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ABSTRACT

L1 is a ubiquitous interspersed repeated sequence in
mammals that achieved its high copy number by
autonomous retrotransposition. Individual L1 ele-
ments within a genome differ in sequence and retro-
transposition activity. Retrotransposition requires
two L1-encoded proteins, ORF1p and ORF2p.
Chimeric elements were used to map a 15-fold dif-
ference in retrotransposition efficiency between two
L1 variants from the mouse genome, TFC and TFspa, to
a single amino acid substitution in ORF1p, D159H.
The steady-state levels of L1 RNA and protein do
not differ significantly between these two elements,
yet new insertions are detected earlier and at higher
frequency in TFC, indicating that it converts expres-
sed L1 intermediates more effectively into new inser-
tions. The two ORF1 proteins were purified and their
nucleic acid binding and chaperone activities were
examined in vitro. Although the RNA and DNA oligo-
nucleotide binding affinities of these two ORF1 pro-
teins were largely indistinguishable, D159 was
significantly more effective as a nucleic acid chaper-
one than H159. These findings support a requirement
for ORF1p nucleic acid chaperone activity at a late
step during L1 retrotransposition, extend the region
of ORF1p that is known to be critical for its functional
interactions with nucleic acids, and enhance under-
standing of nucleic acid chaperone activity.

INTRODUCTION

L1 is an autonomous mammalian retrotransposon that
has successfully amplified to comprise 17 and 19% of

the human and mouse genomes, respectively. Most of
the >600 000 copies of mouse L1 are inactive due to trun-
cations and/or point mutations, but 3000 are estimated to
be functional for further transposition (1,2). Full-length,
active copies of L1 are 7 kb in length and encode two
proteins necessary for retrotransposition. The ORF1 pro-
tein (ORF1p) acts as an RNA-binding protein and nucleic
acid chaperone protein in vitro (3). The RNA-binding
activity of ORF1p is necessary but not sufficient for retro-
transposition (4,5), and retrotransposition efficiency
depends upon nucleic acid chaperone efficacy (4). The
ORF 2 protein (ORF2p) has three essential domains;
two of these provide the endonuclease (EN; 6) and reverse
transcriptase activities (7) required for the target-primed
reverse transcription reaction (TPRT, 8) that characterizes
the replication mechanism of L1 and other non-LTR
retrotransposons.
Retrotransposition rates vary widely among different

copies of L1. The evolution of L1 is episodic, typically
characterized by one or a few distinct subtypes of L1
that dominate the dispersal process within a species and
then become extinct (9). In mice, there are three subfami-
lies represented among the 3000 active copies of L1. These
subfamilies, TF, A and GF, are distinguished by their dis-
tinct 50-end sequences. Within each subfamily, individual
members vary in their retrotransposition activity as much
as several 100-fold, as measured by an antisense-intron
(AI) reporter gene assay in cultured cells (1,2).
Individual elements from the currently active subfamily
of human L1 similarly exhibit different activities in the
cultured cell assay. A total of 40 of 82 full-length human
L1 sequences in the human genome database that contain
intact ORFs were able to retrotranspose when tested in
cultured cells. These active elements varied widely in
their retrotransposon rates, however, with most of the
total retrotransposition activity of the group (84%)
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being attributable to just six individual elements.
Significantly, of these six elements, the one with the great-
est activity had an amino acid sequence most similar to the
subfamily consensus (10).
A mouse L1 element on the X chromosome, TFC, has a

sequence most like the consensus of the TF subfamily and
was found to retrotranspose 15 times more efficiently than
another element of the same subfamily, TFspa (4). TFspa

recently inserted into the beta-glycine receptor gene, hence
it is a known active mouse L1 (11). A total of 20 nt sub-
stitutions, including three that cause amino acid replace-
ments, distinguish the two elements. The goal of this study
was to define the substitution responsible for this dramatic
effect on L1 retrotransposition and determine its mechan-
ism of action. The significant substitution mapped to one
of the altered amino acids in ORF1 far N-terminal to the
previously described nucleic acid interaction domain of
the ORF1 protein (12–14). The substitution affects a late
step in retrotransposition and significantly alters the
nucleic acid chaperone activity of the ORF1 protein
in vitro. The results of this work strengthen the hypothesis
that the nucleic acid chaperone activity of ORF1p is
required for TPRT during L1 retrotransposition (4,15),
as well as increase our understanding of the mechanism
of action of nucleic acid chaperone proteins.

MATERIALS AND METHODS

Constructs

TFC and TFspa constructs for the autonomous retrotrans-
position assay were described previously (4). Chimeric
constructs that place either the two ORF1 replacement
substitutions or the single ORF2 replacement substitution
of TFspa into the backbone of TFC were made by moving
either the NheI-BstWI or the BstWI-SspI fragments,
respectively, from TFspa into the homologous sites of
TFC (Figure 1B). The single point mutations to recipro-
cally alter the two ORF1 amino acids that differ between
TFC and TFspa were made by site-directed mutagenesis in
either a TFC or a TFspa subclone. The NheI-BstWI frag-
ment containing the mutation was then used to replace the
homologous fragment of the intact L1 in the retrotranspo-
sition assay vector after verification that the desired point
mutation was the only change by DNA sequencing.

Cell culture and autonomous retrotransposition

Retrotransposition assays were done in 143B cells as
described previously (4), using either G418 resistance or
expression of eGFP as the marker of retrotransposition
events. Briefly, these reporter cassettes measure retrotran-
sposition because expression of the marker requires exci-
sion of an AI in the L1 transcript, then conversion to
cDNA and insertion into the genome by TPRT before
the reporter can be transcribed into an mRNA that
encodes functional protein, i.e. before either growth on
medium containing G418 or detection of green fluores-
cence, is possible. Cells were transfected the day after seed-
ing using Lipofectamine2000 (Invitrogen, Carlsbad, CA,
USA), according to the manufacturer’s recommendations.
Transformants were selected for 24 h in10 mg/ml

puromycin beginning 24 h after transfection. For experi-
ments involving the eGFP marker, fluorescence was fol-
lowed daily by microscopy and quantified by flow
cytometry 6 days post-transfection as described (4). For
experiments involving the neo marker, cells were trans-
fected as for eGFP, except that cells were allowed to
recover for 1 day after puromycin treatment, then placed
in G418 (400mg/ml) and allowed to grow for 10 additional
days before fixing and staining with crystal violet.
Transfections were identical for immunoflorescence
assays except they were done using cells plated on poly-
lysine-coated coverslips.

Immunofluorescence microscopy of L1ORF1p

L1-transfected 143B cells were rinsed with phosphate
buffered saline (PBS) and then fixed for 20min in
4% paraformaldehyde at various times post-transfection.
The fixed cells were rinsed in PBS, then blocked and
permeabilized for 2 h in PBS containing 3% BSA and
0.1% Triton X-100 (block). The coverslips were incubated
overnight at 48C with rabbit polyclonal anti-ORF1p
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Figure 1. Locating the substitution(s) responsible for elevated retro-
transposition of TFC (white box) versus TFspa (grey box). (A)
Structure of TFC. From 50 to 30, monomers (small rectangles, with
promoters), 50 nc region (line), ORF1 with relative locations of the
coiled-coil domain (C-C) and the conserved domain [comprised of the
middle or M, domain and the C-terminal domain, CTD (13)], ORF2
with the endonuclease (EN) and reverse transcriptase domains (RT),
the 30 nc region (line), followed by a polyA tail (pA). ORF1 and ORF2
are not aligned because they are separated by a 40 nt intergenic region
(32). (B) Autonomous retrotransposition assay with chimeric L1s,
grey boxes indicate the locations of the restriction fragments from
TFspa that were substituted into the TFC backbone: NheI to BstWI
with two replacement substitutions in ORF1 or BstWI to SspI with
one silent and one replacement substitution in ORF2, as depicted in
panel A. The fold change in retrotransposition as measured with AI-
eGFP is given relative to TFspa. (C) Retrotransposition assay on TFC

(grey) and TFspa (white) elements with single amino acid substitutions.
Retrotransposition causes G418R; representative wells show stained
G418-resistant cells after 10 d of selection. The uniform dark stain is
due to confluent cells, whereas the spots are colonies of G418R cells,
indicative of fewer retrotransposition events.
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antibody (3.4 mg/ml) in block and then rinsed three
times in block. Cells were then incubated with 1:500
Cy-5 conjugated goat anti-rabbit antibody (Jackson
ImmunoResearch, West Grove, PA, USA) for 1 h at
48C, rinsed three times in block and mounted on slides
with Fluoromount G (Southern Biotech, Birmingham,
AL, USA). Fluorescence was imaged and captured using
a Zeiss LSM510.

RNA, DNA and protein analyses from transfected cells

Timepoints were taken from L1-transfected 143B cells by
harvesting cells every 24 h post-transfection. Cells were
recovered with trypsin, washed in PBS and stored frozen
as cell pellets at �808C. Pellets were resuspended in five
volumes of PLB (140mM NaCl, 200mM Tris–HCl, pH
8.5, 2mM MgCl2) to which a 1/20 volume of 5% NP40
was added. After gentle mixing followed by 5min on ice,
the lysate was centrifuged 10min at 2000g. The superna-
tant was recovered for RNA and protein analysis and the
pellet was used for DNA analysis. About 10 mg/ml pro-
tease inhibitors (P8340 Protease Inhibitor Cocktail,
Sigma-Aldrich, St. Louis, MO, USA) were added to ali-
quots collected for western blot analysis.

Retrotransposition events were detected at the DNA
level by PCR amplification of the spliced reporter gene.
About 200 ng of total DNA from various days post-trans-
fection were amplified for 20 cycles with primers A7
(50-CGTCCATGCCGAGAGTGATCCC) and A8 (50-G
CTACGT CCAGGAGCGCACCATC), followed by 35
cycles with primers A16 (50-GCTACGTCCAGGA GCG
CACCATC and A8.

ORF1p was detected by western blotting using 20 mg
of transfected cell lysate (Bradford Assay, Bio-Rad,
Hercules, CA, USA) and affinity purified, rabbit anti-
ORF1p antibody (16) with the HRP-conjugated goat
anti-rabbit antibody Plus Western Blotting Reagent
Pack (GE Healthcare, Pittsburg, PA, USA). Images were
captured on a Typhoon 9400 (GE Healthcare). Anti-actin
antibody (sc-8432) was purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA) and used as
recommended by the manufacturer to detect actin on the
same blots.

L1 RNA was detected and quantified using RT–PCR.
Two microgram of RNA isolated from PLB supernatants
using TRIzol LS (Invitrogen) were treated with RQ1-
DNase (Promega, Madison, WI, USA) according to the
manufacturer’s instructions. One microgram of the
DNase-treated RNA was added to 20 ml reverse transcrip-
tase reactions as recommended by the manufacturer
(Reverse Transcription System, Promega). Reactions
were diluted to 100 ml in nuclease-free water and 10 ml
were used in 25 ml PCR reactions with primers that
amplify a 265 nt region of ORF2 (172 nt downstream of
the AUG) in L1 from both TFC and TFspa. The oligonu-
cleotides were 50-GACACTACCTCAGAATCAAAGGC
TGG (forward primer) and 50-GTGAGGCGCAATGTG
TGCTTTGAGC (reverse primer). It was empirically
determined that 23 or 25, cycles remained within the
linear range of the assay, on days 1–3 or 4–6, respectively.
PCR products were separated by electrophoresis through

2% agarose gels, and then stained with ethidum bromide.
Fluorescence images were captured on the Typhoon 9400
and analysed using ImageQuant (GE Healthcare).

Assays using purified proteins

D159 (TFC) and H159 (TFspa) ORF1 proteins were puri-
fied to apparent homogeneity after expression in baculo-
virus-infected insect cells as described (4). Briefly, insect
cells were lysed 48 h post-infection and the His-tagged
ORF1 proteins were purified using affinity (Ni-NTA agar-
ose, Qiagen, Valencia, CA, USA) chromatography fol-
lowed by size-exclusion (Sephacryl S300, GE Healthcare)
chromatography. RNA binding, strand exchange and
melting temperature (Tm) assays were done as described
previously (4,15,17).
DNA stretching experiments were performed using a

dual beam optical tweezers instrument, described pre-
viously (18). Single bacteriophage � DNA molecules
(Roche Applied Science, Indianapolis, IN, USA) were
labelled on the 50-ends with biotin and captured between
two 5 mm diameter streptavidin-coated polystyrene
spheres (Bangs Labs, Fishers, IN, USA). After capturing
a single DNA molecule between two spheres, other
spheres and DNA were rinsed out of the optical tweezers
trapping chamber, and the solution surrounding the single
DNA molecule was exchanged with a solution containing
a fixed protein concentration. After the volume was com-
pletely exchanged, the flow was stopped and the DNA was
stretched in 100 nm steps at �1 step/s, and then relaxed
back to the original extension at the same rate. The result-
ing force versus extension was then analysed to determine
the amount of hysteresis between stretching and relaxa-
tion, the observed aggregation of dsDNA and ssDNA in
the presence of protein, and the helix–coil transition width
for a given set of solution conditions. All experiments were
performed in 10mM HEPES, 100mM Na+ solution. To
quantify the effects of these proteins on the DNA helix–
coil transition, we calculated the transition width as a
function of protein concentration, as described previously
(4). The results were fit to the McGhee–von Hippel bind-
ing isotherm:

� ¼ K� n� C
1��ð Þ

n

1��þ�=nð Þ
n�1

1

where � is the fractional change in transition width, K is
the equilibrium association constant for protein binding to
DNA and n is the binding site size. For simplicity we set
n=1 so that the equilibrium constant is the only fitting
parameter.
Kinetic experiments on oligonucleotides were per-

formed on an upgraded Biacore 3000 instrument at
258C. The 50-biotinylated AAAAAGTACACAGTCTAA
CATCAACTCGC was annealed to either 50-GCGAG
TTGATGTTAGACTGTGTACTTTTT to make a per-
fectly matched, dsDNA duplex or to 50-GCGAGTTG
ACGTCAGACCGTGCACTTTTT to make the mis-
matched dsDNA duplex. Biotinylated oligonucleotide
was captured on a CM4 chip first derivitized with
NeutrAvidin biotin-binding protein (Pierce, Rockford,
IL, USA) via amine coupling. dsDNA constructs
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(perfectly matched and mismatched) were hybridized on
the chip in running buffer (50mM phosphate buffer,
250mM NaCl, 0.1mM EDTA, pH 7.6). The instrument
was programmed for iterative cycles in which each kinetic
cycle consisted of: (i) 300 s protein injection phase, (ii)
300 s or greater dissociation phase depending on affinity
and (iii) a 120 s regeneration phase. A flow rate of 20 ml/
min was maintained throughout the cycle. The concentra-
tion of proteins analysed ranged from 10 to 300 nM. The
surface plasmon resonance (SPR) signal was recorded in
real time every 0.5 s. Each sensorgram obtained was cor-
rected for bulk refractive index changes by subtracting the
corresponding protein injection cycle on a blank
NeutrAvidin surface. The association and dissociation
rate constants (kon and koff, respectively) for the interac-
tion were calculated by globally fitting the data using dif-
ferent kinetic models available in the BIA evaluation
software package with a simple 1:1 bimolecular
Langmuir interaction model.

RESULTS

TFC, a mouse L1 element with the sequence of the TF

subfamily consensus, retrotransposes 15-fold more fre-
quently than TFspa in an autonomous retrotransposition
assay (4). The 20 nt substitutions that distinguish these
two elements are represented schematically in Figure 1A.
Ten of these are in the monomers, which potentially could
impact transcription and hence retrotransposition in vivo.
However, the monomers are not present in the constructs
used for the autonomous assay, rather the CMV promoter
is used to drive transcription of both TFspa and TFC; thus,
those 10 substitutions cannot account for the difference
observed between the two elements using this assay. Just
three of the remaining 10 nt substitutions cause amino acid
replacements: two in ORF1 and one in ORF2. In addition,
there are three single nucleotide substitutions in ORF2
that are silent at the amino acid level, another in the 50

non-coding region and three in the 30 non-coding region.
The ORF2 replacement altered a conserved EN domain

in ORF2p (6), whereas the two ORF1 replacements both
lie in a relatively non-conserved coiled-coil forming region
of ORF1p (13,19). All three of the replacement substitu-
tions were rare among the 539 aligned sequences (4) that
were used to derive the consensus. In ORF1, D53G was
present in just five of the sequences including TFspa, D53N
occurred once and D159H was present only in TFspa. In
ORF2, F224L also appeared only once in TFspa, but two
of the sequences had F224Y and two others had F224C.
Chimeric L1 constructs were made to test the importance
of the ORF2 versus the two ORF1 substitutions in the
retrotransposition assay by replacing either of two restric-
tion fragments of TFC with the homologous fragments
from TFspa; these two chimeric elements are both com-
prised of largely TFC, but introduce either the single
amino acid replacement (together with one nearby silent
substitution) of ORF2, or the two amino acids of ORF1
from TFspa into the TFC backbone. The elevated retrotran-
sposition activity of TFC unambiguously mapped to the
fragment containing the two replacements in ORF1,

rather than to the fragment which altered ORF2
(Figure 1B). To determine whether one or both amino
acid replacements in ORF1 were important for the
enhanced activity of TFC and the diminished activity of
TFspa, as well as to eliminate the possibility that one of the
‘silent’ substitutions elsewhere was critical, the two ORF1
amino acid replacements of TFC were individually intro-
duced into TFspa and the two replacements of TFspa were
likewise introduced into TFC. Subsequent retrotransposi-
tion assays with these altered elements identified the aspar-
tic acid at position 159 (D159) in ORF1p as the crucial
amino acid responsible for most, if not all, of the 15-fold
increase in retrotransposition activity exhibited by TFC

(Figure 1C).
The kinetics of retrotransposition, as well as the expres-

sion of L1 RNA and ORF1p were examined in cells trans-
fected with L1 TFC or TFspa marked with the eGFP AI
reporter. Transfected cells were examined daily for the
presence of green cells, which indicate retrotransposition
of L1 from the transfected plasmid into genomic DNA
(20). Cells transfected with TFC expressed eGFP at higher
frequency throughout the timecourse compared with those
transfected with TFspa; green cells were also initially appar-
ent on day 3 post-transfection with TFC, versus day 4 with
TFspa (Figure 2A and B). Interestingly, simultaneous detec-
tion of ORF1p by immunofluorescence suggests that
ORF1p accumulates similarly when expressed from the
two elements (Figure 2A) because there is no evidence for
a lag in expression in cells transfected with TFspa compared
with TFC, nor does there appear to be any difference in
either the intensity or the subcellular localization of
ORF1p over the timecourse examined (data not shown,
but see also Figure 3). With both TFC and TFspa, retrotran-
sposition leading to eGFP expression occurred in a minor
fraction of the ORF1p expressing cells.

The results of the imaging studies were corroborated
and extended using biochemical techniques. The finding
that transposition occurred earlier in cells expressing
TFC than TFspa was confirmed by PCR amplification of
genomic DNA using a strategy that allowed simultaneous
detection of the transfected eGFP DNA (intron present)
and the retrotransposed copy (intron absent, Figure 2C).
The spliced eGFP gene, indicative of successful retrotran-
sposition, appeared earlier in genomic DNA after trans-
fection and accumulated to higher levels in TFC-
transfected cells compared with those transfected with
TFspa, as expected based upon the results obtained by fol-
lowing the appearance of green cells. Consistent with the
intensity and distribution of ORF1p observed by indirect
immunofluorescence, the steady-state levels of ORF1p
detected by western blotting did not differ between the
two elements over the timecourse examined (Figure 3).
Likewise, there were no significant differences in the
steady-state level of L1 RNA detected by semi-quantita-
tive RT–PCR between TFC and TFspa (Figure 4).

ORF1p is an RNA-binding protein that forms large
complexes with L1 RNA (5,12,16,17,21). It is also a
nucleic acid chaperone; mutations that compromise chap-
erone activity block or diminish retrotransposition (4). In
order to examine these activities of ORF1p, we isolated
the D159 (TFC) and H159 (TFspa) variant forms of ORF1p
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from baculovirus-infected insect cells. The two proteins
behaved identically throughout protein purification (data
not shown), eluting from size-exclusion chromatography
in the identical fraction characteristic of the elongated
trimer form of the protein as described previously for
the TFspa, H159 variant (19). The ellipticity and Tm of
these two purified proteins were also equivalent as deter-
mined by circular dichroism (�26 000 and �26 800 and 51
and 49.58C, for H159 and D159, respectively).

The affinity of both proteins for RNA was measured
using a nitrocellulose filter-binding assay. In a side-by-
side comparison containing increasing concentrations of
D159 or H159 ORF1p and 25 pM of an antisense 111 nt
L1 RNA in 250mM NaCl, the apparent Kd of D159 for

RNA was 8.9� 1.0 nM and H159 was 7.0� 0.6 nM,
respectively (data not shown). This 20% change is not
significant based upon multiple experiments and is
unlikely to explain the 15-fold decrease in L1 retrotran-
sposition associated with D159H because a 38% drop in
apparent affinity for RNA by the ORF1p mutant, R298K,
decreases retrotransposition by just 56% (4).
The nucleic acid chaperone activity of ORF1p can be

assessed by determining the Tm of a mismatched dsDNA
oligonucleotide in the presence of protein (4). About 30
nM H159 ORF1p shifts the Tm of a 29 nt DS DNA oli-
gonucleotide with four non-contiguous mismatches from
428C to 228C. At the same concentration of protein, D159
ORF1p has a significantly different effect, with only a
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Figure 2. Timecourse of L1 retrotransposition. (A) Representative micrographs of 143B cells captured daily after transfection with TFC or TFspa.
Cells with new insertions by retrotransposition are green, cells expressing ORF1p are red, each field is 1.3mm2. Arrows on images for days 3 and 4
point to clusters containing at least two green cells. (B) Quantification of cells expressing eGFP following transfection. (C) Schematic of the L1
retrotransposition reporter, showing location of primers used for RT–PCR detection of unspliced and spliced eGFP DNA. The antisense eGFP gene
is depicted as a white rectangle interrupted by a grey intron (in the same orientation as the L1 ORFs). Amplification across the intron results in a
1334 nt PCR product from transfected DNA, whereas after splicing and cDNA synthesis due to retrotransposition the product is 263 nt. (D)
Ethidium bromide-stained agarose gels of PCR products obtained following a two-step PCR amplification of genomic DNA isolated from trans-
fected cells (days 1–6 post-transfection with TFC or TFspa) or the control transfected plasmid DNA (lane C). PCR was 20 cycles of amplification using
the A7 and A8 primers followed by a second amplification using the primers A16 and A8. A16 spans the splice junction. The 1334 nt band amplified
from transfected DNA containing the intron is readily distinguished from the 263 nt band amplified from retrotransposed DNA and thus lacking the
intron. The intronless band is observed earlier and is more intense throughout the timecourse in DNA from TFC-transfected cells compared with
TFspa-transfected cells. The marker lane (M) shows the bands from 2000 to 200 nt from the 1 Kb Plus DNA Ladder (Invitrogen).
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small fraction of the mismatched double-stranded oligo-
nucleotide being converted to single-stranded form
(Figure 5A). This effect occurs over a broad concentration
range of protein (compare B and C in Figure 5), and
suggests that H159 ORF1p interacts more strongly with
single-stranded DNA than D159 ORF1p as the duplex
transiently or fully melts.
This difference in the interaction of ORF1p with a mis-

matched DNA oligonucleotide was explored in more
detail using SPR. The interactions of both ORF1p pro-
teins with ssDNA and with dsDNA containing either per-
fect or imperfect heteroduplex were examined for
comparison. The interactions of the two proteins with
the ssDNA oligonucleotide, as well as with the perfectly
matched dsDNA oligonucleotide were similar. In contrast,

a relatively large difference was observed between these
two proteins in their interaction with the imperfect
double-strand duplex of the same length; D159 ORF1p
displays rapid kinetics of association and dissociation
with the mismatched duplex whereas H159 ORF1p dis-
sociates 10 times more slowly (Table 1).

Single-molecule analysis of DNA stretching is a sensi-
tive assay for nucleic acid chaperone activity (see 18, and
references therein). Typical DNA stretching experiments
in the absence of protein and in the presence of 15 nM
D159 or H159 ORF1p are shown in Figure 6A. The
stretching curves (solid lines) for DNA in the presence
of both proteins show significant changes in the shape of
the helix–coil transition. In the absence of protein, at a
force of about 60 pN, the DNA stretching force increases
very little as the DNA extension is increased by a factor of
about 1.7. This plateau represents a cooperative DNA
helix–coil transition, and the length at which the force
begins to increase dramatically at the end of the transition
(indicated by an arrow) demonstrates almost complete
conversion of the DNA from double- to single-stranded
form. The width of the transition, which is smaller for a
more cooperative transition, is only about 4 pN in the
absence of protein. In contrast, the transition width (or
the force change from the beginning to the end of the
plateau) is much higher in the presence of both proteins,
but D159 ORF1p shows a much greater increase in the
transition width relative to that observed for H159
ORF1p at this protein concentration. Finally, both pro-
teins induce a change in the extension at which the ssDNA
stretching force increases at the end of the transition,
shown by the arrows. This change in ssDNA extension
represents ssDNA aggregation, in which protein-induced
effects make ssDNA attracted to itself, thus effectively
decreasing the ssDNA length at a given force. The magni-
tude of the ssDNA aggregation is clearly much greater in
the case of H159 ORF1p. To quantify the effects of these
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Figure 4. Timecourse of L1 RNA expression. 143B cells were transfected with either TFC or TFspa containing the eGFP AI reporter gene in the
30-UTR, and then harvested on the indicated days following transfection for isolation of RNA. (A) Schematic of L1RNA and location of primers to
detect L1RNA; these primers amplify a 265 nt region near the 50-end of ORF2. (B) Fluorescence image of ethidium bromide-stained gels after
RT–PCR; each set of four lanes contains the PCR product from the same DNAse-treated RNA RT–PCR in triplicate plus a control reaction without
reverse transcriptase. Twenty-three cycles of PCR were performed on cDNA from days 1 and 2, and 25 for days 4 and 5, to remain in the linear
range of the assay. (C) Steady-state levels of L1 RNA as determined by semi-quantitative RT–PCR using primers within ORF2. PCR bands were
quantified from fluorograms and are plotted as mean �SD from triplicates; the actual above background intensity values for days 4 and 6 were
divided by four to correct for the cycle number difference between these 2 days and days 1–3. This experiment is representative of the results obtained
in three separate transfection experiments. The steady-state levels of L1 RNA in transfected cells were not significantly different between TFC (grey
bars) and TFspa (white bars) on any day across the timecourse (Student’s t-test, P> 0.05).
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tion with TFC (C) or TFspa (S) L1 constructs at days 1–4 and 6 follow-
ing transfection. Lanes marked 3 ng contain baculovirus-expressed
ORF1p fusion protein (47 kDa). Sizes on the left are in kDa, the posi-
tion of native ORF1p is indicated by the arrow. The actin signal from
the same lanes on these blots is shown below to verify approximately
equal loading.
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proteins on the DNA helix–coil transition, we calculated
the transition width as a function of protein concentra-
tion, as described previously (4). The results are shown as
data points in Figure 6B, along with lines that represent
fits to the McGhee–von Hippel binding isotherm
(Methods section). A saturated transition width of
27.5� 1.2 pN and an equilibrium association constant of
0.78� 0.08� 108M�1 (KD=1.28� 0.13� 10�8M) was
calculated from the fit to the data obtained using D159
ORF1p, compared with a saturated transition width of
19.2� 0.8 pN and an equilibrium association constant of
2.1� 0.2� 108M�1 (KD=0.48� 0.05� 10�8M) from the
data obtained in the presence of H159 ORF1p. These
equilibrium binding constants for ssDNA determined
from DNA stretching experiments agree well with those
presented in Table 1 from bulk measurements.

DISCUSSION

The human and mouse genomes contain hundreds or
thousands of intact and therefore potentially retrotranspo-
sition-competent L1s, respectively. The activities of indi-
vidual L1 elements vary widely when tested in a cultured
cell assay (1,2,10). Analogous variations in retrotransposi-
tion activity are also detected on an evolutionary timescale

through phylogenetic analysis of genomic sequences
(22–24); thus this property of individual variation in the
ability to produce progeny is likely intrinsic to L1 and not
an artifact of the cultured cell assay. TFspa, the first active
mouse L1 described, was isolated because it had retrotran-
sposed into the glycine receptor beta subunit and dis-
rupted the expression of this critical neurotransmitter
receptor gene (11,25). TFC, on the other hand, was pre-
dicted to be an active element based upon its near identity
to the consensus sequence of all of the TF elements in the
mouse genome that are closely related to TFspa (4).
Although both elements are active, TFC retrotransposes
15-fold more effectively than TFspa in the assay used
here. The goal of this investigation was to determine the
molecular basis for this difference in order to gain insight
into the mechanism and control of L1 retrotransposition.
The increased activity of TFC was mapped to aspartate

159 in ORF1p (Figure 1), which affects a step that follows
the accumulation of L1 intermediates (RNA and ORF1p)
but precedes the successful insertion of a new cDNA copy
of L1 into genomic DNA (Figures 2–4). Thus, the L1
expression products, RNA and ORF1p, are more effec-
tively converted to new insertion events in TFC compared
with TFspa. RNA binding and nucleic acid chaperone
activities are the only two essential retrotransposition
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Figure 5. Tm assay for nucleic acid chaperone activity of ORF1p. Addition of ORF1p alters the Tm of a mismatched 29 nt dsDNA oligonucletide as
measured by conversion of the double-stranded form to single-stranded form. (A) ORF1p from TFC (D159) and TFspa (H159) at the same
concentration (trimer) compared with naked DNA. (B) Tm of the mismatched oligonucleotide in the presence of increasing concentrations of
D159 ORF1p or (C) H159 ORF1p. ORF1p (trimer) concentrations are identical to those in (B). The temperature range needed to fully denature
the DNA in the absence of protein is shown; both proteins begin to denature at 358C, which enhances their charge neutralization capabilities and
DNA reannealing (4).

Table 1. Kinetics of interaction of ORF1p with short DNA oligonucleotides

ssDNA binding dsDNA perfect binding dsDNA mismatch binding

ka kd KD ka kd KD ka kd KD

H159 4.7E+04 6.0E�04 1.3E�08 3.8E+04 8.1E�01 2.1E�05 9.2E+03 8.2E�03 8.9E�07
D159 3.7E+04 4.3E�04 1.2E�08 2.1E+04 7.9E�01 3.7E�05 1.5E+04 8.2E�02 5.3E�06

Measurements obtained by SPR with the indicated 29 nt oligonucleotide immobilized via a 50 biotin, protein added at 10, 20 and 40 nM. Units are:
ka, 1/Ms; kd, 1/s; KD, M. Measurement error is �10%.
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functions presently attributable to ORF1p (4,5). This
study revealed that H159 ORF1p has a diminished nucleic
acid chaperone activity compared with D159 ORF1p
(Figures 5 and 6), although its affinities for RNA, a
short ssDNA oligonucleotide, a perfectly base paired
short dsDNA oligonucleotide and a long dsDNA were
not affected (data not shown, Table 1, Figure 6). R297K
and RR297:298KK substitutions in ORF1p disrupt nucleic
acid chaperone activity without affecting RNA binding,
but RR297:298AA causes a significant drop in RNA affi-
nity and also destroys nucleic acid chaperone activity (4).
Hence, no mutations in ORF1p are known to significantly
reduce RNA binding without disrupting nucleic acid chap-
erone activity; such mutations would be useful for under-
standing the relationship between the RNA binding and
nucleic acid chaperone activities of ORF1p.
The location of the amino acid substitution responsible

for the improved nucleic acid chaperone function of
ORF1p and the elevated retrotransposition activity of
TFC was surprising based upon our understanding of the
structure and function of L1 ORF1p prior to this work.
Primary sequence analysis had revealed two domains in
ORF1p: (i) an N-terminal, coiled-coil domain which is
highly divergent and perhaps not homologous among
mammalian L1s and (ii) a C-terminal conserved domain
that is shared among all mammalian L1s and some non-
LTR retrotransposons in fish (3, and references therein).
Results of several studies indicate that the coiled-coil
region is necessary and sufficient for the formation of
highly stable ORF1p homotrimers, and the basic region
of the conserved domain is likewise both necessary and
sufficient for high-affinity interactions between ORF1p
and RNA (12,14,19). The crucial residue for high retro-
transposition activity identified here, D159, lies within the

coiled-coil domain, but near its C-terminus (13); this is the
first report of residues that are critical for functional
protein–nucleic acid interactions in this region of
ORF1p. Based upon the transfer of 32P from RNA to
protein, a polypeptide with residues 244–371 of ORF1p
binds RNA, but one with residues 1–251 does not (14).
In addition, four consecutive alanine substitutions for
REGK beginning at residue 235 in ORF1p from human
L1 (homologous to 271 in mouse ORF1p) alter interaction
of ORF1p with RNA (5). Thus, D159 in mouse L1 ORF1
is at least 85 amino acids N-terminal to the closest residue
previously shown to be involved in nucleic acid interac-
tions. Although it is possible that these regions are adja-
cent to one another in the presently unknown 3D structure
of ORF1p, our data strongly suggest the presence of a
heretofore unrecognized site on the protein for nucleic
acid interactions.

The binding constant calculated from DNA stretching
was similar for D159 and H159 ORF1 proteins, in agree-
ment with the SPR analysis results shown in Table 1. In
addition, the amount of hysteresis observed between the
stretching and relaxation curves is also similar for these
two variants. There are two primary differences between
the DNA stretching results for D159 ORF1p and those
obtained for H159 ORF1p. First, the amount of ssDNA
aggregation is much greater for H159 relative to that
observed in the presence of D159. Second, the maximum
helix–coil transition width as predicted from fits to the
binding titrations is greater for D159 ORF1p by about
40%. An increase in helix–coil transition width is positively
correlated with nucleic acid chaperone activity (26–28),
however, this increase in transition width with protein
binding involves the combination of several effects related
to chaperone activity that are not easily separated (29).

A B

Figure 6. Effect of ORF1p on DNA as measured by DNA stretching. (A) Effect of TFC (D159) and TFspa (H159) ORF1 proteins on the helix–coil
transition of � DNA. Stretching (continuous lines) and relaxing (dotted lines) curves for � DNA, either without protein (black) with 15 nM D159
(blue), or H159 (red) ORF1p from TFC and TFspa, respectively. Arrows indicate ssDNA contour length. The average maximum stretching force was
the same for both forms of ORF1p. (B) Binding titrations for ORF1p TFc and TFspa variant binding to DNA as measured by DNA stretching.
Scattered data points represent measurements and continuous curves are fits to the data using the McGhee–von Hippel isotherm (as shown in
Equation 1 in Methods section). For fits to D159 ORF1p titration data (blue), we obtain a saturated transition width of 27.5� 1.2 pN and an
equilibrium association constant of 0.78� 0.08� 108M�1. For H159 (red), we obtain a saturated transition width of 19.2� 0.8 pN and an equilibrium
association constant of 2.1� 0.2� 108M�1.
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Recent studies demonstrated that the primary determi-
nants of efficient nucleic acid chaperone activity are the
capability to induce nucleic acid attraction, the ability to
partially but not completely destabilize the DNA helix,
and the ability to rapidly switch between ssDNA- and
dsDNA-binding modes (30,31). Therefore, the chaperone
activity of a specific protein is the result of a balance
between competing effects. For example, the ability to
induce DNA attraction, or aggregation of DNA, facili-
tates nucleic acid rearrangements by bringing complemen-
tary strands together. Conversely, this property also tends
to stabilize the DNA helix and inhibit the mobility of the
DNA–protein complex, thereby inhibiting rearrangements
of nucleic acid secondary structure. HIV-1 nucleocapsid
protein (NC) is a well-studied example of a protein that
has optimized these various competing effects (31). Subtle
changes in the architecture of the zinc fingers in NC
destroy this delicate balance, resulting in an inefficient
nucleic acid chaperone that is defective in retroviral repli-
cation (30).

The two ORF1p proteins studied here exhibit all of the
characteristics of a nucleic acid chaperone, but to subtly
different extents. They both aggregate DNA, bind prefer-
entially to ssDNA and therefore stabilize the DNA helix,
and do not strongly inhibit annealing of long DNA
strands. These general nucleic acid chaperone characteris-
tics were previously demonstrated using DNA stretching
measurements for the TFspa ORF1p (4), and are also
apparent in the results of DNA stretching experiments
with TFC ORF1p (Figure 6A). More subtle features of
the stretching experiments distinguish the two ORF1 pro-
teins, however; the results show significantly lower aggre-
gation for the TFC ORF1p, suggesting that DNA
complexes with this protein will have increased mobility
and therefore increased nucleic acid chaperone activity.
The hypothesis that lower aggregation of ssDNA results
in increased mobility of protein–DNA complexes is sup-
ported by the SPR results, which provide evidence of more
rapid binding kinetics for the TFC ORF1p with a mis-
matched dsDNA oligonucleotide compared with the
ORF1p from TFspa. It is also consistent with much stron-
ger effect in melting the mismatched dsDNA oligonucleo-
tide in the gel-based Tm experiments. Thus, the
biophysical data presented here are fully consistent with
the observed stronger nucleic acid chaperone capabilities
of D159 compared with H159 ORF1p.

The results of earlier studies established that mutations
in the C-terminus of TFspa ORF1p greatly inhibited
nucleic acid chaperone activity, which in turn abolished
L1 retrotransposition (4). There, the primary effect of the
mutations on DNA stretching was to induce such strong
ssDNA and dsDNA aggregation that the DNA could not
be melted by force. Those earlier results illustrated that
aggregation that is too strong inhibits chaperone activity.
This hypothesis is supported by other studies in which
similar ssDNA aggregation effects were observed for
DNA stretching in the presence of HIV-1 Gag, a nucleic
acid packaging protein (29), as well as in the presence of
HIV-1 NC variants that were identified as poor nucleic
acid chaperones (30). Increased DNA aggregation that
results in decreased chaperone activity could be due

directly to changes in a DNA-binding region of the pro-
tein, as is likely the case with mutations in the zinc finger
regions of HIV-1 NC (30). It is possible that a tighter
interaction with nucleic acids by H159 is a simple reflec-
tion of the more basic nature of histidine than glutamate.
If D159H does directly alter a DNA binding site in
ORF1p, it is not likely to be the previously known site
because interactions of ORF1p with nucleic acids have
consistently mapped to the distant C-terminal third of
the protein (5,12–14). The known, C-terminal binding
site is apparently unaltered by the D159H substitution,
based upon the indistinguishable affinities of D159 and
H159 ORF1p for RNA and ssDNA.
Alternatively, increased DNA aggregation that inhibits

chaperone activity could also occur with amino acid sub-
stitutions that increase or alter homotypic protein–protein
interactions, as is likely the explanation for the increased
aggregation that was observed for HIV-1 Gag and the
Gag cleavage product NCp9. For these two proteins, the
DNA binding site remained intact, yet aggregation was
increased and nucleic acid chaperone activity decreased
compared with NCp7 (29). Given the location of D159H
in the coiled-coil domain (13) where it is likely exposed to
solvent, it is plausible that this residue could be involved in
further protein–protein interactions between trimers. The
differences observed between D159 and H159 in the assays
involving short oligonucleotides are not easily explained
by such protein–protein interactions, however, because
each trimer occupies 50 nt (12). Hence, the 29 nt oligos
used for Tm and SPR studies would only bind a single
ORF1p trimer and would not be expected to interact
with more than one trimer at a time.
A full understanding of the interactions of ORF1p with

single and double-stranded nucleic acids, and the relation-
ship between its high-affinity RNA-binding function and
the nucleic acid chaperone function necessarily awaits a
high resolution structure of the protein with and without
its various nucleic acid ligands. Nevertheless, the results
presented here illustrate the importance of maintaining a
delicate balance between strong DNA binding and DNA–
protein complex mobility for efficient nucleic acid chaper-
one activity. This work also lends further support to the
conclusion that the nucleic acid chaperone activity of
ORF1p plays an essential role during L1 retrotransposi-
tion; this role likely occurs late in the process, consistent
with a function in facilitating the strand exchanges that
are required to initiate TPRT or melting secondary struc-
ture in the RNA template for reverse transcription (15).
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