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Abstract: Attention is engaged differently depending on the type and utility of an attentional cue.
Some cues like visual transients or social gaze engage attention effortlessly. Others like symbols or
geometric shapes require task-relevant deliberate processing. In the laboratory, these effects are often
measured using a cuing procedure, which typically manipulates cue type and its utility for the task.
Recent research however has uncovered that in addition to spatial orienting, this popular paradigm
also engages two additional processes—tonic alertness and voluntary temporal preparation—both
of which have been found to modulate spatial orienting elicited by task-irrelevant cues but not
task-relevant symbols. Here we assessed whether changes in tonic alertness and voluntary temporal
preparation also modulated attentional orienting elicited by task-relevant social gaze and nonsocial
arrow cues. Our results indicated that while the effects of spatial attention were reliable in all
conditions and did not vary with cue type, the magnitude of orienting was larger under high tonic
alertness. Thus, while the cue’s task utility appears to have the power to robustly drive attentional
orienting, changes in tonic alertness may modulate the magnitude of such deliberate shifts of attention
elicited by task-relevant central social and nonsocial cues.

Keywords: spatial attention; temporal attention; attentional orienting; reflexive attention; voluntary
attention; social attention; automated symbolic orienting; visual attention

1. Introduction

Spatial attention is engaged differentially depending on the type of attentional cue [1–5]. While
some cues like peripheral luminance changes engage attention relatively effortlessly in a reflexive
manner, others like centrally presented geometric shapes engage attention in a more voluntary fashion,
requiring deliberate effort. Experimentally, these effects are often studied using the Posner cuing
task [3,6]. In this task, an attentional cue that indicates a potential target location is presented. Then,
after a variable amount of time (i.e., the cue–target interval) a target demanding a response is presented
either in the location indicated by the cue (i.e., cued target) or in some other location (i.e., uncued
target). If the cue has engaged attention, participants’ performance is facilitated (i.e., is faster and/or
more accurate) for cued relative to uncued targets.

1.1. Measuring Attentional Effects

The cue’s ability to engage attention is often studied by manipulating its spatial predictiveness by
making it either spatially uninformative or spatially informative about an upcoming target, e.g., [7].
Studies show that cues like visual transients [3,8,9] as well as averted social eye gaze [10–12] need not
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be spatially informative to engage attention. By contrast, more symbolic cues like geometric shapes [4],
letters [13] or numbers [1,5,14] require a level of task-relevant spatial information to engage attention.
However, in addition to cue type and spatial predictiveness, the cuing task also engages two other
processes, namely tonic alertness and voluntary temporal preparation, both of which have recently
been found to modulate the observed attentional effects [2,15–20].

1.1.1. Tonic Alertness

Tonic alertness is understood to reflect long-term changes in participants’ overall readiness to
respond [21,22]. Accordingly, its effects have been investigated by manipulating the number of trials
that require a response, i.e., the number of trials in which a response target appears e.g., [2,17–19].
The inclusion of no-target trials is common, especially in simple detection tasks, as this practice serves
to both increase participants’ tonic alertness and to guard against a potential response bias in the case
when all trials contain a response target. When the number of no-target trials is relatively low (e.g., 5%),
a strong coupling between the cue and target occurs, creating a high level of tonic alertness. This is
indexed by both overall facilitated response times (RTs) and the presence of the foreperiod effect, or
the speeding up of RTs with the lengthening of the time interval between the cue and target [23–25].
However, when the proportion of no-target trials is increased to for instance 25%, the link between the
cue and the target is weakened, and participants’ level of tonic alertness or their readiness to respond
consequently decreases. Experimentally, this manipulation results in slower responses overall and the
elimination of the foreperiod effect [2,17,19].

1.1.2. Voluntary Temporal Preparation

Voluntary temporal preparation is thought to reflect participants’ implicit entrainment to the
timing of cue–target events. That is, in a typical cuing task, which uses a so-called ‘aging’ distribution of
trials, an equal number of targets are assigned to appear at each cue–target time [2,15–17,22]. However,
this practice does not result in equating the probability of target appearance at each cue–target interval.
Rather, it increases the likelihood that, given its absence at an early cue–target time, the target will
appear at a later cue–target time. This is because as each cue–target interval passes, the number of
trials assigned to appear at that time point stays constant while the total number of remaining trials
decreases. To illustrate, consider an example with four cue–target intervals and a total of 128 trials,
with 32 trials assigned to each cue–target time. At the first cue–target interval, the probability of target
appearance is 32/128 trials or p = 0.25. However, provided no target occurs at this earliest cue–target
time, the probability that the target will occur at the next cue–target time increases to 32/96 trials
or p = 0.33. The probability of a target occurring at the third cue–target time jumps even further to
p = 0.50 or 32/64 trials, and finally reaches certainty if all trials contain a response target, i.e., 32/32
trials or p = 1. One way to correct for this increasing probability of target presence is to utilize a
so-called ‘nonaging’ distribution of trials, in which the number of targets presented at each successive
cue–target time is halved. To illustrate, consider the same scenario with four cue–target intervals
and 128 total trials. Here, to maintain a target occurrence probability of p = 0.50 at each cue–target
interval, the number of remaining targets is halved for each successive cue–target time. As such, half
of all targets (64/128) are assigned to appear at the shortest cue–target interval, half of the remaining
ones at the next cue–target time (32/64), half of those at the following cue–target time (16/32), with
the final 8/16 targets occurring at the longest cue–target time. Experimentally, voluntary temporal
preparation is also indexed by the foreperiod effect [2,17]. While the foreperiod is present when the
task employs an aging distribution of trials, it becomes eliminated when the implicit probability of the
target’s temporal appearance is equated using a nonaging distribution [15,16,22].

1.2. Effects of Tonic Alertness and Voluntary Temporal Preparation on Attentional Orienting

Studies that have investigated the role that changing tonic alertness and voluntary temporal
preparation have on orienting of spatial attention generally show that these task parameters modulate
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both spatial orienting and the foreperiod effect. For instance, when attention is engaged with spatially
nonpredictive luminance changes, lowering tonic alertness leads to slowed responses and an abolished
foreperiod [17,19]. Eliminating voluntary temporal preparation with this cue also results in an
abolished foreperiod effect [15–17]. However, indicating that tonic alertness and voluntary preparation
affect the foreperiod in an interactive fashion, when both processes are reduced jointly the foreperiod
effect becomes reduced such that participants become slowest to respond to targets appearing at the
longest cue–target time [17]. Furthermore, spatial attention engaged by visual luminance transients is
also modulated by both task parameters [17,19]. Spatial orienting remains unchanged under absent
voluntary temporal preparation alone [15,17], but becomes reduced when either tonic alertness [19] or
both tonic alertness and voluntary temporal preparation are jointly lowered [17].

Changing tonic alertness and voluntary temporal preparation have also been found to affect
attentional orienting engaged by spatially nonpredictive central eye gaze and arrow cues [2]. While
a reduced foreperiod magnitude with the joint lowering of tonic alertness and voluntary temporal
preparation also held for central cues, modulations of attentional effects diverged with cue type.
In Hayward and Ristic’s [2] study, social orienting remained generally unaffected by changes in the
task parameters except that its magnitude decreased at the longest cue–target time of 925ms when
both tonic alertness and voluntary temporal preparation were reduced. Automated orienting on the
other hand, which is engaged by spatially nonpredictive arrows [26,27], increased in magnitude under
absent voluntary temporal preparation, and was delayed in its onset to the longest 925 ms cue–target
interval when the contribution of both processes was reduced.

Recently, Laidlaw and Kingstone [18] investigated how lowering tonic alertness by decreasing
the number of no-target trials from 0% (i.e., 100% of trials contained a target) to 25% (i.e., 75% of
trials contained a target) affected automated and voluntary orienting. A typical cuing task with
an aging distribution of trials was used, in which either a central task-irrelevant arrow, which did
not predict the location of an upcoming target (i.e., engaging automated attention), or a central
task-relevant letter (M or W), which correctly indicated the location of an upcoming target in 80% of
trials (i.e., engaging voluntary attention) served as attentional cues. The data indicated that whereas
automated orienting was abolished under low tonic alertness, voluntary orienting remained robust in
both alertness conditions.

1.3. The Present Study

In the present investigation, we sought to examine whether systematic changes in tonic alertness
and voluntary temporal preparation modulated orienting elicited by central directional task-relevant
spatially predictive gaze and arrow cues. Extending Laidlaw and Kingstone [18], the present study
investigated the effects of both individual and joint contributions of tonic alertness and voluntary
temporal preparation on spatial orienting elicited by central eye gaze and arrow cues. Extending
Hayward and Ristic [2], the present study investigated how changing the task parameters influenced
spatial orienting when it was engaged by task-relevant gaze and arrow cues. Based on this past work,
we expected the foreperiod to be affected by both individual and joint manipulations of tonic alertness
and voluntary temporal preparation and to find little influence of changing tonic alertness conditions
on voluntary attention.

2. Materials and Methods

2.1. Participants

A total of 92 participants completed the study (83 females, 9 males; average age: 20.7 years;
Standard Deviation (SD) = 3.8). Each person was randomly assigned to receive either the gaze (n = 50)
or arrow (n = 42) cue and either the high (n = 44; gaze n = 25; arrow n = 19) or low (n = 48, gaze n = 25;
arrow n = 23) tonic alertness condition. These sample sizes reflect past studies well, which reported
medium to large overall cuing effect sizes (Cohen d’s between 0.35 and 0.84) using samples ranging
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from 14 to 48 participants [12,28–30]. We did not include or analyze the data from any participants
who did not comply with task instructions (i.e., generating response errors on more than 20% of trials).
All procedures were in accordance with the Declaration of Helsinki (2008) and were approved by the
McGill University Behavioral Research Ethics Board (#81-0909).

2.2. Apparatus and Stimuli

The stimuli and experimental setup replicate our previous work [2]. Black and white line drawings
of a schematic face (Figure 1A) and an arrow (Figure 1B) served as cues. The face consisted of a face
outline (9.4◦), pupils (i.e., black filled-in circles centered within eye outlines; 0.7◦), mouth (3◦), and
a nose (0.3◦). The arrow consisted of a horizontal line (4.6◦) with an arrowhead and an arrow tail
(each 1.9◦). A capital letter ‘X’ (1◦) served as the response target, appearing with an eccentricity of
6.4◦ to the left or right of central fixation. The stimuli were shown on a 16-in cathode ray tube (CRT)
monitor at an approximate distance of 57 cm.

Figure 1. Stimuli and example task sequence for gaze (1A) and arrow (1B) cues. All trials started with
a fixation screen, displaying either a blank face or a straight line for 750 ms. Then, the central gaze or
arrow cue, indicating either the left or right location was shown. After the variable cue–target time,
the response target (a capital letter X) was presented on the left or right of the fixation. The cue and
the target remained on the screen until response or until 2000 ms. Cue direction indicated the correct
location of the target in 75% of trials. Note: Stimuli are not drawn to scale.

2.3. Design

The design also followed from Hayward and Ristic [2], except that the attentional cues were
spatially predictive of the target location. The cue’s direction indicated the correct location of an
upcoming target in 75% of trials. Cue type (gaze vs. arrow) and tonic alertness (high vs. low) were
manipulated between subjects. Voluntary temporal preparation (present vs. absent), cue validity
(cued vs. uncued), and cue–target interval were manipulated within subjects. Voluntary temporal
preparation was blocked and presented in a random order between participants. Cue validity and
cue–target interval were intermixed and presented in a pseudorandom order within participants.
On any given trial, gaze and arrow cues indicated either a left or right spatial location, and the target
appeared on either the left or right side.

Tonic alertness was manipulated by changing the number of no-target trials. While a cue appeared
in each trial, the target appeared with different occurrence certainty across the two tonic alertness
conditions. For high tonic alertness, a target was presented in 94% of the trials and no target was
shown in 6% of the trials. In contrast, for low tonic alertness, a target was presented in 75% of the trials
and no target was shown in 25% of the trials. Note that Laidlaw and Kingstone [18] used the term
temporal attention to refer to their manipulation of changing the number of no-target trials. Here we
use the more general term tonic alertness to refer to the same manipulation in order to both maintain
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continuity with the existing literature e.g., [2,15–17,20,22,31] and to individuate this factor from the
factor of voluntary temporal preparation, which has been well documented to lead to changes in the
implicit orienting of temporal attention, e.g., [24,32–34].

Voluntary temporal preparation was manipulated by altering the distribution of trials across
the cue–target intervals from an aging to a nonaging one, e.g., [2,15–17,22,31]. Voluntary temporal
preparation was present when the aging distribution of trials was used. This distribution presents
the same number of trials at each cue–target interval but leads to an increased likelihood of target
appearance with the lengthening of the cue–target time. Voluntary temporal preparation was absent
when the nonaging distribution of trials was used. This distribution presents a different number of trials
at each cue–target interval but results in an equal likelihood of target appearance across all cue–target
times, e.g., [2,17]. In order to equate the probability of target occurrence across all cue–target times for
the nonaging distribution and to also manipulate the percentage of no-target trials, the total number of
cue–target intervals differed for the high and low tonic alertness conditions, see [2,15,17] for a thorough
explanation. To preserve high tonic alertness and the nonaging distribution, four cue–target intervals
are required. To preserve low tonic alertness and the nonaging distribution, two cue–target intervals are
required. The number of cue–target intervals and trial counts for all experimental conditions are shown
in Table 1. Note that due to an increased number of cue–target times, the high tonic alertness conditions
contained more test trials (average of 1056) compared to the low tonic alertness conditions (average
of 876). However, it is unlikely that this variable influenced our results by creating differential fatigue
effects for two reasons. One, the total testing time did not differ much across the two tonic alertness
conditions (about 31 min vs. 31.8 min, not including individual RTs, for the high vs. the low tonic
alertness, respectively). Two, an analysis of overall RTs as a function of testing block (1–4) and tonic
alertness (high vs. low) also indicated no reliable differences in the fluctuations of responses across the
high and low tonic alertness conditions [Testing block × Tonic alertness; F(3,264) = 0.61, p = 0.6]. Future
work in which fatigue effects are manipulated and measured directly is needed to examine whether
this factor plays a role in the reported performance differences.

Table 1. Trial counts for all experimental conditions.

Target Present No Target

Cue–target time 100 ms 375 ms 650 ms 925 ms
cued uncued cued uncued cued uncued cued uncued

High Alertness
Aging 192 64 192 64 192 64 192 64 64

Nonaging 384 128 192 64 96 32 48 16 64
Low Alertness

Aging 240 80 – – – – 240 80 216
Nonaging 336 112 – – – – 168 56 224

2.4. Procedure

Each trial began with the presentation of either a blank face or a straight line for 750 ms. Then,
pupils looking left or right or an arrow pointing left or right appeared. After the variable cue–target
time, the target was presented on the left or right side of fixation. Participants were instructed to
press the spacebar quickly and accurately once they detected its onset, and to withhold a response
if no target appeared. They were also instructed that the cue’s direction indicated the correct target
location in 75% of trials and to maintain central fixation throughout the task. In order to ensure that
participants utilized the cue–target timing information implicitly, as in past work [2,15–17], they were
not given any instructions about the cue–target temporal links. The cue and the target remained visible
until response or until 2000 ms. RT was measured from target onset. The task was divided into four
blocks of trials, with five practice trials run at the start.
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3. Results

Overall the task was performed well. Anticipations (RT < 100 ms), timeouts (RT > 1000 ms)
and false alarms (i.e., responding on a no-target trial) accounted for less than 2% of trials in any
condition. Mean correct RTs were examined at the common cue–target intervals of 100 and 925 ms,
as this was the only way to fully and directly compare modulations in spatial orienting as a function of
all experimental conditions, i.e., isolated and combined influences of tonic alertness and voluntary
temporal preparation [2,17].

We first examined the data using an omnibus mixed effects Analysis of Variance (ANOVA), with
cue type (gaze vs. arrow) and tonic alertness (high vs. low) included as between-subjects variables and
voluntary temporal preparation (present vs. absent), cue validity (cued vs. uncued), and cue–target
interval (100 and 925 ms) included as within-subject variables. Follow-up analyses were conducted
at each cue–target interval separately in order to connect with Laidlaw and Kingstone’s [18] work.
Figure 2 illustrates mean interparticipant correct RTs as a function of tonic alertness, voluntary temporal
preparation, cue type, cue validity, and cue–target time.

Figure 2. Results. Mean interparticipant correct Response Times (RTs) as a function of tonic alertness
(high; low), voluntary temporal preparation (present; absent), cue type (gaze; arrow), cue validity
(cued; uncued), and cue–target time (100 ms; 925 ms). Error bars represent the standard error of the
difference between the means.

3.1. Omnibus ANOVA

The omnibus ANOVA returned reliable main effects for tonic alertness [F(1,88) = 6.2, p = 0.015,
ηp

2 = 0.07 and cue validity [F(1,88) = 151.4, p < 0.0001, ηp
2 = 0.63], with responses overall faster for the
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high relative to the low tonic alertness condition, and for cued relative to uncued trials. As expected
and as illustrated in Figure 2, the foreperiod was also modulated by changes in tonic alertness and
voluntary temporal preparation. This observation was supported by reliable interactions arising
between tonic alertness, voluntary temporal preparation, and cue–target interval. That is, and replicating
past reports [2,17], the foreperiod effect was reduced by both lowering tonic alertness [Figure 2B;
cue–target interval × tonic alertness, F(1,88) = 64.1, p < 0.0001, ηp

2 = 0.42] and voluntary temporal
preparation individually [Figure 2C; cue–target interval × voluntary temporal preparation, F(1,88) = 144.9,
p < 0.0001, ηp

2 = 0.62], as well as by decreasing both processes in conjunction [Figure 2D; voluntary
temporal preparation × tonic alertness, F(1,88) = 5.3, p = 0.024, ηp

2 = 0.06; voluntary temporal preparation ×
tonic alertness × cue–target interval; F(1,88) = 39.9, p < 0.0001, ηp

2 = 0.31].
The ANOVA also indicated that the magnitude of spatial orienting was modulated by the

manipulations of tonic alertness and voluntary temporal preparation. First, a two-way interaction
between cue validity and cue–target interval [F(1,88) = 15.4, p = 0.0002, ηp

2 = 0.15] indicated that, as is
customary for voluntary attention [29,35], the magnitude of attentional orienting (i.e., the RT difference
between cued and uncued targets) grew overall with increasing cue–target time. However, this finding
held only for the high alertness condition as confirmed by a reliable cue validity by tonic alertness
interaction [F(1,88) = 4.7, p = 0.032, ηp

2 = 0.05], showing that the magnitude of orienting was larger
under high (Figure 2A,C) relative to low (Figure 2B,D) tonic alertness. Finally, a three-way interaction
between cue validity, tonic alertness, and cue–target interval [F(1,88) = 8.6, p = 0.0043, ηp

2 = 0.09] indicated
that the effect of high tonic alertness on spatial orienting was more pronounced at the longer cue–target
time, as the magnitude of spatial orienting increased at the 925 ms cue-target interval for the high
but not the low tonic alertness condition. No other effects or interactions were reliable, including
any involving cue type [cue type × voluntary temporal preparation × tonic alertness × cue–target interval,
F(1,88) = 3.5, p = 0.063, ηp

2 = 0.04; all other Fs < 3, ps > 0.1].
Thus, when we assessed the influence of tonic alertness and voluntary temporal preparation on

spatial orienting elicited by task-relevant central gaze and arrow cues, we found that the magnitude
of attentional orienting, i.e., the RT difference between cued and uncued trials, became larger under
high relative to low tonic alertness at the longest cue–target time. Our data also indicated that this
result did not vary as a function of cue type, with the results remaining steady across social gaze and
nonsocial arrow cues.

3.2. Follow-Up Analyses

We next analyzed the data separately for the condition in which tonic alertness was low and
voluntary temporal preparation was present, which mirrors Laidlaw and Kingstone’s [18] low alertness
condition, and the condition in which tonic alertness was low and voluntary temporal preparation was
absent, which was employed in the present study e.g., [2]. As a reminder, Laidlaw and Kingstone [18]
found that voluntary attentional orienting elicited by spatially predictive central letter cues was
unaffected by lowered tonic alertness, remaining reliable only at the longer cue–target intervals.

We used four separate one-way ANOVAs to examine the difference between cued and uncued
RTs in the two task conditions (low tonic alertness and high voluntary temporal preparation; low
alertness and low voluntary temporal preparation) for each cue–target time (100 ms; 925 ms). In the
low tonic alertness and present voluntary temporal preparation case, robust main effects of cue validity
were found at both the early [100 ms, F(1,47) = 17.6, p < 0.0001, ηp

2 = 0.27] and the late [925 ms,
F(1,47) = 24.0, p < 0.0001, ηp

2 = 0.34] cue–target intervals. The same result emerged in the condition
in which both tonic alertness and voluntary temporal preparation were absent, with reliable main
effects of cue validity at both the early [100 ms; F(1,47) = 50.4, p < 0.0001, ηp

2 = 0.52] and the late
[925 ms; F(1,47) = 13.7, p = 0.001, ηp

2 = 0.23] cue–target intervals. As such, these data indicated robust
orienting effects at both early and late cue–target times, when tonic alertness was manipulated jointly
with voluntary temporal preparation and when it was manipulated alone. We return to this point in
the discussion.
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Taken together, the results from our study showed that when directional gaze and arrow cues
were made spatially relevant, attentional orienting remained robust across changing manipulations of
tonic alertness and voluntary temporal preparation, but showed an increased magnitude of orienting
at the longer cue–target time in the high alertness condition. No differences between the two cue
types emerged.

4. Discussion

Motivated by recent work [2,17,18] indicating the sensitivity of attentional effects to cue types,
task settings, and/or task-relevance, here we sought to determine whether changes in the cuing task
parameters of tonic alertness and voluntary temporal preparation modulated spatial orienting elicited
by task-relevant central directional gaze and arrow cues. We manipulated tonic alertness by changing
the percentage of no-target trials from 6% in the high tonic alertness condition to 25% in the low tonic
alertness condition. We manipulated voluntary temporal preparation by presenting the trial sequences
using either an aging or a nonaging distribution, which respectively serve to preserve or eliminate the
effects of voluntary temporal preparation. The two factors were manipulated in isolation and jointly.
Replicating past studies [2,15–19,22], we found that lowering tonic alertness and voluntary temporal
preparation both in isolation and in conjunction reduced the foreperiod effect. In contrast, while
attentional orienting was robust across all conditions, we observed the typical voluntary pattern of
orienting with an increasing magnitude of attentional effects at longer cue–target intervals in the high
tonic alertness condition only. Finally, we found that attentional effects did not change as a function of
cue type, remaining steady across social gaze and nonsocial arrow cues.

On first glance these data appear to contrast Laidlaw and Kingstone [18], who did not find
modulations of voluntary attention with changes in tonic alertness. There are at least two points
to consider here. One is that the task conditions between these two studies did not fully match,
which makes direct comparisons across the two studies difficult. More specifically, while Laidlaw
and Kingstone [18] manipulated tonic alertness by lowering the percentage of no-target trials from
0 to 25%, the present study manipulated tonic alertness by lowering the percentage of no-target trials
from 6 to 25%. As such, Laidlaw and Kingstone’s [18] high alertness condition preserved the target’s
temporal uncertainty but eliminated its occurrence uncertainty, e.g., [22], while our design preserved
both the temporal and occurrence uncertainty, allowing a more equal comparison between high and
low alertness conditions.

Two, the designs also diverged based on cue type. Laidlaw and Kingstone [18] studied the effects
of changing cuing task parameters on voluntary orienting elicited by a nondirectional symbolic letter
cue. Here, we studied the effects of changing task parameters on orienting elicited by task-relevant
directional gaze and arrow cues. Unlike nondirectional cues like letters or geometric shapes, when
manipulated as task-irrelevant or spatially nonpredictive, directional gaze and arrows normally elicit
orienting effects at both early and late cue–target times, e.g., [11,36,37]. Furthermore, when they are
made task-relevant or spatially predictive, arrow cues have been found to produce large, so-called
combined effects, which occur robustly at both early and late cue–target times and are proposed
to reflect a combination of reflexive and voluntary orienting [4,26,27,29,38]. Voluntary orienting
elicited by central symbolic cues on the other hand is thought to elicit a more pure form of voluntary
attention, with effortful attentional effects beginning to emerge only at mid cue–target intervals of about
300–500 ms [13]. It is therefore possible that while our data show effects of changing tonic alertness
on attentional orienting elicited by gaze and arrow cues, these results may reflect the differential
cue-specific effects that are normally exerted on spatial attention by social, automated, and symbolic
cues. Thus, although overall the present results appear to diverge from Laidlaw and Kingstone [18],
these two studies conceptually converge to show that the typical cue-specific attention effects elicited
by task-relevant cues generally remain robust with changes in cuing task settings, but that those task
parameters may also modulate the magnitude of attentional orienting elicited by different types of
cues in a divergent fashion.
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The present study also extends our previous work with spatially nonpredictive directional
cues [2,17,32]. In those studies, we showed that spatial attention varied with both task parameters
and cue type. While social orienting elicited by spatially nonpredictive gaze cues was mostly resilient
to changing task parameters, automated orienting elicited by spatially nonpredictive arrows was
affected by changes in both tonic alertness and voluntary temporal preparation. Specifically, while
automated orienting appears to be accelerated by the presence of implicit temporal predictability
between the cue–target events (i.e., voluntary temporal preparation) it remains unaffected when that
temporal information is manipulated explicitly [32]. However, showing diverging effects across social
and nonsocial cues, lowering both tonic alertness and voluntary temporal preparation resulted in a
delayed onset of automated but not social orienting [2]. The present results further show that when
directional central cues are made task-relevant, or spatially informative of a target, this task setting
appears to be able to dominate the cue-specific effects that emerge when those same cues are made
spatially nonpredictive. That is, here we found that when spatially predictive, both gaze and arrow
cues produced attentional orienting effects that did not vary as a function of cue type. As such,
the present results suggest that the spatial predictiveness of a cue may be a powerful modulator of
task performance over and above any influences of a particular cue type.

Finally, and similarly to our previous work [2,17], the present data also revealed that the typical
foreperiod was present only when both tonic alertness and voluntary temporal preparation were
present. Experimentally lowering either or both processes contributed to a reduction in the foreperiod
magnitude. We have argued previously [2] that the decrease in the foreperiod magnitude may reflect
a reduction in task-related target expectancy, as when both processes are reduced the target is both
less likely to appear and the task sequence provides no implicit temporal information about when it
would appear. The present work additionally indicates that the pattern of overall slowing of RTs at
later cue–target times occurs similarly regardless of whether the cue is spatially predictive or spatially
nonpredictive, indicating a more important role of the task’s temporal rather than spatial parameters
in the foreperiod effect.

In sum, the present study once again demonstrated that the cuing task settings modulate the
observed spatial attentional effects. While our past work showed that different task-irrelevant cue
types have the power to drive attention differentially, the present work shows that when those cues are
made relevant for the task their intrinsic cue effects may become superseded by the task parameters.
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