone.0074825.g001
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interesting, because a previous analysis using FusionAnalyser [13]

revealed that in the leukemic cells a loss of the reciprocal

ABL1-BCR gene in the derivative chromosome 9 (der9) was

present. However, cytogenetic analysis failed to reveal the

expected loss of the complete der9 (data not shown), suggesting

the presence of a cryptic deletion involving only the ABL1-BCR

locus. In this patient, two copy number loss events were detected

by CEQer, apparently involving chromosome 9 and 22 (Fig. 2c,

d). In depth analysis of these events using CEQer (Fig. 2e) revealed

that chromosome 9 deletion occurred between gene C9orf50 and

the first coding exon of ABL1. Chromosome 22 deletion involved a

locus comprised between BCR exon 15 and the SUSD2 gene.

Notably, ABL1 exon 1 and BCR exon 15 are the two breakpoint

exons most frequently involved in the ABL1-BCR reciprocal fusion

occurring in der9. Taken together, this data suggested the

presence of a cryptic fusion occurring within the derivative

chromosome 9, spanning from gene C9orf50 to SUSD2 and

comprising the whole ABL1-BCR fusion gene (Fig. 2f). In line with

this data, FISH analysis confirmed the loss of the ABL1-BCR gene

(Fig. 2g) in der9. CGH analysis using a 400 k Agilent Human

Genome CGH Microarray as well as genomic Q-PCR (not shown)

experiments confirmed the presence of the copy number loss

(Fig. S4 in file S1), as indicated by CEQer. Notably, the

application of the LOH/AI detection algorithms allowed the

identification of a total of 6 candidate Loss of Heterozygosity

positions within the CNA locus, 5 in the C9orf50-ABL1 and 1 in the

BCR-SUSD2 region of the der9 (Fig. 2e). All the genomic positions

corresponding to the 6 LOH/AI candidates were identified as

Single Nucleotide Polymorphism loci (SNPs, rs11792431,

rs16936946, rs1503375, rs735115, rs7021384 and rs74487784,

respectively) according to the dbSNP135 database [14], suggesting

that the heterozygous calling algorithm of CEQer was robust

enough to reliably detect heterozygous positions in the control

exome. To verify if the somatic LOH/AI predictions were correct,

the genomic loci corresponding to the 6 LOH/AI candidates were

amplified and sequenced in the case and matched control: as

expected, direct analysis of the sequenced amplicons confirmed

the presence of heterozygosity in the controls and of somatic LOH

in the leukemic samples for all the 6 candidates (Fig. 2h).

In line with previous reports, indicating that chromosomal

instability increases upon progression from CP-CML to BC [12],

CEQer analysis of three matched BC/CP exomes revealed the

presence of large CNA events occurring in all the samples (Fig. 3

and 4). In two cases, a large (CML001BC) or complete

(CML004BC) deletion involving chromosome 7 was detected

(Fig. 3a, c). This was not unexpected, because partial or complete

single-copy loss of chromosome 7 is one of the most frequent event

detected upon progression to BC [15]. In sample CML001BC, the

loss of chromosome 7 was accompanied by a partial loss of a large

pericentromeric region of chromosome 9, spanning 54 Mbases

and involving the CDKN2A/p16Ink4a oncosuppressor. In accor-

dance with CNA data, LOH/AI analysis on chromosome 9

(Fig. 3e) revealed the presence of a large cluster of ‘copy number

loss’ LOH events occurring within the deleted region.

In sample CML004BC, the complete loss of chromosome 7 was

accompanied by a complex set of CNA events occurring in

chromosome 17 (Fig. 3f). Here, a large deletion, spanning 19.2

Mbases and involving the vast majority of the short arm of

chromosome 17, comprising the locus of the TP53 oncogene, was

detected. This region was followed by a copy neutral, pericen-

tromeric region spanning 24.3 Mbases and by a 35.1 Mbases copy

gain region, comprising almost the whole long arm of chromo-

some 17. Within the copy neutral pericentromeric region, a

second, relatively short copy gain region spanning 2.0 Mbases and

extending from the WSB1 to the CRYBA1 gene was reported. In

line with CNA data, LOH/AI analysis revealed a pattern of ‘copy

number loss’ LOH within the deleted region, while a cluster of

‘single copy gain’ AI events was correctly reported in the copy gain

regions (Fig. 3f). CGH analysis performed on the same samples

revealed a virtually identical CNA pattern (Fig. 3b, d).

In patient CML002BC, together with a duplication of the whole

chromosome 21, two apparent copy gains were detected,

occurring in chromosome 9 and 22 (Fig. 4a). In depth analysis

of these events revealed that chromosome 9 copy gain started at

ABL1 exon 2 and involved the whole distal fraction of

chromosome 9 long arm (Fig. 4b); chromosome 22 copy gain

involved the whole short arm and pericentromeric regions and

ended at BCR exon 14 (Fig. 4c). Notably, chromosome 9 and 22

CNA start and end were identical to the breakpoint exons of the

CML002BC BCR-ABL1 fusion and the genes involved in the copy

gain abnormality perfectly superimpose with the genes present in

the Philadelphia chromosome, suggesting that the two CNAs are

instead a single copy gain of the whole Philadelphia chromosome

comprising the BCR-ABL1 fusion oncogene.

To formally compare the reliability of our tool in detecting

CNA regions with CGH analyses, we built a dedicated CEQer

module where the linear correlation between CEQer and CGH

data, expressed as case/control ratios in user-defined windows

spanning throughout the whole genome (chromosome Y is

excluded from the analysis), can be tested using a Pearson

product-moment correlation analysis (see Materials and Methods

for further information). As an ideal candidate for this test we used

the CML004BC sample, where significant areas of copy number

gain and loss were present. In this context, the correlation between

CEQer and CGH was very high (Pearson’s r = 0.96, Fig. S5 in

file S1), suggesting a close, direct, linear relationship between

CEQer and CGH data. As may be expected, applying the same

test to individual CNA or copy neutral regions led to a Pearson’s r

of near 0 (data not shown). This suggests that the strong linear

relationship between exome and CGH data holds true when

regions with different copy number are tested, while the

distribution of exome and CGH case/control ratio data within

individual CNA or copy neutral regions is largely governed by

stochastic factors with weak or no direct relationship.

Finally, we sought to compare CEQer with already available

CNA software. One of most widely used CNA tools with LOH

detection capabilities is VarScan2 [8]. Although VarScan2 is a

very powerful software for somatic variants detection, its ability to

perform CNA/LOH analyses is still limited. Specifically: 1)

VarScan2 only takes into account LOH; no other allelic

imbalances are computed. 2) LOH are calculated only for

positions where Case and Control don’t match so they give

limited contribution to the interpretation of CNA data. 3) No

allelic imbalance information is available for heterozygous

positions. 4) Homozygous/Heterozygous discrimination is per-

formed by using a 75% fixed threshold: no statistical test (s)

supporting each evidence is performed. 5) VarScan2, as many

other bioinformatics tools dedicated to high-throughput sequenc-

ing analyses, performs calculations using a set of user defined

filters. However, changing filters and parameters requires rerun-

ning the whole analysis, which is very time expensive when dealing

with Gbyte-sized data. CEQer instead performs an initial set of

pre-calculations, storing ‘intermediate data’ as output files and

then performs filtering and calculations in real-time, allowing to

easily test multiple filtering strategies. 6) VarScan2 calculates

individual Log2Ratio data but has very limited clustering support

(http://varscan.sourceforge.net/using-varscan.html#v2.3_copynumber).
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To test VarScan2 performance and compare it with CEQer, we

applied the VarScan2 ‘copynumber’ module using the default

settings to the CML001BC and CML004BC pileup samples as

indicated in the VarScan2 manual: both analyses required

approximately 2 hours using VarScan2 and 50–55 minutes

(respectively) with CEQer using identical hardware. At the end

of the analysis, VarScan2 generated a textual output, reporting a

total of 1278654 and 1196137 copy number segments, respective-

ly. Focusing on CML001BC and to restrict the analysis only to the

most relevant events, we filtered the VarScan2 report to CNA

putative events with at least 40 consecutive segments with the same

Log2 Ratio sign. Even with this stringent approach, a considerable

number of CNA events were reported (636). As expected, the

majority clustered in chromosome 7 (465; 73.1%) and chromo-

some 9 (125; 19.6%), suggesting that VarScan2 hypersegmented

the large CNA events occurring in these two chromosomes.

Surprisingly, a large number (46) of copy number events was also

reported for chromosome 1, 2, 3, 5, 8, 11, 14, 15, 16, 17, 21, 22, X

and Y. None of them were identified by CEQer or reported in

CGH analyses (Fig. 3b, d) suggesting that, at least with standard

settings, VarScan2 had good sensitivity but limited specificity.

Taken together, these data show that CEQer is faster and more

specific than VarScan2. Moreover, the use of VarScan2 requires

further downstream processing to convert segment data into

biologically meaningful results.

CEQer and Circos
Whole-genome copy number data as well as other events, such

as fusions, point mutations and indels, are commonly reported as

circular diagrams using Circos [16]. To facilitate the upload of

CEQer data into Circos, a dedicated CEQer function has been

built. By using it, CEQer converts CNA data into the Circos

format, so that they can be smoothly imported for circular

diagram generation. To generate diagrams, together with properly

formatted data, Circos requires a complex configuration file. To

ease the process of circular diagram creation, whenever the

conversion function is triggered, together with the Circos-

formatted CNA data, CEQer automatically generates a dedicated

configuration file which can be directly imported in Circos with no

further manual editing. Taking into account the fact that exome

Figure 2. CNA analysis of sample aCML-002 and CML-CP-003. Whole-exome view of patients aCML-002 (a) and CML-CP-003 (b). Coverage
data are indicated as Normalized Log2 Ratios. Individual colors represent specific chromosomes from 1 (left) to Y (right). Red and black arrows
indicate CNA areas in patient aCML-002 and CML-CP-003, respectively. c, d) Individual views of chromosome 9 (c) and 22 (d) of patient CML-CP-003.
Dark-yellow dots indicate copy neutral exons, green dots copy loss CNA exons. Thick green horizontal bars identify copy loss regions. e) Detailed view
of the boundaries delimiting the CNA regions in chromosome 9 (upper panel) and 22 (lower panel). Individual genes/exons delimiting the copy loss
CNA region (s) are shown. Blue boxed rectangles highlight the candidate LOH positions, marked as green circles. f) Proposed model of derivative
chromosome 9 partial deletion: the boxed regions represent the deleted genomic loci as identified by CEQer. The relative position of the two regions
in the derivative chromosome 9 is shown in the bottom part of the panel. g) Dual color BCR/ABL1 FISH analysis of patient CML-CP-003 at onset of the
disease. h) Sanger sequencing at onset of the disease and upon cytogenetic remission of 6 heterozygous single nucleotide polymorphism sites
shown in panel e, identified by CEQer as putative LOH loci. The blue boxes indicate the heterozygous nucleotides; the black arrows point to the
corresponding chromatogram peaks.
doi:10.1371/journal.pone.0074825.g002

Figure 3. CNA analysis of sample CML001BC and CML004BC. a) Genome view of patient CML001BC analyzed by CEQer and (b) corresponding
CGH analysis. c) Genome view of patient CML004BC and (d) corresponding CGH analysis. Genome views of coverage data are represented as
Normalized Log2 Ratios. Individual colors represent specific chromosomes from 1 (left) to X (right). e) Individual views of CML001BC-chromosome 9
and of CML004BC-chromosome 17. Dark-yellow dots indicate copy neutral exons; green dots copy loss and red dots copy gain CNA regions. Thick red
and green horizontal bars identify copy gain and loss regions, respectively. Large gray circles indicate heterozygous positions in the control dataset
whose heterozygosity is conserved in the case. Large green, blue and dark-red circles indicate copy loss, +1 copy gain and +2 copy gain LOH/AI
events, respectively. The position of LOH/AI markers on the y axis indicates the corresponding allelic ratio.
doi:10.1371/journal.pone.0074825.g003
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sequencing data is typically used to identify single nucleotide

variants/small indels together with CNAs, CEQer automatically

generates a commented-out section of the configuration file

pointing to an optional mutation file.

Discussion

Similarly to RNA-Seq, where transcript abundance can be

assessed by analyzing individual sequences as digital counts, in

whole-exome sequencing individual case/control reads aligning to

specific exons can be used to estimate the relative copy number of

the corresponding genomic locus. Although this possibility has

been clearly demonstrated [3] and despite the large diffusion of

exome sequencing as a standard approach to characterize genetic

lesions in cancer, its use as a source of CNA and LOH/AI

information is very limited. To overcome these limitations, we

developed CEQer. To allow our tool to be run on standard

desktop/notebook computers, CEQer has been implemented with

an extensive use of streaming technologies, parallel programming

and memory efficient algorithms. This is not trivial because many

sequencing companies are now offering exome sequencing and

primary analysis (i.e. Fastq generation, alignment and quality

report) at competitive costs: therefore, the use of CEQer allows

CNA/LOH analyses to be potentially performed even in

laboratories where costly bioinformatics infrastructures and high-

throughput sequencers are not available and in absence of any

dedicated bioinformatics support.

To further simplify CNA and LOH/AI analytical pipelines, a

flexible input module has been built, allowing CEQer to

automatically accept a wide variety of input file formats, such as

the Pileup/BED, SAM and BAM formats, thus eliminating the

need of running complex command line scripts or file format

conversion tools to preprocess input data; analyses can be run

individually or as serial jobs using a dedicated graphical batch tool;

full analytical settings can be stored as parameter files and

reloaded in new analyses; whole-exome and individual chromo-

some data are exportable as textual files for further processing or

as images; views can be freely zoomed to analyze genomic regions

in greater detail and exported as raster or vector files; after the

preprocessing step, filters and parameters can be freely modified in

real-time, with the new output generated within few seconds using

standard 4 Gb RAM, two or quad-core notebook or desktop

computers. All CEQer views, filters and parameters are controlled

by using simple point-and-click procedures.

To validate our tool we extensively tested it by using a large set

of in silico generated copy number models, with variable length and

frequency of the CNA events and variable case/control coverage

and with a set of 20 matched exomes from leukemic samples and

we compared the results with gold standard techniques such as the

CGH analysis. In virtually all the conditions tested our tool proved

to efficiently detect CNA variants and LOH/AI events, allowing

the identification of a significant number of previously unreported

copy number lesions. Taken globally, these data suggest that

CEQer is an efficient and easy-to-use graphical tool for CNA/AI

detection in the context of exome-sequencing experiments.

CEQer, databases, documentation and test files are available for

download from: http://www.ngsbicocca.org/html/ceqer.html.
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