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Abstract
Mussels belong to the phylum Mollusca, one of the largest and most diverse taxa in the ani-

mal kingdom. Despite their importance in aquaculture and in biology in general, genomic

resources from mussels are still scarce. To broaden and increase the genomic knowledge

in this family, we carried out a whole-genome sequencing study of the cosmopolitan Medi-

terranean mussel (Mytilus galloprovincialis). We sequenced its genome (32X depth of cov-

erage) on the Illumina platform using three pair-end libraries with different insert sizes. The

large number of contigs obtained pointed out a highly complex genome of 1.6 Gb where

repeated elements seem to be widespread (~30% of the genome), a feature that is also

shared with other marine molluscs. Notwithstanding the limitations of our genome sequenc-

ing, we were able to reconstruct two mitochondrial genomes and predict 10,891 putative

genes. A comparative analysis with other molluscs revealed a gene enrichment of gene

ontology categories related to multixenobiotic resistance, glutamate biosynthetic process,

and the maintenance of ciliary structures.

Introduction
Mussels belong to the phylumMollusca, one of the largest and most diverse taxa in the animal
kingdom, only second to Insecta. The number of molluscan species has been estimated to be
93,000 [1], with 25% of them being marine. Among all classes belonging to this phylum,
bivalves–where mussels belong–show the most highly modified body plan, flattened side-to-
side, over evolutionary time. Morphologically, they are characterized by the presence of a
bivalve shell, filtrating gills, no differentiated head, and a lack of radula. Other anatomical fea-
tures such as adult byssal attachment and mantle fusion may have also played an important
role in their adaptation as filter feeders and burrowers, respectively [2]. Some bivalves show an
atypical double uniparental inheritance (DUI) of mitochondria. In these species, all progeny
inherit one mitochondrial genome from the mother (F-type), while males also receive a mito-
chondrial genome from their father (M-type). This DUI, initially described inM. edulis [3], has
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been extensively studied in the genusMytilus [4,5]. Another remarkable characteristic of mus-
sels is their natural resistance to diseases. Unlike vertebrates, that have also developed an adap-
tive immune system, the immune system of bivalves is solely based on innate defences, which
play a prominent role in protecting these animals against invading microorganisms. However,
differences in disease resistance have been observed among bivalves. Compared to other edible
bivalves, like oysters and clams, mussels seem far less susceptible to mass mortalities and dis-
eases [6,7]. Interestingly, previous mass mortalities in mussels have not been linked to any
micro-organisms [8], suggesting that the innate immune system in mussels is highly efficient.

Marine mussels have also a significant commercial value. Their production corresponds to
50% of global EU aquaculture in weight and about 30% in value [9]. In this regard, the most
important mussel species are the Mediterranean (Mytilus galloprovincialis, Lamarck 1819) and
the blue (Mytilus edulis)mussels. In Spain, the 2012 farmed production ofM. galloprovincialis
was 231,754 TM [10], of which 227,229 TM were produced in Galicia, NW Spain [11]. Indeed,
the relevance of its farming in Galicia is not only economical but also social: mussel culture
employs about 15,000 people in 2,400 familiar enterprises [9].

Despite the commercial and scientific interest in mussels in biology and aquaculture, the
number of genomic resources available in public databases for these organisms is quite limited,
and usually restricted to their transcriptomes. For instance, inM. galloprovincialis, some tran-
scriptome studies using ESTs [12–14] and high throughput cDNA [15,16] are available.
Clearly, molecular tools still need to be developed for the management, molecular breeding
and genetic manipulation ofMytilus spp. in aquaculture [17].

We present here the first genome sequencing study in this genus, namely a low-coverage
whole-genome study of the Mediterranean musselM. galloprovincialis. Indeed, low-coverage
sequencing of non-model organisms can provide valuable information about their genomes
[18,19] regarding important features such as gene content, functional elements and repetitive
sequences [20–22]. Here, we offer a first insight into the general features and complexity of the
genome ofM. galloprovincialis, providing a starting point for future genomic research on this
important bivalve. Moreover, the availability of this genome sequence together with those of
four other molluscs already sequenced (the California sea hare Aplysia californica, the owl lim-
pet Lottia gigantea [23], the pacific oyster Crassostrea gigas [24] and the pearl oyster Pinctada
fucata [25]) should improve the knowledge of this important phylum through genomic com-
parisons at multiple levels.

Materials and Methods

Sequencing, k-mer analyses, and assembly
For sequencing, we extracted 4μg of DNA from muscle tissue from a single mussel extracted
from the Ria of Vigo, Spain. Using this DNA, three sequencing libraries with insert sizes of
180, 500 and 800 bp were constructed and sequenced at BGI (Beijing Genomics Institute—
China). These libraries were sequenced with the Illumina HiSeq2000 high-throughput plat-
form using paired-end sequencing (100-bp reads). To clean the initial set of reads, we filtered
out raw reads if they fulfilled any of these conditions: a)>5% ambiguous bases (represented by
the letter N); b) poly-A structures; c)> = 20 bases with low quality scores; d) adapter contami-
nation: reads with more than 10 bp aligned to the adapter sequence (no more than 3-bp mis-
match allowed); or e) small insert-size reads in which paired reads overlapped more than or
equal to 10 bp (10% mismatch allowed).

We used Jellyfish [26] for counting k-mers and obtaining their frequency distributions.
With these data, we drew frequency plots using k-mer lengths of 15, 17, 19 and 21. To assign
the “true” coverage peak, we compared these plots to identify the peak that changed in height
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(“heterozygous peak”) and the one that did not (“coverage peak”). The latter was then used to
calculate the genome size as the total k-mer number divided by the coverage-peak depth [27].
Finally, we assembled de novo the reads resulting from the quality filtering step using SOAPde-
novo v1.05 [27] with parameters -K 31 -d 1 -M 1 -F–R. Then, we ran the Assemblathon 2 script
[28] to obtain assembly statistics. Using this script, we compared the genome assemblies ofM.
galloprovincialis with those of A. californica, L. gigantea, P. fucata, and C. gigas (S1 File).
Genome surveys of other molluscs with scarce sequencing depth [22] were not included in
these comparisons. We confirmed the identification of the studied mussel asM. galloprovincia-
lis by scanning the assembled sequences with twoMytilus genetic markers, Glu-5’ [29] and
EFbis [30], using BLASTN [31] and Geneious version 6.1.8 [32].

Isolation of mitochondrial sequences and variant calling
For the mitochondrial genome analysis, first we detected contigs in our assembly that matched
M. galloprovincialismitochondrial DNA sequences. For this, we aligned our contigs against F
(GenBank NC_006886, MgF) and M (GenBank AY363687, MgM)M. galloprovincialismito-
chondrial sequences using BLASTN and nucmer (fromMUMMer version 3.23 [33]). We fil-
tered out BLASTN alignments with e-value above 1x10-6, identity< 90%, or contig alignment
coverage< 90% to remove non-specific alignments. The program nucmer was used with argu-
ments -maxmatch and -c 100. We mapped the contigs that aligned (using nucmer) with MgF
and constructed its corresponding tiling path (S1 Fig). For both BLAST and nucmer, we also
calculated the proportion of MgF and MgM nucleotides that aligned with the assembly. Sec-
ond, for variant calling, we mapped the cleaned reads against several mitochondrial genomes
ofMytilus spp. (S1 File) using Bowtie2 v2.0.6 [34] with the option “very-sensitive”, identifying
single-nucleotide variants (SNVs) with SAMtools version 0.1.18 [35].

Repeat Sequence Analysis
To estimate the amount and composition of repetitive elements in our assembled genome, we
carried out three different analyses using RepeatMasker (http://www.repeatmasker.org). First,
we ran RepeatMasker against our working assembly using the default repeat sequence entries
of the genusMytilus. For this, we used the Repbase database [36] version 20120418 (we called
this search “MYTILUS”). To overcome the limitation of MYTILUS due to the low number of
M. galloprovincialis entries present in Repbase, a second analysis was performed using the
Repbase entries from the phylumMollusca (search “MOLLUSCA”). Finally, a third Repeat-
Masker analysis (search “INHOUSE”) was carried out using our own in-house library of repeti-
tive elements. This library was built from putative repetitive sequences obtained using
RepeatModeler (http://www.repeatmasker.org/RepeatModeler.html). We repeated similar
analyses with the other four molluscan genomes studied (S1 File).

Gene Prediction and Annotation
Before starting the gene prediction and annotation steps, we searched for potential contami-
nant sequences in our assembly. We looked for sequences with bacterial signatures using Kra-
ken 0.10.5-beta [37] and BLASTX. First, we selected contigs with bacterial k-mer matches
using Kraken. Second, we calculated the accumulated length of the matched regions in each of
these contigs. Third, we putatively annotated as “bacterial” those contigs whose aligned regions
added up more than 10% of the total contig length. Fourth, we confirmed the putative bacterial
origin by matching the resulting contigs using BLASTX against the non-redundant (nr) data-
base with a cut-off e-value of 1.0x10-6. Finally, we annotated as bacterial those resulting contigs
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that best matched proteins of bacterial origin. We did not include these putative bacterial
sequences in the subsequent analyses.

Next, to estimate the quality of the predicted mussel gene repertoire, we used the program
CEGMA [38] with default options. This tool quantifies the completeness of a gene repertoire
within a genome assembly by aligning its sequences to a "universal" set of 248 eukaryotic core
proteins. For CEGMA, significant sequence alignments spanning more than 90% of the length
of any CEGMA protein are classified as being "complete" in the analysed set of sequences. To
estimate the gene repertoire size inM. galloprovincialis, we assigned the percentage of CEGMA
sequences found in our assembly as the percentage of theM. galloprovincialis gene repertoire
in our assembly [38].

We used MAKER2 [39] to predict in silico the gene models in our assembly. AdditionalM.
galloprovincialis experimental sequence data coming from two other different sources were
used to improve the gene prediction with MAKER2. These data consisted of our in-house
RNA-Seq de novo assemblies from 4 different tissues, and protein sequences from the NCBI
database. We used these 2 different datasets to build a first ab initio gene prediction model
using the program SNAP [40]. Finally, MAKER2 was used with the resulting previous SNAP
results to accomplish a refined, more reliable gene prediction. To characterize and validate the
resulting protein sequences, we aligned the contigs with mpiBLAST [41] against the nr data-
base (e-value cut-off of 1 x 10−6). Finally, we used Blast2GO [42] with the BLAST nr database
and InterProScan 5RC7 [43] to obtain a more complete functional protein annotation and
description of our genome survey. Using this bioinformatic tool, we also compared the func-
tional protein annotation ofM. galloprovincialis with those of the other four molluscs (S1 File).
The comparison was done using the Fisher's exact test, with a False Discovery Rate (FDR) of
0.05. We included only those ontologies that belonged to the “biological function” category
and presented significant differences with other molluscan datasets.

Results and Discussion

Genome sequence composition and size
The obtained k-mer frequency plots forM. galloprovincialis were bimodal, with two clear
peaks at 16X and 32X (Fig 1A; 17-mers). A pattern like this has been previously reported for
other genomes [44,45], and in simulations [46], and it is thought to be a direct consequence of
heterozygosity in diploid genomes. To identify which of these two peaks was the coverage
peak, we generated several k-mer frequency distributions with different k-mer sizes (Fig 1B).
We observed that the peak height at 16X changed considerably for different k-mer sizes, while
the peak height at 32X remained more or less stable. Therefore, we concluded that the latter
peak was the coverage peak, containing k-mers from homozygous regions, while the former
was the heterozygous peak, containing k-mers from heterozygous regions. The observed sharp
difference in height between the homozygous and heterozygous peaks (Fig 1B; e.g. 21-mer
plot) may be produced by a seemingly high heterozygosity within theM. galloprovincialis
genome. This is not surprising, as species within the genusMytilus have been previously
reported to have high genetic diversity [47–51]. In a genomic survey [52] of 76 non-model
organisms using RNA-Seq data,M. trossulus occupied the second highest value of genetic
diversity whileM. galloprovincialis occupied the 15th.

Conveniently, genome size can also be estimated from the k-mer count data [46]. Using this
method, we estimated the genome size ofM. galloprovincialis to be 1.6 Gb. Interestingly, dis-
crepancies between genome sizes estimated from sequencing and experimental data have been
previously reported [53]. Using flow cytometry,M. galloprovincialis (2n = 28 [54]) was pro-
posed to have a genome size of either 1.4 Gb [55] or 1.9 Gb [56], while our 1.6 Gb estimate fits
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Fig 1. A)Histogram of 17 k-mers.B) K-mer frequency distributions ad different k-mer lengths.

doi:10.1371/journal.pone.0151561.g001
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nicely in the middle. When compared with other bivalves, a 1.6 Gb genome size forM. gallo-
provincialis is located approximately in the middle tier not only among bivalves (Fig 2A) but
also among other Mytiloida (Fig 2B). Moreover, the genome size range of Mytiloida is one of
the highest within the superclass Pteriomorpha when sorted by their median. These relative
positions of theM. galloprovincialis’ genome size highlights the representativeness of this
genome size within the taxa included in our comparisons and the possibility to use this genome
as a “model” for Mytiloida and Bivalvia taxa for some genomic features such as repeat elements
and gene content.

Assembly fragmentation in theM. galloprovincialis genome
In a genome sequencing survey, most of the biological information is obtained by analysing the
final assembly. Base calls and quality values from reads of sequencing libraries with different
insert sizes provide the information needed to assemble small reads into larger structures such
as contigs and scaffolds. ForM. galloprovincialis, we used the de novo assembler SOAPdenovo
for genome assembly. This assembler has been previously used for de novo assembling dozens
of plant and animal genomes, including panda[27], duck [57], potato [45] and cucumber [58],
among others. In Table 1, we show assembly statistics ofM. galloprovincialis and the other four
marine molluscs. These statistics revealed a highly fragmented assembly. For instance, the
assembly contained a large number of sequences (1,746,447) and low N50 (2,651 bp) when
compared to A. californica, P. fucata, C. gigas and L. gigantea assemblies.

Two reasons could explain the differences among assembly statistics for these genomes. The
first one is genome size. The difficulty of assembling a genome increases with its size. Genomes
of large sizes contain correspondingly a high number of internal repetitions such as paralogues,
duplications, structural rearrangements, and mobile elements [59]. Reads from these DNA
regions can match more than one genome position, decreasing the contiguity of assemblies.
The genome size ofM. galloprovincialis is only comparable with that of A. californica, while
those of P. fucata, C. gigas and L. gigantea are 33, 66 and 75% smaller, respectively. The second
reason is the sequencing technology used. For instance, the assemblies of L. gigantea and A.
californica, despite their low coverage (8X and 11X, respectively), showed much better assem-
bly statistics than that ofM. galloprovincialis. Larger reads obtained by Sanger sequencing tech-
nology for these two genomes surely contributed to the lower number of scaffolds and larger
N50 obtained. For P. fucata, with a final 35X coverage, both Illumina and 454 sequencing were
used. However, despite using the same short-read sequencing technology as inM. galloprovin-
cialis, the assembly statistics for C. gigas were superior. The assembly of this organism, using
reads from Illumina mate-pair and pair-end libraries, was improved with the addition of fos-
mid libraries in the scaffolding step. In our case, using only pair-end sequencing libraries did
prevent contigs from assembling into larger scaffold sequences.

Ab initio prediction of repetitive sequences identifies a large diversity of
repetitive elements
Repetitive elements (REs) are an important part of most eukaryotic genomes [60]. From
humans to plants [61], a high proportion of these genomes consists of REs (i.e. interspersed
repeats and low complexity DNA sequences). Although originally considered as "junk" DNA,
they can play an important role in the adaptation [62] and evolution [63,64] of eukaryotes. To
measure the extent of REs in the genome ofM. galloprovincialis, we used RepeatMasker
(Table 2) with Repbase and in-house repeat libraries. Using only Repbase, results of both
“MYTILUS” and “MOLLUSCA” analyses found low repetitive content (1.4% and 1.57%
respectively). However, identification of REs in a genome is not a trivial task. Difficulties arise
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Fig 2. Genome size distribution of Molluscs (A) and Bivalves (B). Violin plots were built using DNAmass
content data from Genome Size Animal Database (http://www.genomesize.com/) converted into number of
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when they do not share any similarity at sequence level with any other repeat sequences in
curated databases as Repbase. To overcome this issue, ab initiomethods (e.g. RepeatModeler)
build libraries of new repeats [65] from scratch. The resulting libraries are then used to identify
more precisely the repeat content of a genome. For example, using an ab initio prediction
method, 36% of the C. gigas genome contained REs [24]. To test whether this high percentage
of REs is a unique feature of C. gigas, we used RepeatModeler to build libraries of repetitive
sequences inM. galloprovincialis. The INHOUSE search found 36.13% of REs in our assembly,
corresponding to 1276 different families. Noteworthy, 30.16% of the genome corresponded to
"Unclassified" de novo REs belonging to 1059 clusters. On the other hand, from the "classified"
part, the most representative fraction (2.27% of the genome) was made of repetitive DNA
elements.

Similar repeat content screenings were done in C. gigas, L. gigantea, P. fucata and A. califor-
nica. In these analyses, the organisms with more REs corresponded to A. californica with
43,70%, and the lowest to L. gigantea with 22.47%. Coincidentally, these organisms had the
largest and smallest genome sizes, respectively. These results went in accordance with the long
known positive correlation between genome size and REs content in eukaryotic genomes [66].

base pairs. Kernel density for Solemyoida is absent since there is only one record in this group. Data for
Pterioida comes from the genome size estimation of P. fucata and Atrina rigida (belonging to Mytiloida on the
original dataset)

doi:10.1371/journal.pone.0151561.g002

Table 1. Assembly statistics ofM. galloprovincialis and four other molluscan genome sequencing projects. Data shown was obtained with the
Assemblathon 2 metrics script.

M.
galloprovincialis

C. gigas P. fucata L. gigantea A. californica

Estimated Genome Size 1,600 Mb 545 Mb 1150 Mb 359,5 Mb 1,800 Mb

Number of scaffolds 1,746,447 11,969 800,982 4,475 8,766

Total size of scaffolds 1,599,211,957 558,601,156 1,413,178,538 359,512,207 715,791,924

Total scaffold length as percentage of known genome
size

100.0% 102.5% 122.9% 100.0% 39.8%

Longest scaffold 67,529 1,964,558 698,791 9,386,848 1,784,514

Shortest scaffold 100 100 100 1000 5,001

Number of scaffolds > 500 nt 676,492 (38.7%) 6,484
(54.2%)

323,197(40.4%) 4,475
(100.0%)

8,766
(100.0%)

Number of scaffolds > 1K nt 393,685 (22.5%) 5,788
(48.4%)

142,882
(17.8%)

4,471 (99.9%) 8,766
(100.0%)

Number of scaffolds > 10K nt 12,859 (0.7%) 3,172
(26.5%)

27,367 (3.4%) 1,318 (29.5%) 5,269 (60.1%)

Number of scaffolds > 100K nt 0 (0.0%) 1,353
(11.3%)

629 (0.1%) 291 (6.5%) 2,079 (23.7%)

Number of scaffolds > 1M nt 0 (0.0%) 60 (0.5%) 0 (0.0%) 98 (2.2%) 27 (0.3%)

Mean scaffold size 916 46,671 1,764 80,338 81,655

Median scaffold size 258 824 402 3,622 13,763

N50 scaffold length 2,651 401,319 14,455 1,870,055 264,327

Percentage of assembly in scaffolded contigs 18.5% 95.7% 75.4% 99.0% 93.9%

Percentage of assembly in unscaffolded contigs 81.5% 4.3% 24.6% 1.0% 6.1%

Average number of contigs per scaffold 1.1 2.8 1.3 4.1 7.4

Sequencing Coverage 32X 155X 40X 8,87X 11X

Sequencing Technology Illumina Illumina 454 + Illumina Sanger Sanger

doi:10.1371/journal.pone.0151561.t001
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In P. fucata, this ab initio prediction of REs found almost four times (37.46%) as much as the
percentage predicted using only the Repbase database [25]. Comparatively, theM. galloprovin-
cialis genome contained proportionally the largest content (>80%) of unknown REs in Mol-
luscs (Fig 3). Moreover, the genomes of P. fucata andM. galloprovincialis harboured the largest
number of unknown families of REs among the molluscs studied: 1325 and 1059 respectively.
One possible explanation for these high numbers would be that these unknown families are
artefacts resulting from low coverage sequencing. However, a second possibility is that the
unknown families come from multiple novel species-specific REs. Long-read sequencing over
repeat-containing genomic regions will help to distinguish between these two alternative
explanations.

Table 2. Percentage of basesmasked in the assembly using different RepeatMasker libraries.

% Bases masked Families found (using RepeatModeler
Library)

RepeatMasker Own Species
Library

RepeatMasker Mollusca
Library

RepeatModeler
Library

M.
galloprovincialis

1.40% 1.57% 36.13% 1276

C. gigas 2.71% 2.81% 31.90% 870

P. fucata 1.19% 1.37% 37.46% 1524

L. gigantea 1.37% 1.42% 22.47% 621

A. californica 11.45% 11.53% 43.70% 938

doi:10.1371/journal.pone.0151561.t002

Fig 3. Percentage of each repetitive element relative to the total sequence length occupied by them.

doi:10.1371/journal.pone.0151561.g003
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A large group of REs in a genome are transposable elements (TEs). In our analyses, the mol-
luscan genome with the largest content of DNA TEs and retrotransposons corresponded to A.
californica, encompassing 10.15% and 11.23% of its genome, respectively. InM. galloprovincia-
lis, the large proportion of unknown repetitive sequences made it difficult to extract conclu-
sions about the diversity of TEs. On the other hand, the most abundant TEs belonged to the
Penelope family [67] with 86,269 copies. The Penelope retrotransposon induces a hybrid dys-
genesis syndrome in Drosophila virilis, maybe as a first step for reproductive isolation among
populations [68]. In addition, we found only one transposon group significatively more abun-
dant inM. galloprovincialis than in the other molluscs studied, the DNA transposon Tip100
family [69]. This transposon family belongs to the hobo-Ac-Tam3 (hAT) superfamily. Interest-
ingly, hobo transposons are also involved in hybrid dysgenesis in D.melanogaster [70]. Elliot
and Gregory [71] proposed that larger genomes evolve primarily through the expansion of
only a small subset of existing TEs. The Tip100 family can be part of this subset of TEs in our
genome. Further studies are needed to test whether members of Penelope or Tip100 families
work similarly inM. galloprovincialis.

Mitochondrial genomes
Mitochondria are essential components of the cell where they produce energy through oxida-
tive phosphorylation. In addition, they can also mediate phenotypes such as lifespan, fertility,
starvation resistance, altitude adaptation, and temperature regulation [72]. Conveniently,
genome sequencing data in eukaryotes contain also mitochondrial genome sequences. This is
because methods for DNA/RNA isolation capture also organelle nucleic acids. For instance, a
bioinformatic pipeline has been recently proposed to extract mitochondrial reads from genome
sequencing data and assemble them in organisms without a reference mitochondrial genome
[73]. Two types of mitochondrial genomes, female (MgF) and male (MgM), have been reported
forM. galloprovincialis [74]. BLASTN and nucmer alignments of the assembly against MgF
produced significant matches with 56 (67.6% of coverage) and 51 (68.5% of coverage, S1 Fig)
contigs, respectively. In addition BLASTN and nucmer alignments of the assembly against
MgM produced a low number of significant matches with only 9 (22,2% of coverage) and 9
(20.5% of coverage) contigs, respectively. The incomplete coverage of both MgF and MgM
could be explained by the high stringent conditions used in the assembly (due to the heterozy-
gosity of theM. galloprovincialis genome). These conditions may have prevented the assembler
to behave normally in the presence of reads from two rather similar mitochondrial genomes
and in different proportions within the studied tissue. Indeed, this incomplete coverage may be
also due to the low similarity between our mitochondrial sequences in the assembly with MgF
and MgM.

To test the latter possibility, we searched further for mitochondrial sequences using the rep-
ertoire of reads fromM. galloprovincialis. We directly mapped them onto different mitochon-
drial genomes from the genusMytilus. Read mapping against mitochondrial genomes of
Mytilus spp. produced a full coverage of several mitochondrial genomes. The largest number of
reads (113,824) mapped onto an F mitochondrial genome fromM. edulis (MeF, GenBank
KM192128, Fig 4A), slightly more (111 more) than the number of reads that mapped to MgF.
Moreover, fewer variants were found when mapping against MeF (228 variants) than MgF
(302 variants). These two mitochondrial genomes were 99,26% identical to each other at nucle-
otide level. Surprisingly, a well-covered mapping against an M mitochondrial genome ofM.
edulis (MeM, Genbank KM192129) was also observed (Fig 4B). The average mapping coverage
against the latter was 195X, about 10 times lower than that against MeF (1156X). A likely
explanation of a better read mapping overM. edulismitochondrial genomes is introgression.
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IntrogressedM. edulismitochondrial haplotypes inM. galloprovincialis andM. trossulus popu-
lations have already been described [75,76]. Śmietanka et al. [76] reported a predominance of
M. edulismitochondrial haplotypes in the AtlanticM. galloprovincialis population. On the
other hand, despite the presence of both M and F haplotypes in our data, it was not possible to
determine the sex of our sequenced individual based only on its mitochondrial sequences.
Though individuals having both M and F haplotypes are most likely males [3,77], presence of
the M haplotype is not causally linked to masculinity [78]. Moreover, presence of M haplotypes
in female individuals outside of hybrid zones due to disruption of DUI has also been reported
[79].

Read mapping was not evenly distributed along mitochondrial genomes. Sequence motifs
such as inverted repeats and GGCmotifs could produce some coverage bias [80]. When map-
ping our reads against MeM, the region least covered (18X) corresponded to a short sequence
in the control region (CR), upstream of the tRNATyr gene, within its corresponding variable
domain 2 (VD2) [81]. This could be due to the presence of homopolymers of guanines in VD2
that could have biased the sequencing step [80]. On the other hand, the region least covered of
MeF was located within a coding gene, the NADH dehydrogenase 3 (ND3) (Fig 4A). However,
this region did not contain homopolymers. One explanation for this low coverage could be the
presence of DNA secondary structures in this region. Illumina technology is vulnerable to bias
due to secondary structures formed during the amplification step [82]. Rodakis et al. [83] pos-
tulated the presence of a hairpin at positions 8545 to 8573 of MgF, only 9 bp from the start of
the corresponding region of low coverage. This hairpin structure might be the origin of replica-
tion of the light strand in F haplotypes under the asymmetrical model of mtDNA replication.
Though this hairpin structure is not located exactly over the low covered region, its closeness
may have biased the amplification and sequencing of the DNA fragment covering this mito-
chondrial region (Fig 4A).

Although mitochondrial evolution is usually assumed to be neutral, evidence of selective
pressures on mitochondria has been reported in different organisms [84–87]. Relevance of
mitochondrial nucleotide variation on the fitness of individuals has been a matter of dispute.

Fig 4. Readmapping against the mitochondrial genomes A) MeF (GenBank KM192128) and B) MeM (Genbank KM192129). Red circles highlight the
regions of least coverage.

doi:10.1371/journal.pone.0151561.g004
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To characterize this variation, we searched for single-nucleotide variants (SNVs) within our
mitochondrial DNA sequences. Variant calling using MeF showed that 192 out of 228
(84,95%) variants were located in coding regions. Both M and F mitochondria inM. gallopro-
vincialis contain two rRNA, 13 protein-coding, and 23 tRNA genes. In our mapping over MeF,
the gene containing the highest ratio of variants was ND4 (S1 Table). Interestingly, ND4 was
previously reported as the most abundant expressed transcript in mussels [88]. Thus, the high
ratio of variants in ND4 agreed with previous evidence of elevated number of mutation rates in
highly expressed genes [89,90]. However, adaptive processes could produce some of these ND4
variants. Signatures of adaptive variation on this proton pump were reported in other marine
organisms [84,91]. On the other hand, when mapping our reads against MeM, the coding gene
with the highest percentage of variants per nucleotide was cytochrome b (CYTB) gene. This
gene has been previously reported to be downregulated on male mussels when exposed to
17beta-estradiol E2 [92]. In mussels, the adaptive variants in ND4 and CYTB could regulate
the pH gradient affecting respiratory control. Further studies need to be done to test the role of
these genes in the hypoxia tolerance of mussels in the intertidal zone.

Gene models
One of the major objectives of a genome-sequencing project is gene prediction. Due to the low
sequencing depth ofM. galloprovincialis (32X), we expected that the corresponding assembly
would be either incomplete or extensively fragmented. Accordingly, gene prediction in our
assembled genome sequencing data yielded an incomplete gene repertoire. To assess the
amount of missing genes in our working assembly, the completeness of the gene content was
measured with CEGMA [38]. Results of the CEGMA analyses showed that only 39 (15.73%) of
the 248 core eukaryotic genes (CEGs) were considered “complete” in our assembly. When the
CEGMA analysis was extended to include also partial but significant matches, 107 (43.27%)
proteins aligned. This percentage is approximately three times as much as the number of com-
plete CEGs found. Table 3 shows the result of the completeness analyses in other mollusc
genomes using the same approach. L. gigantea showed the highest percentage of completeness
(85.89%). This may be explained by its reduced genome size and the use of Sanger technology
for sequencing. Second was C. gigas, where about three quarters of its genes (78.63%) gave
“complete”matches. Noteworthy, inM. galloprovincialis and P. fucata the percentage of "par-
tial" matches were approximately three times as much as the number of "complete" CEGs. This
observation could be explained also by the low coverage sequencing of these two genomes.

Table 3. Results for the CEGMA completeness analyses for 5 molluscan species.

Species Completeness Genome Size Genome Coverage

Proteins Percentage

M. galloprovincialis Complete 39 15.73% 1,600 Mb 40X

Partial 107 43.27%

C. gigas Complete 195 78.63% 545 Mb 155X

Partial 236 95.16%

P. fucata Complete 63 25.00% 1,150 Mb 40X

Partial 153 61.69%

L. gigantean Complete 213 85.89% 359,5 Mb 8.87X

Partial 242 97.58%

A. californica Complete 90 36.29% 1,800 Mb 11X

Partial 207 83.47%

doi:10.1371/journal.pone.0151561.t003
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Fortunately, a preliminary view of the gene repertoire inM. galloprovincialismay be infor-
mative enough even at low sequencing depth. This repertoire consisted of 10,891 protein-cod-
ing genes. In addition, we can extrapolate the percentage of “partial”mapped CEGs as the
completeness of the whole gene repertoire in our genome assembly [38]. Therefore, the
expected number of genes in theM. galloprovincialis genome would be about 25,000 genes.

Finally, although the Blast2GO annotation resulted in 2,397 predicted protein sequences
with no BLAST hits against the non-redundant protein database, it succeeded in effectively
annotating about a quarter (2,800 sequences) of the total number of proteins in our assembly.
The species that contributed most annotations was C. gigas (Fig 5).

Gene Functional Annotation
In the ontology assignments of Blast2GO there was not any biological process category at level
three overrepresented inM. galloprovincialis relative to the other molluscs (Fig 6A). The most
abundant level-three gene ontology (GO) terms found in the other molluscs corresponded also
to the most abundant GO terms found inM. galloprovincialis: organic substance metabolic
process (GO:0071704, 953 genes), cellular metabolic process (GO:0044237, 931 genes) and sin-
gle-organism cellular process (GO:0044763, 924 genes). However, half of the common level-

Fig 5. Distribution of best protein BLAST hits by species.Only species appearing in more than 1% of BLAST hits are represented.

doi:10.1371/journal.pone.0151561.g005
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Fig 6. A)Gene Ontology predictions involved in biological processes at Level Three for the mollusc genomes studied. B) Biological Process Gene
Ontologies with significant differences betweenM. galloprovincialis and other molluscs. Heatmap shows those ontologies whereM. galloprovincialis
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three GO terms (21 out of 43 genes) in other molluscs were not found inM. galloprovincialis.
The most likely explanation was the limited completeness of our genome.

Despite the completeness limitation, we were able to find genes with functional annotations
that would explain how mussels cope with the specific characteristics of their environment,
such as those related to immunity, resistance to hypoxia, shell formation, and adhesion to sur-
faces (S2 File). First, we looked for genes with immune-related functions in mussels that pro-
vide defence against bacteria and other environmental challenges [93–95]. GO terms related to
these functions were “immune response” (GO:0006955, twenty genes), “immune system pro-
cess”(GO:0002376, fifty five genes), and “defence response” (GO:0006952, thirty five genes).
These genes had functions related to toll-like receptor signalling pathway, inflammatory
response, regulation of innate immune response, and defence response to fungus, virus and
bacteria. Second, other genes important for adaptation in mussels are genes that confer resis-
tance to hypoxia and oxidative stress during tidal emersion and resubmersion cycles [96,97].
We found seven genes annotated with the GO term “resistance to hypoxia” (GO:0001666),
such as isocitrate dehydrogenase [98] and ubiquitin carboxyl-terminal hydrolase [99] genes. In
addition, another 25 genes were annotated with the GO term “response to oxidative stress”
(GO:0006979). Finally, we manually searched for genes that provide physical protection
against the environment. We found genes involved in byssus attachment to surfaces [100] and
shell formation [101] (S2 File). In summary, ourM. galloprovincialis genome contained genes
whose functions may help this organism to adapt to its environment. They provide a starting
point to test experimentally their role in these functions and their relevance in mussel biology.

Contrasting the GO annotations ofM. galloprovincialis with those of other molluscs can
reveal unique characteristics of the former. One hundred and forty ontologies presented signif-
icant differences in number (either positive or negative) in theM. galloprovincialis-versus-all
comparison (S2 Table). In three of these ontologies mussel genes were significatively overrepre-
sented (Fig 6B). The first of these three corresponded to GO:0006200, which is related to
energy production based on ATP consumption. There were two main groups of gene functions
within this GO term inM. galloprovincialis: ATP-binding cassette (ABC) (eight genes) and
multidrug resistance-associated (16 genes). Interestingly, ABC transporters inMytilus spp.
[102] and other organisms [103–105] were previously reported as protection against multixe-
nobiotics. These genes would represent the first line of defence against natural and anthropo-
genic toxicants in the marine environment. The second overrepresented GO term
corresponded to “glutamate biosynthetic process” (GO:0006537, ten genes). Five of these were
glutamate synthase genes. Similar annotations were also found in transcripts from hepatopan-
creas in crustaceans [106]. Glutamate synthase is mainly involved in the synthesis of glutamic
acid from its precursor α-ketoglutarate [107]. Finally, the third overrepresented GO term cor-
responded to “microtubule-based movement” (GO:0007018). Almost half of the 81 proteins in
this GO category were annotated as axonemal dynein heavy chain. The second most abundant
gene function within this GO term corresponded to kinesin, a motor protein [108]. Both axo-
nemal dyneins and kinesins participate in the active transport of molecules along ciliary struc-
tures [109,110].

At least two of the three aforementioned overrepresented ontologies inM. galloprovincialis
had annotations linked to specific biological functions relevant forM. galloprovincialis. Indeed,
genes contributing to either maintenance of ciliary structures (GO:0007018) or multixenobiotic

contained the largest percentage of genes per genome. Heatmap values were normalized assigning value one toM. galloprovincialis. Numbers next to each
GO term indicate the number of genes in mussels with that annotation. Asterisks indicate the genome comparisons where mussel genes are statistically
overrepresented as obtained with Blast2GO.

doi:10.1371/journal.pone.0151561.g006
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resistance (GO:0006200) [111,112] might be subject to high selective pressures from the envi-
ronment. Therefore, the multiplicity of these genes in its gene repertoire might represent a
genomic adaptation ofM. galloprovincialis to sedentary filter-feeding life style that forces them
to deal with a variety of changing environments and ecological characteristics. Further studies
of the gene content, annotation and expression of these genes inM. galloprovincialis should be
carried out to validate this hypothesis.

Conclusion
Next-Generation Sequencing (NGS) technologies have already significantly increased our
understanding of many genomes across the Tree of Life. Next-Generation Sequencing has the
potential to increase our basic knowledge on the genomes of non–model organisms such as
marine molluscs, where genomic resources are scarce. As shown here with the Mediterranean
musselMytilus galloprovincialis, de novo genome surveys at low-level sequencing depth can be
used to provide first insights into the composition and structure of genomes in non-model
organisms [18,19]. This study has shed some light onto the genome complexity, abundance of
REs and (partial) gene repertoire ofM. galloprovincialis. The comparative analyses of the geno-
mic features observed inM. galloprovincialis with other marine molluscs have shown that an
important part of the genome in these organisms contains a large number of repetitive
sequences. Most of the REs found inM. galloprovincialis are unknown and need to be quanti-
fied and classified in more detail. Moreover, our analysis of the gene content inM. galloprovin-
cialis has put into evidence the limits of low sequencing depth projects for gene annotation in
complex genomes. Despite these limitations, through comparison with other molluscan
genomes, we managed to identify two biological functions, detoxification and ciliary structure
maintenance, whereM. galloprovincialis has a large number of genes, most likely as a conse-
quence of its condition of filter-feeder. This low-coverage genome survey will help in the design
of additional sequencing and novel assembly strategies to obtain a more complete view of the
mussel genome and the evolutionary forces that may have shaped its architecture and
composition.

Availability of Supporting Data
Illumina read sequences used in this study can be downloaded from the NCBI Sequence Read
Archive under the accessions SRR1598987, SRR1598945 and SRR1598943. Assembled
sequences and annotations have been submitted to NCBI under the submission code
SUB1006464 (PRJNA262617) following NCBI WGS requirements.
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S1 Fig. Nucmer alignments over the Mitochondrial F haplotype ofM. galloprovincialis.
Rectangles depict direct (red) and reverse (blue) matches.
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S1 File. Assemblies and Mitogenomes–List of web sites containing genome assemblies of
the studied molluscs and GenBank accession numbers of all the mitochondrial genome
sequences analysed.
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S2 File. Summary of gene functional annotations. List of genes with functions related to
immunity, resistance to hypoxia and stress, shell formation and adhesion to surfaces.
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S2 Table. GO terms under the category “biological process” with significant differences
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