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Brain-computer interaction based on motor imagery (MI) is an important brain-computer interface (BCI). Most methods for MI
classification are based on electroencephalogram (EEG), and few studies have investigated signal processing based on MI-
Functional Near-Infrared Spectroscopy (fNIRS). In addition, there is a need to improve the classification accuracy for MI fNIRS
methods. In this study, a deep belief network (DBN) based on a restricted Boltzmann machine (RBM) was used to classify fNIRS
signals of flexion and extension imagery involving the left and right arms. fNIRS signals from 16 channels covering the motor
cortex area were recorded for each of 10 subjects executing or imagining flexion and extension involving the left and right arms.
Oxygenated hemoglobin (HbO) concentration was used as a feature to train two RBMs that were subsequently stacked with an
additional softmax regression output layer to construct DBN.We also explored the DBNmodel classification accuracy for the test
dataset from one subject using training dataset from other subjects. *e average DBN classification accuracy for flexion and
extension movement and imagery involving the left and right arms was 84.35± 3.86% and 78.19± 3.73%, respectively. For a given
DBN model, better classification results are obtained for test datasets for a given subject when the model is trained using dataset
from the same subject than when the model is trained using datasets from other subjects.*e results show that the DBN algorithm
can effectively identify flexion and extension imagery involving the right and left arms using fNIRS.*is study is expected to serve
as a reference for constructing online MI-BCI systems based on DBN and fNIRS.

1. Introduction

In order to improve the classification accuracy for brain-
computer interfaces (BCIs), a deep belief network (DBN)
was designed to classify functional near-infrared spectros-
copy (fNIRS) signals. *is paper used oxygenated hemo-
globin (HbO) concentration as a feature to train two

restricted Boltzmann machines (RBMs) which were sub-
sequently stacked with an additional softmax regression
output layer to construct a DBN. *e main goal of BCI is to
bypass peripheral nerves and muscles to establish direct
communication and control between the brain and the
outside world. In addition, this study aims to provide op-
tional communication and control functions for patients
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with severe motor disabilities to improve their quality of life
as well as enhance certain functions for healthy people [1].
fNIRS is an active measurement method in which near-
infrared light (650∼1000 nm) is injected into brain tissue by a
transmitting probe and collected by a receiving probe.
Currently, fNIRS plays a promising role in the clinical area
for diagnosis purpose [2–5]. It uses changes in light intensity
to calculate oxygenated and deoxygenated hemoglobin
concentrations, and functional neurological activity is in-
directly inferred from this metabolic activity [6–8].

Motor imagery (MI) is an important paradigm in several
types of BCI paradigms [9, 10]. Currently, most methods for
MI classification are based on electroencephalogram (EEG),
while less attention has been paid to fNIRS. Compared to
EEG, fNIRS is a relatively newmethod for brain imaging and
brain-computer interaction [11–13]. One of its advantages is
its ability to tolerate a certain degree of movement of the
subject’s head. In addition, it is highly portable and suitable
for monitoring dynamic changes of oxygenation and de-
oxygenated hemoglobin concentration in brain tissue during
movement and imagining; it has also been applied suc-
cessfully inmany fields [14–23]. Studies have shown thatMI-
BCI based on fNIRS (fNIRS-MI-BCI) is feasible and has
several potential applications [24–26].

*ere is a need to equally improve the classification
accuracy of fNIRS. Commonly used classifiers for fNIRS-
MI-BCI include support vector machine (SVM) and linear
discriminant analysis (LDA). Sitaram et al. used SVM to
classify MI tasks and achieved an average classification
accuracy of 73.1% [27]. Hoper and Wolf used LDA to
classify MI with different time windows, with an average
classification accuracy of 81% recorded [28]. Naseer and
Hong used LDA to classify tasks at different time windows
for an fNIRS signal and achieved an average classification
accuracy of 77.5% [29]. However, in these studies, the time
window for feature extraction is too far apart from the time
point at which the tasks start, and the features are artificially
divided, making it difficult to convert them into online
systems. Even though deep learning has been successfully
applied in several areas [30], it has limited applications in
fNIRS-BCI [31–33]. Hennrich et al. first used the deep
learning method based on fNIRS to classify different
psychological tasks (mental (MA), word generation, and
mental rotation (MR)), with a classification accuracy of less
than 70% [31]. *erefore, in this paper, we attempt to
classify two classes of MI fNIRS signals using the DBN
method to verify the validity of the method. *e combi-
nation of unsupervised and supervised method can im-
prove classification accuracy and training speed. To the best
of our knowledge, this is the first attempt at applying the
DBN method to MI classification using fNIRS signals.

Deep learning is a descriptively powerful neural network.
RBM and automatic encoders are basic modules used in
deep learning schemes. *ey are trained layer by layer [34].
According to the Gibbs Sampling *eory, contrast diver-
gence (CD) is an effective method for training RBMs [35].
Significant improvement in performance can be achieved by
initializing multilayer neural networks using features
extracted by the RBM in the pretraining phase [36].

In this study, we hypothesized that an RBM-based deep
learning method can effectively improve the accuracy of MI
classification based on fNIRS. In order to test our hypothesis,
fNIRS signals from 16 channels covering the motor cortex
area were recorded for each of 10 subjects executing or
imagining flexion and extension involving the left and right
arms. *e DBN algorithm is designed to identify flexion and
extension imagery. *e optimal parameters and structure
settings of DBN were determined by the experiment to
generate an optimal classification model.

2. Materials and Methods

2.1. Subjects. A total of 10 graduate students from Kunming
University of Science and Technology were recruited (male,
right-handed, with an average age of 24± 2 years). All
subjects have no movement disorder, and hearing and vision
were normal or corrected to normal. Informed consent was
signed before the experiment, and the study was approved by
the Medical Ethics Committee of Kunming University of
Science and Technology.

2.2. Experimental ParadigmDesignandExperimental Process.
*e experimental paradigm is shown in Figure 1. *e task
cue is presented for 2 s, suggesting that, for one of the four
types of tasks (left arm flexion and extension execution (L-
FE_ME); right arm flexion and extension execution (R-
FE_ME); left arm flexion and extension imagery (L-FE_MI);
right arm flexion and extension imagery (R-FE_MI)), each
task appears randomly. After the cue is removed, the task
lasts 8 s and the subject is asked to perform one of the four
tasks. During execution of the task, the screen displays the
“ ∗” sign, and the subject is required to keep the head still and
avoid blinking. After the task is completed, the test cue is
presented for 1 s; the task lasts 17 s; the screen remains blank
during the break; the subject can relax and blink normally.
*e specific experimental procedure is as follows: in a quiet,
light-filled room, the test subject is quietly seated 70 cm from
a computer screen.*e subject’s arm is placed flat on a table,
with the palm facing down. First, the subject is asked to relax
for 3 minutes to calm down.*en, following text prompts on
the screen, the subject is asked to perform executed or
imagined flexion and extension involving the left and right
arms. Each trial comprises 8 s task time and 17 s rest time, as
shown in Figure 1(a). During the execution of flexion and
extension involving the left and right arms, the subjects are
asked to raise the corresponding left or right arm at a speed
of about 1Hz to approximately 90 degrees. During imagery
of flexion and extension involving the left and right arms, the
subjects were asked to imagine flexion and extension in-
volving the left and right arms in the first perspective. *e
flexion and extension imagery involving the left and right
arms are consistent with those of execution. Flexion and
extension movement or imagery involving the left and right
arms appear randomly, and the experiment consists of three
sessions (30 trials per session) and 90 trials per task. Data
from the first two sessions are used as the training set,
whereas data from the last session are used as the test set.*e
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fNIRS data obtained from the tasks are analyzed to evaluate
the validity of the DBN algorithm.

2.3. fNIRS Signal Acquisition. fNIRS signals were collected
using a multichannel wireless commercial fNIRS system
(NirScan, HuiChuang, China) with a sampling rate of 20Hz
and wavelengths of 740 nm and 808 nm. According to the
structure and configuration of the system, six launch probes
with eight receive probes were placed in such a way as to
cover the motor cortex.*e probe layout consists of 16 long-
distance channels (30mm) as shown in Figure 2(a). *e
experimental setup is shown in Figure 2(b).

2.4. fNIRS Data Preprocessing. To eliminate artifacts in the
original fNIRS signal, they are bandpass-filtered from 0.01 to
0.2Hz to eliminate physiological noise caused by heartbeat,
respiration, and Mayer waves [37]. *e filtered fNIRS signal
is then converted to an oxygenated hemoglobin (HbO)
signal using supporting data processing software. HbO data
for 0∼8 s are extracted after the start of the task and the data
for each channel are normalized through linear
transformation.

2.5. DBNClassificationModel. After preprocessing the data,
the DBN classification model is trained using the HbO data
for flexion and extension movement or imagery involving
the right and left arms. DBN is a deep learning method that
can be constructed by stacking the autoencoder or RBM. In
this paper, RBM was selected for constructing the DBN and
the algorithm was implemented using MATLAB 2010a deep
learning toolbox. *e computer used had the following
specifications: i73630QM processor running at 2.4GHz and
4GB of memory. *e DBN training process comprises two
phases: the pretraining phase for each RBM and precise
adjustment for the stacked RBM and the softmax regression
phase. In the pretraining phase, the input into the RBM is the
HbO time series data of flexion and extension movement or
imagery involving the right and left arms. Each one-way
RBM is individually trained in an unsupervised manner, and
pretraining is conducted to reconstruct the input data at the
output layer without providing tag information. After fully

training the two RBMs, the final DBN is fine-tuned in a
directional manner using the conjugate gradient method.
*e fine-tuning is performed in a supervised manner. *e
fine-tuning phase can be further divided into two phases: in
the first phase, only the weight of the corresponding offset
term connected to the output layer is adjusted; the second
phase involves the adjustment of all the parameters in the
entire network. *e obtained parameters can be applied
directly to the new input data, thereby enabling efficient data
classification.

2.5.1. RBM. RBM is a two-layer (visible layer and hidden
layer) neural network that operates in an unsupervised
manner [35]. *e input data is designed directly as a visible
layer and the hidden layer is designed to reconstruct the
input data as closely as possible. *e visible layer is con-
nected to the hidden layer, and there is no connection
between neurons in the same layer. Neurons in the visible
and hidden layers are random binary units. Figure 3 shows a
schematic of a single RBM.

*e energy function of an RBM is given by

E(v, h) � − 􏽘
m

i�1
aivi − 􏽘

n

j�1
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􏽘

n

j

vihjwij, (1)

where vi and hj represent, respectively, the states of the i-th
visible unit and the j-th hidden unit and wij is the con-
nection weight of the i-th visible unit and the j-th hidden
unit.*e offset of the visible unit is ai; the offset of the hidden
unit is bj.

Based on the definition of RBM energy function, a joint
probability distribution for (v, h) can be obtained as

P(v, h) �
exp(−E(v, h))

Z
,

Z � 􏽘

(􏽥v,􏽥h)

exp(−E(􏽥v, 􏽥h)),
(2)

where Z is the normalization factor. *ough the parameterW
of the model can be obtained by training, a distribution de-
termined by W cannot be calculated accurately. As shown in
Figure 3, when the state of the visible cell is given, the activation
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Figure 1: Experimental paradigm. (a) Timing of task prompts and task execution in a trial; (b) timing of a session.
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probability of the hidden unit is conditionally independent.
*e activation probability of the j-th hidden unit is

P hj � 1|v􏼐 􏼑 � sigmoid v
T
wj􏼐 􏼑 �

1
1 + exp −v

T
wj􏼐 􏼑

, (3)

where wj denotes the j-th column of the connection matrix
W and the activation of the hidden unit j is determined by
the inner product (similarity) of the feature wj of the hidden
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Figure 2: (a) Schematic diagram of layout of the fNIRS signal acquisition probe (16 channels, 6 transmit probes, and 8 receive probes). Black
rectangles indicate fNIRS source transmitter probes; black circles indicate fNIRS receiver probes, while black solid lines indicate fNIRS
channels. (b) Experimental setup.

Hidden layer h

Visible layer v

W

Figure 3: Schematic diagram of a single RBM model.
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unit and the input data, v. *e larger the inner product of the
observed data, v, and the feature, wj (the more similar the
two vectors), the greater the possibility that the hidden unit j
is activated. Due to the symmetrical structure of RBM, when
the state of the hidden unit is given, the activation proba-
bility of the visible unit is also conditionally independent:

P vi � 1|h( 􏼁 � sigmoid wih( 􏼁 �
1

1 + exp wih( 􏼁
, (4)

where wi denotes the i-th row of the connection matrix, W.
For observed data v in practical problems, how to determine
the distribution P(v) defined by RBM is important. *at is,
how to determine the edge distribution of the joint prob-
ability distribution, P(v, h). It is a product of the experts’
model:

P(v) �
􏽑j 1 + exp v

T
wj􏼐 􏼑􏼐 􏼑

Z
. (5)

It can be seen from equation (5) that each hidden unit
contributes a probability to the model according to its
similarity with the observed data (vTwj). For observation
data, the more the number of features of the hidden unit in
the RBM that are similar to the observation data, the higher
the likelihood that the observation data are in the RBM.

2.5.2. RBM-Based Learning Algorithm. RBM defines a
probability distribution for the observed data, v, the pa-
rameters of which are obtained by maximizing the log-
likelihood of the RBM in the training set; that is,

W
∗
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W

􏽘
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n
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For the training data, v(n), the gradient of the log-
likelihood is given by

zlogP v
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where 〈.〉P represents the expectation about the distribu-
tion, P. As described above, the likelihood of the training
data cannot be calculated accurately due to the existence of a
normalization factor. *erefore, CD can be used to ap-
proximate the logarithm of the log-likelihood (7) of the
second term [32]. Specifically, the CD algorithm can obtain a
biased estimate of the maximum likelihood solution. To
obtain the maximum likelihood solution, the initial training
of the RBM can be performed by the CD algorithm, and
then, the step size of the Gibbs sampling in the CD algorithm
is gradually increased in the subsequent training. A good
approximation of the maximum likelihood solution is
usually obtained. *erefore, the aforementioned learning
rules can also be expressed as optimizing the weight change
during RBM:

Δwij � ε vihj data − vihj recon􏼐 􏼑, (8)

where ε is the learning rate. Similarly, the learning rules for
the deviation terms are

Δai � ε vi data − vi recon( 􏼁,

Δbj � ε hj data − hj recon􏼐 􏼑.
(9)

Independent RBMs can be trained by following the
learning rules in equations (6), (7), and (8). *e pretraining
phase of the DBN is described above. It should be noted that
each pretrained RBM is intended to reconstruct the input
data in the hidden layer and the pretraining phase is per-
formed in an unsupervised manner.

2.5.3. DBN Construction. After separately training two
RBMs, the DBN can be constructed by stacking the RBMs
one by one. *e structure of the DBN is shown in Figure 4.
*e state vector of the hidden layer in the lower RBM serves
as the input to the upper visible layer. *e input is fed to the
hidden layer of the upper RBM.*e state vector of the upper
hidden layer serves as the input to softmax regression,
whereas the top is the output layer.

As an extension of logistic regression, softmax usually
deals with binary classification problems for solving multiple
classification problems. Given a training sample,
(hk
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(2), y(2)), . . . , (hk

(M), y(M))􏽮 􏽯, where M is the
number of training samples, k is the number of iterations,
and (hk

(1)), (hk
(2)), . . . , (hk

(M))􏽮 􏽯 is the hidden vector of DBN.
All parameters of the softmax regression are denoted as w,
and for j� 1, 2, . . ., c, the conditional probability, P (y� j|h k),
can be written as
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*e loss function of softmax regression takes a form
similar to logistic regression, as shown in equation (11):

J(w) � −
1

M
􏽘

M

i�1
􏽘

c

j�1
1 y(i) � j􏽮 􏽯logp y(i) � j|hk(i);w􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦,

(11)

where 1 {·} is the indication function, it has a value of 1 if the
input statement is true; otherwise, it is 0. Equation (11) uses
the conjugate gradient method to minimize the cost func-
tion, and the obtained error term is backpropagated through
the multilayer RBM to fine-tune the parameters.*emethod
of fine-tuning the parameters is as described above. Without
loss of generality, the updated rules for top-level weights can
be written as

wij � αwij − ε∇wij
J(w), (12)

where α is the momentum and ε is the learning rate. Other
layers have similar weight update rules.

In this paper, the DBN is evaluated using the classifi-
cation accuracy. *e number of hidden units in the DBN is
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determined experimentally. *e optimal hidden unit
number is selected using the pairwise cross-validation
method from the array [10, 20, 30, 40, 50]. In the pretraining
phase, the number of RBM training samples is determined
experimentally. In this paper, the RBM is stable if the
number is greater than 5, so the number of training samples
per RBM is set to 10. *e learning rate for the weights and
deviations is set to 0.1.*emomentum is set to 0.5.*eHbO
concentration data serve as input data to the DBN. One trial
per channel consists of 160 data points and 16 channels; the
data at each sampling time point are taken as a sample.
*erefore, the input data for the RBM are a 16-dimensional
vector. For one subject, flexion and extension movement
involving the right and left arms or flexion and extension
imagery involving the right and left arms include 90 trials.
*e experiment comprises three sessions (30 trials per
session); data from the first two sessions serve as training set,
while data from the last session serve as test set. *e training
set is 19200×16, while the test set is 9600×16. At the same
time, considering differences in classification models trained
by individual subjects, this paper also uses test sets from
different subjects to evaluate individual differences in the
classification models.

3. Results

Data obtained from each trial for the 10 subjects were
extracted and averaged according to the four defined types of
tasks. *e average fNIRS response obtained for flexion and
extension movement or imagery involving the right and left
arms is shown in Figures 5(a) and 5(b). During flexion and
extension movement involving the right and left arms, blood
oxygen concentration in the brain tissue showed the fol-
lowing trend: the concentration of HbO increased while that

of deoxygenated hemoglobin (HbR) decreased, and con-
tralateral motor cortex activation was observed. Flexion and
extension imagery involving the right and left arms followed
a similar pattern, but the amplitude was weaker. *e right
side of Figure 5 shows a topographical map of HbO con-
centration in the motor cortex for the first 8 s after the start
of the task, visually showing the difference in activation
intensity of the contralateral motor cortex.

*e DBN was trained using HbO concentration data
during performance of tasks for the 10 subjects. *e training
set was 19200×16, the test set was 9600×16, and the number
of units in the hidden layer [h1, h2] was determined from the
array [10, 20, 30, 40, 50] by the cross-validation method.
Table 1 shows the DBN classification accuracy for flexion
and extension movement or imagery involving the right and
left arms. For flexion and extension movement involving the
right and left arms, the average classification accuracy was
84.35± 3.86%; the highest classification accuracy recorded
was 89.21%, while the lowest classification accuracy achieved
was 76.23%. For flexion and extension imagery involving the
right and left arms, the average classification accuracy was
78.19± 3.73%; the highest classification accuracy recorded
was 82.93%, while the lowest classification accuracy achieved
was 73.96%.

Additionally, to compare the differences, generalization,
or transfer between DBN models trained using different
training sets, MI data of the third session for each subject
were used as test set to evaluate DBN models trained with
each subject. *e classification results are shown in Table 2.
For the DBN classificationmodel, better classification results
were achieved for the test set for a particular subject when
the DBN model is trained with training set from the same
subject than for test sets in which the same DBN model was
trained with training set from other subjects.

4. Discussion

In this paper, we explored the feasibility of the recognition of
flexion and extension movement or imagery involving the
right and left arms using DBN and fNIRS. *e proposed
method achieves a higher classification accuracy
(78.19± 3.73%) for two types of MI fNIRS signals based on
DBN compared to the traditional algorithms adopted by
Sitaram et al. [27], Naseer and Hong [29], and Zhang et al.
[38] (average classification accuracy: 73.1%, 77.5%, and
75.3%, resp.), indicating the effectiveness of the DBN al-
gorithm used in this paper.

In addition, Table 1 shows that the DBN classification
results for flexion and extension movement involving the
right and left arms are better than those for flexion and
extension imagery involving the right and left arms.We infer
that the HbO feature evoked by an executed movement may
be more significant than that evoked by an imagined
movement. It could also be that the signal-to-noise ratio for
flexion and extension movement involving the right and left
arms is greater than that for flexion and extension imagery
involving the right and left arms. Secondly, Table 2 shows
that the DBN classification result for a test set from one
subject trained with the training set from the same subject is

Output data

Input data

So�max

RBM

RBM

Classification mark

V2

H1

W1

W2

W0

H0

V0

V1

Figure 4: Schematic diagram of the DBN structure, V is the visible
layer, H is the hidden layer, and the top is the output layer.
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better than that of a test set trained with training set from
different subjects, even while using the same DBN model.
*e fNIRS signal induced by this is different due to the
difference in MI psychological activity between the subjects.
It is necessary to construct and train a specific DBN clas-
sification model for each subject, that is, to construct a DBN
model that varies from person to person. At the same time,
the DBN model of a given subject can be promoted or
migrated to other subjects’ data within a certain classifica-
tion accuracy, which can reduce the data collected from
other subjects. For example, it is possible to apply a normal
human DBN model to a disabled person.

Naseer et al. considered data extracted for different time
windows between 20 s and 30 s after the start of the imagery
task (starting time is 0 s) [29]. *is is different from the time
period for which data were extracted in this study.

L–FE_ME (HbO)
R–FE_ME (HbO)

0.5

0

–0.5

1

0

–1

D1

D2

D3S1

S2

S3
D4

D5

D6

D7S4

S5

S6
D8

D5

D6

D7S4

S5

S6
D8

D1

D2

D3S1

S2

S3
D4

L–FE_MI (HbO) R–FE_MI (HbO)

0.4

0

–0.4

0.2

0

–0.2
D5

D6

D7S4

S5
S6 D8

D5

D6

D7S4

S5

S6
D8

D1

D2

D3S1

S2

S3
D4

D1

D2

D3S1

S2

S3
D4

(A)

(B)

(b)

Figure 5: Average fNIRS response and topographic map. (a) *e average fNIRS response of flexion and extension movement involving the
right and left arms and topographic map of HbO concentration in the motor cortex during the first 8 seconds of performing the task. (b)
Average fNIRS response for flexion and extension imagery involving the right and left arms and topographic map of HbO concentration in
the motor cortex during the first 8 seconds of performing the task. In the figure, L-HbO and R-HbO are the z value of HbO concentration for
flexion and extension movement or imagery involving the right and left arms; L-HbR and R-HbR are the z value of HbR concentration for
flexion and extension movement or imagery involving the right and left arms; L-FE_ME: left arm flexion and extension execution; R-
FE_ME: right arm flexion and extension execution; L-FE_MI: left arm flexion and extension imagery; R-FE_MI: right arm flexion and
extension imagery.

Table 1: DBN classification accuracy for flexion and extension
movement or imagery involving the left and right arms (%).

Subject
number

Flexion and extension
movement for right and

left arms

Flexion and extension
imagery for right and left

arms
S1 86.90 81.79
S2 82.32 79.23
S3 81.47 70.94
S4 85.79 79.29
S5 76.23 73.97
S6 89.21 82.93
S7 84.79 78.56
S8 82.29 81.47
S9 78.04 73.96
S10 86.45 79.79
Mean 84.35± 3.86% 78.19± 3.73%
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Figure 5(b) shows that the average fNIRS response curve for
flexion and extension imagery involving the right and left
arms peaks at 16 s∼20 s. For online systems, the response
delay in Naseer’s study is limited by the conversion to online
BCI. *is study considers the conditional independence
between RBM visible units [35]. We calculated, respectively,
the correlation coefficients of L-HbO and R-HbO response
curves for 0∼8 s and 8 s∼16 s in Figure 5(b): the correlation
coefficient for 0∼8 s is 0.1231, and the correlation coefficient
for 8∼16 s is 0.4509, indicating that HbO at 0∼8 s is more
suitable as classification data.

In this study, we used the probability generation DBN
model [34]. Since the optimal network topology is highly
dependent on the type of problem and the distribution of
training data, there is no general way to determine the
number of layers and number of units in the hidden layer.
Following from Hinton et al. combined with the number of
training samples in this study, the number of units in the
hidden layer [h1, h2] can be selected from 2 to 128, and it can
be determined from the array [10, 20, 30, 40, 50] using the
two-two cross-validation method. According to Lu et al. in
the process of training DBN (the structure is
226× 70× 60× 50× 2), the number of samples in the training
set needs to be greater than 100 to avoid overfitting [39]. In
this study, the DBN structure used is smaller than the DBN
structure adopted by Lu et al. To avoid overfitting, it is
necessary to obtain a sufficiently large training set. *ere-
fore, this paper takes the data of each sampling point as a
sample. *e training set is 19200×16 and the average
training time is 5.17 s; the test set is 9600×16 and the average
test time is 0.64 s. Compared to the study by Lu et al., even
though the DBN has a small structure, the calculation speed
is relatively faster and suitable for conversion to an online
system.

Figure 5 shows an increase in HbO concentration and a
decrease in HbR concentration during flexion and extension
movement or imagery involving the left and right arms,
which indirectly reflects an increase in neuronal population
activity in the motor cortex [40]. Figure 5 also shows that the
HbO concentration in the contralateral motor cortex is
higher than the HbO concentration in the ipsilateral motor
cortex during flexion and extension movement or imagery
involving the left and right arms, indirectly indicating that
the activation of neuronal population in the contralateral

motor cortex is higher than that of the ipsilateral, which is
consistent with existing research results [41–43]. Moreover,
it can be seen from Figure 5 that the HbO amplitude during
flexion and extension movement involving the left and right
arms is higher than the HbO amplitude during flexion and
extension imagery. *is may be because actual movement
activates more neuronal excitatory activity than MI, and the
MI requires the subject to suppress actual movements.

4.1. Limitations and Outlook. *e training set used in this
paper has a low feature dimension of only 16 dimensions,
which cannot be directly used in online systems. When
converting to an online system, it is necessary to increase the
feature dimension and reduce the sampling rate to avoid
making the dimension of the input data too high and that of
the training set too small to be fitted. Besides, due to the
condition of experiment, we just recruited ten subjects
which is relatively low. In the future, we will increase the
number of subjects which may improve the classification
accuracy and we will build an online MI-BCI system based
on DBN and fNIRS, using online feedback to promote
subjects to adjust their motor imagery mental activity
strategy. *is is expected to further improve the DBN
classification performance.

For BCI applications, the inherent delay in the response
of hemodynamics makes the generation of commands using
fNIRS slower compared to EEG. A hybrid system approach,
specifically the combination of fNIRS with EEG, may be
useful to remove this kind of disadvantage [44]. Recently, the
simultaneous measurement of fNIRS with EEG showed
promising results [45]. In the future research, we will explore
the hybrid fNIRS-EEG system to reduce the brain signal
detection time or to increase the number of commands
without sacrificing the classification accuracy.

5. Conclusions

In this study, a DBN algorithm based on RBM was con-
structed and used to classify fNIRS signals related to flexion
and extension movement or imagery involving the left and
right arms. *e results show that the DBN algorithm can
effectively identify flexion and extension imagery involving
the left and right arms using fNIRS signals. In addition, it

Table 2: DBN model classification results (%) for test dataset from one subject trained with training dataset from other subjects.

MODLE (h1, h2) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
DBN_S1 (10, 30) 81.79 78.97 80.43 76.89 78.52 76.87 78.69 80.06 68.79 78.93
DBN_S2 (10, 10) 77.92 79.23 76.27 75.06 77.92 75.97 77.67 74.26 75.31 69.93
DBN_S3 (10, 40) 68.71 66.17 70.94 67.46 68.71 64.93 66.56 64.48 63.26 64.43
DBN_S4 (10, 10) 79.25 77.49 76.85 79.29 75.43 79.25 77.49 71.85 77.29 69.25
DBN_S5 (10, 50) 72.06 68.16 72.79 71.93 73.97 69.06 61.69 69.79 69.93 66.06
DBN_S6 (10, 30) 79.56 77.43 76.87 78.25 76.32 82.93 79.23 67.26 66.76 79.31
DBN_S7 (10, 10) 73.56 76.43 76.87 68.93 69.32 77.64 78.56 69.26 71.97 73.67
DBN_S8 (10, 30) 77.06 76.83 75.97 76.43 76.12 75.34 75.56 81.47 76.67 77.67
DBN_S9 (10, 50) 64.26 65.31 72.93 67.13 69.48 70.26 60.43 71.76 73.96 70.77
DBN_S10 (10, 30) 75.96 77.23 69.45 77.9 65.87 74.12 75.94 76.87 76.98 79.79
DBN_S1, DBN_S2, . . ., DBN_S10, respectively, represent DBN models trained using training sets S1, S2, . . ., S10, and (h1, h2) are the number of units of two
hidden layers of DBN.
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was shown that, for a given DBN model, better classification
accuracy was achieved for the test dataset for a given subject
when the DBN model is trained with training dataset from
the same subject than when it is trained with a set from
different subjects. *is implies that a specific DBN model
needs to be constructed and trained for each subject.
However, the DBNmodel for one subject can be generalized
or transferred to other subjects’ data within a certain clas-
sification accuracy, which can reduce data collection from
other subjects. It is expected that the study will lay a
foundation for constructing online MI-BCI systems based
on DBN and fNIRS.
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