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Neuronal plasma membrane proteins are essential for integrating cell

extrinsic and cell intrinsic signals to orchestrate neuronal differentiation,

growth and plasticity in the developing and adult nervous system.

Here, we shed light on the family of plasma membrane proteins

phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs;

plasticity-related genes) that fine-tune neuronal growth and synaptic

transmission in the central nervous system. Several studies uncovered

essential functions of PLPPRs in filopodia formation, axon guidance

and branching during nervous system development and regeneration,

as well as in the control of dendritic spine number and excitability.

Loss of PLPPR expression in knockout mice increases susceptibility

to seizures, and results in defects in sensory information processing,

development of psychiatric disorders, stress-related behaviors and abnormal

social interaction. However, the exact function of PLPPRs in the

context of neurological diseases is largely unclear. Although initially

described as active lysophosphatidic acid (LPA) ecto-phosphatases that

regulate the levels of this extracellular bioactive lipid, PLPPRs lack

catalytic activity against LPA. Nevertheless, they emerge as atypical LPA

modulators, by regulating LPA mediated signaling processes. In this

review, we summarize the effects of this protein family on cellular

morphology, generation and maintenance of cellular protrusions as well

as highlight their known neuronal functions and phenotypes of KO

mice. We discuss the molecular mechanisms of PLPPRs including the
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deployment of phospholipids, actin-cytoskeleton and small

GTPase signaling pathways, with a focus on identifying gaps

in our knowledge to stimulate interest in this understudied

protein family.

KEYWORDS

phospholipid phosphatases, LPA, plasticity-related genes, filopodia, synaptic
transmission, axonal regeneration, axonal development

Introduction

First identified as plasticity-related ecto-enzymes
involved in antagonizing phospholipid-induced growth
cone collapse (Bräuer et al., 2003), PLPPRs have emerged
as a pleiotropic family of proteins. They regulate multiple
independent processes during neuron growth and excitability
and act through several independent cellular mechanisms.
PLPPRs are integral membrane proteins with five identified
family members (PLPPR1-5). They belong to the lipid
phosphatase/phosphotransferase (LPT) family that modulate
bioactive lipid phosphates including lysophosphatidic acid
and sphingosine-1-phosphate (Sigal et al., 2005; Tang
et al., 2015). It is of note that little is known concerning
extracellular binding of lipids and/or activation, or details
on how PLPPRs transfer signals to control cellular
responses. What makes this family of proteins interesting
is their association with cellular growth responses in a
highly spatially and temporally organized manner. In this
review, we aim to summarize the current knowledge of
how PLPPRs regulate the specific, yet divergent, cellular
processes that have been related to these membrane
proteins.

Structure and topology of the proteins

Phospholipid phosphatase-related proteins are derived
evolutionarily from the protein family of phospholipid
phosphatases (PLPPs, Figure 1) (Sigal et al., 2005). They
appear to emerge late in evolution from PLPPs with homologs
first detected in nematodes (C. elegans1). PLPPs act as
hydrolases, which catalyze the cleavage of phosphate from
a bioactive lipid substrate (Zhang et al., 2000). PLPPs
and PLPPRs share a conserved folding topology with six
membrane spanning domains displaying the N- and C-terminal
regions in the intracellular space (Figure 1A; Brindley and

1 http://phylomedb.org/phylome_104?id=3&seqid=Phy000A3GO&
phyid=104&method=VT

Waggoner, 1998; Sigal et al., 2005). While the extracellular
loops in PLPPs contain the conserved catalytic domains
C1, C2 and C3 (Waggoner et al., 1999), PLPPRs bear
amino acid (aa) substitutions in several critical catalytic
residues (Figure 1B; Sigal et al., 2005). PLPPRs evolved
into a distinct set of proteins differing among each other
by the length of their unstructured intracellular C-terminal
domain (ICD). PLPPR1, PLPPR2 and PLPPR5 have an
∼50 aa ICD, while PLPPR3 and PLPPR4 present with a
considerably longer ∼400 aa ICD (Figure 1; Bräuer and
Nitsch, 2008). Although they differ in length, some regions,
most notably a regularly spaced proline motif, are conserved
in all ICDs. Intriguingly, PLPPR2 has extensive mutations
in these shared C-terminal regions (Figure 1E). The long
ICDs of PLPPR3 and PLPPR4 contain domains for binding
to Calmodulin (CaM) and PP2A, and PLPPR4 possesses
additionally an (intracellular) O-linked glycosylation site.
A rarely occurring stretch of 20 consecutive glutamic acid
residues within the ICD, the ‘poly-E-box,’ characterizes PLPPR3
(Figure 1C).

There has been a long-standing complication as the
PRG nomenclature is frequently used to refer to PLPPRs,
even though PRG officially denotes the proteoglycan family
(Figure 1). The parallel usage of PLPPRs and PRGs has
led to a conflicting numbering with PLPPR1 being PRG3,
PLPPR2 being PRG4, PLPPR3 being PRG2, PLPPR4 being
PRG1. Only PLPPR5 shares the same numbering with its
PRG5 name. Additional complication comes from metazoan
model organisms (C. elegans, D. melanogaster), where the
PRG1/2 nomenclature corresponds to Piwi-related Argonaute
proteins. Confusion has even spread to some antibody
vendors, where irrelevant antibodies are associated with
PRG1 or PRG2. All of the above combined have led to
wrong citations of PLPPR functions (e.g., correction by
Sun et al., 2022b) and disease-relevant papers connecting
proteoglycan- or PLPPR-loss to unlikely molecular mechanisms.
Standardizing the nomenclature will certainly minimize
ambiguities and increase the visibility of this interesting
protein family. In this review, we use the PLPPR nomenclature
throughout.
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Expression and localization of
phospholipid phosphatase-
related proteins

Phospholipid phosphatase-related proteins are brain-
enriched proteins with tightly regulated expression levels
throughout different phases of development (Bräuer and
Nitsch, 2008; Yu et al., 2015). Their restricted expression
suggests roles at defined times in developmental programs of
neurons. Furthermore, there is evidence that PLPPRs localize to
distinct compartments of cells, indicating a spatial segregation
of PLPPR functions. Although research on PLPPRs has to date
mainly focused on glutamatergic hippocampal and cortical
neurons, their expression and localization patterns suggest
roles in other brain regions and cell types. In the following
paragraphs, we describe the expression and localization patterns
of PLPPRs in situ, in primary neuron cultures, and in the cell
lines commonly used in the PLPPR literature.

Expression in the central nervous
system

Analyses of the developing mouse and rat brains have
shown that during early developmental stages at embryonic (E)
days E14-E16, PLPPR1 mRNA is detected in the subventricular
zone, the ventricular zone and the cortical plate, as well as
the hippocampal anlage (Savaskan et al., 2004; Wang and
Molnár, 2005; Figure 2A). Similarly, PLPPR5 expression is
detectable at embryonic stages in the hippocampus (Coiro et al.,
2014), with strong expression in the dentate gyrus (Broggini
et al., 2010; Gross et al., 2022). In situ hybridization and
immunoblotting analyses identified that PLPPR3 is expressed
from E14.5 onward in thalamic and cortical areas (Cheng et al.,
2016) with increasing levels of mRNA and protein expression
from E16 until early postnatal stages (Figure 2A; Brosig et al.,
2019). Expression analyses in rat cortex, hippocampus and
cerebellum confirmed dynamic expression of PLPPR3, with
high levels found at young postnatal stages (P7-P15) and
reduced expression from around P21 onward (Brosig et al., 2019;
Figure 2A).

In addition to embryonic expression, some PLPPRs are also
detected after birth. Expression of PLPPR4 begins at E19 and
persists during early adulthood at P30 (Bräuer et al., 2003;
Liu et al., 2016; Figure 2A). Analyses of PLPPR4 expression
using in situ hybridization and immunoblot shows high levels
in hippocampus, cortex, cerebellum and subcortical striatal
structures, in brainstem and spinal cord (Trimbuch et al.,
2009; Tokumitsu et al., 2010; Yaguchi et al., 2012; Vogt et al.,
2016). Prominent expression in adult animals is also seen
for PLPPR5 in hippocampus, cerebellum and striatum while
low PLPPR5 levels are detected in thalamus, hypothalamus,

and pons (Gross et al., 2022). This overlap of PLPPR4 and
PLPPR5 expression might indicate shared regulation, and
indeed PLPPR4 and PLPPR5 genes are located within 300 kb
distance in the mouse genome. PLPPR1 is detected at postnatal
stages in layers II-VI throughout cortical regions (Wang and
Molnár, 2005) and in the hippocampus, with a peak in mRNA
expression around birth and high protein levels at P5-P10
(Velmans et al., 2013). The least well-studied member of the
PLPPR protein family, PLPPR2, is expressed during E14 to
P30 in hippocampus, neocortex, olfactory bulbs and cerebellum
(Figure 2A). Compared to the dynamic expression of PLPPR1,
PLPPR3, PLPPR4 and PLPPR5, the expression of PLPPR2
remains constant throughout development and does not change
in the adult (Gross et al., 2021).

In addition to cortical and subcortical brain regions, PLPPR
expression has been detected in the spinal cord. Antibody
labeling identified the presence of PLPPR1 in murine spinal cord
motor neurons of the ventral horn (Broggini et al., 2016). In situ
hybridization of PLPPR5 mRNA in mouse spinal cords show
high mRNA levels at P4 compared to lower expression in adult
mice (Broggini et al., 2010).

Examination of the GABAergic interneuron markers
GAD67, parvalbumin, calbindin and calretinin revealed no co-
expression with PLPPR4 in the CA1 region of hippocampus.
Furthermore, PLPPR4 did not colocalize with gephyrin,
suggesting the overall absence of PLPPR4 from GABAergic
synapses, at least in the adult hippocampus (Trimbuch
et al., 2009). In contrast, PLPPR5 is likely to be expressed
in both excitatory and parvalbumin-positive GABAergic
neurons (Gross et al., 2022). Furthermore, several recent
single cell RNAseq studies indicate expression of PLPPR1,
PLPPR3 and PLPPR5 in adult murine cortical GABAergic
interneurons (Zeisel et al., 2018; La Manno et al., 2021; Yao
et al., 2021). Such expression in GABAergic neurons with
a potentially different developmental expression time course
compared to glutamatergic neurons is especially interesting
given that studies on functions and expression of PLPPRs
have so far focused on glutamatergic hippocampal and cortical
neurons.

Expression in other tissues and cells

In the brain, low expression of PLPPRs has been detected
in astrocytes with additional expression of PLPPR1, PLPPR2,
PLPPR3 and PLPPR5 in microglia (Velmans et al., 2013;
Coiro et al., 2014; Gross et al., 2021). Similarly, mRNA of
all PLPPR members is detected in immature and mature
primary oligodendrocytes, with the exception of PLPPR2,
which decreases in expression from immature to mature
oligodendrocytes (Gross et al., 2022). In addition, qRT-PCR of
PLPPR1 mRNA showed expression in mouse and rat astrocytes,
as well as in rodent glioma cells, in contrast to microglial cells
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FIGURE 1

Domain structure of PLPPR family proteins. (A) PLPPRs are transmembrane proteins with six membrane-spanning domains; both the
N-terminus and C-terminus are localized in the cytosol. (B) The extracellular catalytic center of PLPPRs shares some homology with PLPPs, but
differs in critical catalytic and phosphate-binding residues. (C) PLPPRs differ from PLPPs in their C-terminus and cluster into a group of long-tail
PLPPRs (PLPPR3, PLPPR4) and a group of short-tail PLPPRs (PLPPR1, PLPPR2, PLPPR5). PLPPR4 contains a cytosolic O-linked glycosylation site,
and calmodulin and PP2A binding sites. The calmodulin and PP2A binding site is also found in PLPPR3 but has not been validated. The PLPPR3
sequence encompasses an unusual stretch of 20 glutamic acids. (D,E) All PLPPRs share an extracellular N-linked glycosylation site, a short
sequence of positive and hydrophobic aa, a charged proline motif and a cluster of phosphorylation sites. Alignments as well as the cladogram
were generated with UniProt sequences of mouse PLPPRs or PLPPs using the MAFFT algorithm available at EMBL-EBI
(https://www.ebi.ac.uk/Tools/msa/mafft/).

(Fan et al., 2014; Gross et al., 2021). In vivo, PLPPR4 and
PLPPR5 proteins are not detected in GFAP-positive astrocytes
(Trimbuch et al., 2009; Gross et al., 2022), but PLPPR5 seems
to label a subtype of oligodendrocytes in the corpus callosum
(Gross et al., 2022).

Besides brain, there have been reports of PLPPR expression
in other tissues. For example, at transcript level, PLPPR3 is
expressed in testis, ovary and lymph nodes (Sigal et al., 2005).

A recent study showed prominent expression of PLPPR3 protein
in spermatogonial stem cells, where it may serve as a surface
marker that can be used for isolation of these cells (Tan et al.,
2020). Similarly, mRNA expression of PLPPR1, PLPPR4 and
PLPPR5 has been reported in the testis (Bräuer et al., 2003;
Broggini et al., 2010). PLPPR5 mRNA is additionally detected
in heart and lung (Coiro et al., 2014), while PLPPR1 transcripts
are expressed in liver and kidney (Savaskan et al., 2004). Western
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blot analysis has confirmed PLPPR4 protein expression in testis
using rat tissue homogenates (Tokumitsu et al., 2010). However,
the expression of PLPPR1 protein in other mouse tissues was not
confirmed (Velmans et al., 2013).

In addition, several transcriptome studies and experimental
data indicate expression of PLPPRs in cancer cell lines and
tumors. PLPPR1 has been shown to be downregulated in
breast cancer (Bao et al., 2019) and in glioblastoma tissue
(Aaberg-Jessen et al., 2018); in the latter, both up- and
downregulated PLPPR1 levels are associated with shorter
survival of glioblastoma patients (Fan et al., 2016). PLPPR5
appears also to be downregulated in a subtype of higher-grade
glioblastoma (Stange et al., 2022). Interestingly, overexpression
of PLPPR5 leads to a more benign tumor phenotype with
decelerated growth and dysfunctional vascular architecture. In
another transcriptome study, PLPPR1, PLPPR3 and PLPPR5
are among the top 25 most differentially expressed membrane
proteins in pediatric cancer types (Orentas et al., 2012).
PLPPR2 has been associated with several cancers including
colorectal, pancreatic and breast cancer cell lines and tissues
(Sagiv et al., 2008; Li et al., 2015; Talukder et al., 2016;
Boonsongserm et al., 2019). For example, PLPPR2 expression
is deregulated in colorectal cancer patient samples and cells
(Boonsongserm et al., 2019), while in breast cancer samples,
PLPPR2 shows high frequency of an aa substitution at T278
(PLPPR2 T278S), potentially worsening breast cancer outcome
(Li et al., 2015). PLPPR4 mRNA as well as protein levels
are upregulated in some gastric cancer cell lines and its
upregulation in gastric cancer is associated with metastasis and
poor prognosis (Zang et al., 2020). The mechanism by which
PLPPR4 affects tumorigenesis appears to involve cell adhesion.
Recently, PLPPR4 was identified as a tumor microenvironment-
based prognostic marker for gastric cancer (Wang et al., 2022).
Overall, these data indicate aberrant expression of some PLPPRs
in cancer lines and tissue suggesting a link to tumorigenesis.

Localization and trafficking

An important question concerns the localization of PLPPRs
in polarized neurons. Membrane proteins localized to axons or
dendrites engage in different cellular functions, for example pre-
and postsynaptic modulation of synapses. Immunofluorescence
analysis of PLPPR3 in E16 brains has consistently shown co-
expression with the axonal marker L1 in the corticocortical
and thalamocortical tracts (Cheng et al., 2016; Brosig et al.,
2019). Although initially proposed as an axonal protein (Bräuer
et al., 2003), immunofluorescence, biochemical fractionation
and electron microscopy studies have identified PLPPR4 in the
postsynaptic density of hippocampal glutamatergic synapses,
while it is absent from presynaptic terminals. Including findings
from similar localization studies for other PLPPRs, a consensus
emerges that PLPPR1 and PLPPR3 are primarily localized in

axonal membranes, while PLPPR4 and PLPPR5 are localized
primarily in dendritic membranes (Velmans et al., 2013; Coiro
et al., 2014; Yu et al., 2015; Broggini et al., 2016; Brosig et al.,
2019; Gross et al., 2022; Figure 2B).

Both the trafficking to the plasma membrane as well as
the subcellular localization and presentation at the plasma
membrane are critical to understand the cellular function
of membrane proteins. To date, there have only been few
studies assessing the localization of PLPPRs in neurons or
neuronal cell lines. In most cell lines studied, PLPPRs are not
readily detected at the protein level with existing antibodies
(Sigal et al., 2005; Iweka et al., 2020; Gross et al., 2021; our
unpublished data). As such, most studies have utilized transient
overexpression or stable cell lines to study PLPPR localization
to the different cellular membrane systems. In Cos-7, HeLa or
N1E-115 and Neuro2a neuroblastoma cell lines, overexpressed
PLPPR1, PLPPR3, PLPPR4 and PLPPR5 were located at variable
levels to the plasma membrane (Bräuer et al., 2003; Savaskan
et al., 2004; Sigal et al., 2007; van Coevorden-Hameete et al.,
2015; Brosig et al., 2019; Tilve et al., 2020), while PLPPR2
overexpressed in HEK293 was observed mostly in intracellular
compartments (Gross et al., 2021; Figure 2C). It is highly
likely that the trafficking modality and spatial organization
of PLPPRs at the plasma membrane imposes additional and
complementary mechanisms for controlling cellular PLPPRs
responses.

Interestingly, co-overexpression of different PLPPR family
members increases expression of PLPPRs and enhances their
plasma membrane localization (Yu et al., 2015; Brosig et al.,
2019). For example, PLPPR1 is an efficient regulator of
plasma membrane localization of PLPPR3 and PLPPR5 (Yu
et al., 2015). This co-operation between PLPPR members
depends on multimer formation resulting in homomeric or
heteromeric PLPPRs complexes (Yu et al., 2015; Brosig et al.,
2019). Strikingly, structured illumination microscopy (SIM)
of PLPPR3 using specific antibodies in hippocampal neurons
showed puncta at the axonal plasma membrane (Brosig
et al., 2019). Furthermore, super resolution microscopy of co-
overexpressed PLPPR1 and PLPPR5 or PLPPR3 showed both
puncta formation at the plasma membrane in neuroblastoma
cell lines (Yu et al., 2015; Brosig et al., 2019). Thus, homo- or
heterodimerization may potentially be a driver in the trafficking
and targeting of PLPPRs to the plasma membrane, although this
has not been tested directly.

In conclusion, based on a variety of experimental
approaches followed by different laboratories, a pattern emerges
with two groups of PLPPRs sharing expression and localization
patterns. On the one hand, PLPPR1 and PLPPR3 express
strongest during early development, predominantly localize
to the neuron’s axon (Figure 2B) and are downregulated
in mature neurons (Figure 2A). On the other hand, both
PLPPR4 and PLPPR5 increase in expression after birth,
and predominantly localize to dendritic compartments
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FIGURE 2

Expression and localization of PLPPRs in vivo and in vitro. (A) Expression of PLPPRs at different developmental and adult stages in the rodent
brain. Color intensity correlates with relative expression levels in the hippocampus (green), cortex (red), olfactory bulb (blue), and the
cerebellum (purple). (B) Localization of PLPPRs in different compartments (neurite, dendrite, pre-/post-synapse, growth cone) in cultured
hippocampal/cortical neurons. (C) Subcellular localization of tagged-PLPPRs in plasma- and intracellular membrane compartments following
overexpression in different cells. For details and references, please refer to text.

(Figures 2A,B). Interestingly, PLPPR expression partners do
not correspond in their overall domain architecture. PLPPR3
and PLPPR4 share most structural similarities, with both

encompassing a long ICD. PLPPR1 and PLPPR5 (and to
some extent PLPPR2) make up the second structural group
characterized by presence of a short ICD (Figure 1). In
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conjunction with the ability of PLPPRs to form heteromeric
complexes (Yu et al., 2015), this may argue for an ‘axon group’
and a ‘dendrite group’ that both utilize one member of the
PLPPR family with short ICD and one PLPPR family member
with a long ICD to exert their functions.

Generation of membrane
protrusions and filopodia

Filopodia are small actin rich plasma membrane protrusions
that modulate cellular processes such as migration, adhesion,
neurite outgrowth and growth cone guidance (Gallop, 2020;
Wit and Hiesinger, 2022). During neuronal morphogenesis,
they also serve as precursors for neurites (Dent et al., 2007;
Gallo, 2013), axonal branches (Kalil and Dent, 2014), and
dendritic spines (Ziv and Smith, 1996). Although it is difficult
to morphologically distinguish the different types of membrane
protrusions such as conventional filopodia, cytonemes and
retraction fibers (Svitkina, 2018), there is general agreement
in the field that PLPPRs induce filopodial-type membrane
protrusions.

Evidence of filopodia formation

PLPPR1, the most studied PLPPR family member, shows
strong activity in inducing membrane protrusions. Following
overexpression, PLPPR1 localizes uniformly to filopodial shafts
and occasionally enriches in filopodial tips (Sigal et al., 2007).
It induces filopodia in non-neuronal (Savaskan et al., 2004;
Sigal et al., 2007; Velmans et al., 2013) and neuronal cell lines
(Savaskan et al., 2004; Yu et al., 2015; Broggini et al., 2016),
as well as in hippocampal neurons (Velmans et al., 2013).
Furthermore, PLPPR1 overexpression has been shown to induce
filopodia in vivo (Broggini et al., 2016). Knockdown of PLPPR1
leads to a reduction in the number of filopodia in cancer cell
lines (Sigal et al., 2007), as well as in hippocampal neurons
(Velmans et al., 2013). Taken together, these data strongly
indicate that PLPPR1 is involved in the induction of filopodia
(Figure 3A).

PLPPR5 is another member of the PLPPR family of
proteins that induces filopodia. Overexpression of PLPPR5
promotes the formation of plasma membrane protrusions in
P19 carcinoma and N1E-115 neuroblastoma cells (Broggini
et al., 2010), as well as in cortical and hippocampal neurons
(Broggini et al., 2010; Coiro et al., 2014). PLPPR5 overexpression
in mature hippocampal neurons stimulates the formation of
dendritic filopodia and spines independent of neuronal activity
(Gross et al., 2022). However, in immature hippocampal
neurons, PLPPR5 downregulation does not affect the number
of filopodia (Coiro et al., 2014). Overall, and despite the
high variability of cellular phenotypes in some studies,

there is a consensus for efficient filopodia or membrane
protrusion activity which can be linked to PLPPR1 and PLPPR5
(Figure 3A).

In the context of generating filopodia, the family members
PLPPR3 and PLPPR4 are less studied, although data indicates
similar functions (Figure 3A). For example, PLPPR4 expression
increases filopodia density in HEK293 cells (Liu et al., 2016),
while PLPPR3 expression in embryonic stem cell derived
motor neurons induces the formation of filopodia in axons
(Brosig et al., 2019). Accordingly, hippocampal neurons isolated
from PLPPR3 KO mice develop fewer axon filopodia without
changing filopodia length (Brosig et al., 2019; Fuchs et al.,
2020; Fuchs and Eickholt, 2021). The only PLPPR family
member currently not linked to filopodia or other membrane
protrusions is PLPPR2 (Gross et al., 2021). However, given that
overexpression did not result in plasma membrane targeting,
it is difficult to assess if PLPPR2 can promote filopodia
formation.

Few studies have analyzed PLPPR-induced changes in
filopodial length, an important aspect to be considered for
distinguishing between induction of filopodia versus regulating
their elongation. It was reported that PLPPR1 and PLPPR5
induce longer filopodia in non-neuronal cells when compared
to GFP-transfected control cells (Savaskan et al., 2004; Broggini
et al., 2010). However, analysis of gain-of-function and loss-of-
function filopodia phenotypes in neurons suggests that PLPPR3
specifically affects filopodia numbers but not filopodia length
(Brosig et al., 2019).

Molecular mechanisms of filopodia
formation

Cells utilize multiple signaling cascades to generate
filopodia, which include signaling mediators such as the small
GTPases Cdc42 and Rif (Nobes and Hall, 1995; Pellegrin and
Mellor, 2005), actin regulators such as ENA/VASP, Arp2/3
and formins (for a review see Yang and Svitkina, 2011), and
proteins interacting with membrane lipids, for example IRSp53
(reviewed in Ahmed et al., 2010). For a recent review, focusing
specifically on the mechanisms of filopodia formation, we would
like to refer to excellent reviews by Jacquemet et al. (2015) and
Gallop (2020). In the following sections, we discuss the different
mechanisms that have been implicated in filopodia generated by
PLPPRs.

Structure-function relationships
Plasma membrane localization of PLPPRs appears to be a

prerequisite for filopodia formation. Several groups investigated
the involvement of the PLPP catalytic domain by generating
non-conservative substitutions of residues in the C2 and C3
motifs (S198T, H200G, R246E; Figure 1B), which trapped
PLPPR1 in intracellular membranes and abolished filopodia
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FIGURE 3

Models of PLPPR-based membrane protrusions. (A) Effect of PLPPRs overexpression/knockout on filopodia formation in cells,
dendrite/dendritic spine morphology (blue) and axon morphology (orange). (B) Plasma membrane localization, is required for induction of
filopodia. (C) Cellular regulators involved in PLPPR-induced membrane protrusions, filopodia formation and filopodia stabilization/adhesion.
Note that regulators written in green letters are associated with PLPPR-based membrane protrusions, whilst factors written in purple have been
tested in a specific experimental paradigm but can be excluded as mediators/regulators. For details, please refer to text.

formation (Sigal et al., 2007). Similarly, mutations in these
residues dispersed PLPPR5 from the plasma membrane and
affected normal PLPPR5 induced membrane protrusions (Coiro
et al., 2014). However, introducing an E195H mutation in

PLPPR5 (as present in PLPPR1, PLPPR3, PLPPR4, and PLPPs),
restored prominent plasma membrane expression in neurons,
and induced membrane protrusions in both soma and neurites.
An N-glycosylation deficient variant of PLPPR1 (Figure 1D)
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did not localize to the plasma membrane and failed to induce
filopodia (Velmans et al., 2013). Together these results provide a
strong argument that plasma membrane localization of PLPPRs
is essential for filopodia formation (Figure 3B).

Furthermore, a body of experimental data suggests the
importance of the intracellular domain (ICD) for PLPPR-
induced filopodia formation (Figure 3B). A truncated PLPPR1
variant lacking the ICD (PLPPR1 aa 1-279) localizes to the
plasma membrane and intracellular compartments in a manner
similar to full length PLPPR1, but is incapable of inducing
filopodia (Sigal et al., 2007; Broggini et al., 2016). However,
another study suggested that a similar truncated PLPPR1 (aa
1-282) retains the ability to induce membrane protrusions (Yu
et al., 2015). Interestingly, the isolated cytosolic PLPPR1 ICD
(PLPPR1 aa 280/283-325) cannot induce filopodia (Yu et al.,
2015; Broggini et al., 2016), but mimics full length PLPPR1
filopodia induction when inserted into the plasma membrane
via a myristoylation tag (Broggini et al., 2016). The truncated
PLPPR5 and PLPPR4, similarly, are unable to induce membrane
protrusions (Coiro et al., 2014; Liu et al., 2016). In addition, the
cytosolic PLPPR4 ICD (PLPPR4 aa 338-766) alone is insufficient
in inducing filopodia. The above data suggest that the PLPPR-
transmembrane domains as well as membrane localized ICDs
are required for induction of filopodia (Figure 3B).

Role of small GTPases
The Rho GTPases Cdc42 and Rif regulate distinct pathways

of filopodia formation (Passey et al., 2004; Goh and Ahmed,
2012). PLPPR-induced filopodia formation appears to be
independent of Cdc42 (Sigal et al., 2007; Broggini et al., 2010).
When compared to the filopodia induced by constitutively
active Cdc42, PLPPR1-induced filopodia are longer, thinner
and more persistent (Sigal et al., 2007). In addition to
this, co-expression of PLPPR1 or PLPPR5 with dominant-
negative Cdc42 does not impair filopodia formation (Sigal
et al., 2007; Broggini et al., 2010). Furthermore, there are
no changes in the ability of PLPPR1 to induce filopodia
when Cdc42 function is inhibited (Sigal et al., 2007). These
results indicate that PLPPRs induce filopodia independently
of Cdc42. This also applies to downstream Cdc42 signaling
(Sigal et al., 2007; Broggini et al., 2010), since a number
of actin modulators like Arp2/3 (Gautreau et al., 2022),
Mena/VASP (Breitsprecher et al., 2008; Faix and Rottner, 2022)
and formins (Courtemanche, 2018; Le et al., 2020) appear to
be dispensable for PLPPR1- and PLPPR5-dependent filopodia
formation (Figure 3C).

In contrast to Cdc42, little is known concerning Rif-
dependent filopodia formation, which utilizes both formin
homology proteins mDia1 and mDia2 (Goh et al., 2011).
Filopodia induced by Rif are similar to filopodia induced by
PLPPR1 in terms of length and thickness (Sigal et al., 2007).
However, co-expression of PLPPR1 with dominant-negative
Rif does not impair PLPPR1-induced filopodia formation,

demonstrating that PLPPR1 does not operate upstream of Rif.
Since PLPPR5 was shown to act independent of mDia1, which
is also an effector in Rif-dependent pathway, it is possible that
PLPPR1 and other family members act independent of mDia1
to form filopodia (Figure 3C).

Role of phosphoinositide signaling
The phosphoinositides PI(4,5)P2 and PI(3,4,5)P3 are

essential upstream regulators of the F-actin reorganization
machinery that drive formation of filopodia and lamellipodia in
cells, including neurons (Balla, 2013). Furthermore, PI(3,4,5)P3
is the second messenger of the PI3K-AKT-mTOR signaling
pathway, known to regulate physiological and pathological
growth, cellular metabolism and proliferation in cells (reviewed
in Porta et al., 2014).

PLPPR3 induces axonal filopodia in a PI(3,4,5)P3-
dependent manner, as treatment with PI3K inhibitor LY294002
abolished the ability of PLPPR3 to induce filopodia in
embryonic stem cell motor neurons (Brosig et al., 2019).
PLPPR3 likely exerts its effect on PI(3,4,5)P3 signaling by
regulating the phosphatase PTEN, which directly antagonizes
PI3K signaling by hydrolyzing PI(3,4,5)P3. PLPPR3 was
shown to interact directly with PTEN, to localize PTEN to
the plasma membrane and to attenuate PTEN’s phosphatase
activity. Morphological analysis showed that PTEN knockdown
reversed the branching deficit in PLPPR3 KO neurons. Taken
together, these results suggest that PTEN and PI(3,4,5)P3 are
essential for PLPPR3-induced axonal filopodia and branches
(Brosig et al., 2019; Fuchs et al., 2020). PTEN has also been
shown to interact with PLPPR1 (Yu et al., 2015). In the same
study, mass spectrometry and co-immunoprecipitation
experiments revealed an interaction also with PTEN’s
downstream effector mTOR. Interestingly, co-expression
of PLPPRs increased the phosphorylation of S6 ribosomal
protein, a downstream target of mTOR. However, blocking
the mTOR pathway with rapamycin had no effect on PLPPR-
induced protrusions. Another member of the PLPPR family has
also been proposed to interact with phosphoinositide signaling
pathways. It has been suggested that full-length PLPPR5, likely
via its ICD, binds phosphoinositides in vitro (Coiro et al.,
2014; Figure 3C). Although the nature of this interaction is
uncertain and its role in PLPPR5 filopodia inducing activity
unknown, direct experiments with PLPPR3 in microscale
thermophoresis binding assays have suggested binding to
both PI(3,4,5)P3 and PI(4,5)P2 (our own unpublished data).
These preliminary findings may suggest additional direct
interactions of PLPPRs with membrane phosphoinositides.
It is plausible that such interactions, besides providing a
link to phosphoinositide-signaling pathways (Brosig et al.,
2019) or clustering phosphoinositides into plasma membrane
microdomains (McLaughlin and Murray, 2005), may also
serve a regulatory role in PLPPR stability or function,
potentially analogous to the known regulatory roles of
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phosphoinositides in facilitating ion channel function (Balla,
2013).

Role of cell adhesion
A further cellular mechanism that may be exploited by

PLPPRs during the generation (or stabilization) of filopodia is
cell adhesion (Fischer et al., 2019). Indeed, activation of integrin,
a major component of focal adhesions, promotes filopodia
formation in cancer cells (Jacquemet et al., 2016). Nascent
focal adhesions are sites of myosin X-dependent filopodia
formation and elongation in Cos-7 cells (He et al., 2017).
A recent review (Gallop, 2020) proposed that once filopodia
are formed, the subsequent formation of adhesive structures
in filopodia shaft and tip may promote filopodia length and
lifetime.

In this respect, it is interesting, that both PLPPR1 and
PLPPR4 overexpression increase adhesion to fibronectin-coated
surfaces, and PLPPR4 overexpression increases additionally
adhesion to laminin-coated surfaces (Liu et al., 2016; Tilve
et al., 2020; Figure 3C). Furthermore, overexpression of PLPPR4
leads to increased filopodia density and surface expression of
activated β1-integrin (ITGB1) in HEK293 cells, while PLPPR4
KO antagonizes ITGB1 activity and reduces dendritic spine
density in hippocampal neurons (Liu et al., 2016). However,
PLPPR4 does not interact directly with ITGB1. Instead, it
was shown that the cytoplasmic calmodulin-binding domain
of PLPPR4 interacts with PP2A to establish the adhesome
that activates ITGB1. In agreement with this model, activation
of PP2A using fingolimod (FTY720) rescues spine density,
demonstrating that PLPPR4-based adhesion complexes control
spine density. However, it is worth mentioning that FTY720
has a considerable number of other targets in the cell (White
et al., 2016). PLPPR4 involvement in adhesion has also been
implicated in cancer metastasis. Cell migration relies on
filopodia, which sense the surrounding environment. Increased
filopodia density and migration, both of which depend on
adhesion to the extracellular matrix (Jacquemet et al., 2015),
are hallmarks of cancer metastasis (Arjonen et al., 2011).
PLPPR4 knockdown leads to decreased migration, invasion,
wound healing and adhesion in gastric cancer cell lines, while
overexpression has the opposite effect (Zang et al., 2020).
PLPPR4 appears to impinge on the expression of focal adhesion
components including several α-integrins, p-FAK, p-Src, p-Akt
and MMP2 via the transcription factor Sp1 (Zang et al.,
2020). In the same vein, overexpression of Sp1 in PLPPR4
knockdown cells rescues the cell migration, invasion, and
adhesion phenotypes. PLPPR4 knockdown also inhibited tumor
progression in vivo. Taken together, these results indicate that
PLPPR4 promotes gastric cancer metastasis via Sp1-integrin α

signaling.
In addition to cellular adhesion, PLPPR1 overexpression

decreases cell migration and causes cells to leave behind

actin-less ‘trailing fibers.’ The molecular mechanisms
were linked to decreases in Rac1 activity, and impaired
maturation of nascent focal adhesion complexes that may
account for the increased adhesion and decreased migration
phenotype (Tilve et al., 2020). PLPPR1 may also associate
with ITGB1, potentially promoting the establishment of
focal adhesions (Yu et al., 2015). Although association of
adhesions and filopodia is variable (Gallop, 2020), adhesion
has clear mechanistic roles in stabilizing filopodia, and
furthermore, recent work suggests that adhesion can
also drive filopodia initiated branching morphogenesis
(Fischer et al., 2019).

Molecular composition of phospholipid
phosphatase-related protein-induced filopodia

Phospholipid phosphatase-related protein-based filopodia
may be characterized by distinct molecular compositions.
Although PLPPRs appear to generate filopodia in a Cdc42-
independent manner, they are – similar to most cellular
filopodia – based on actin filaments and devoid of microtubules
(Yu et al., 2015). Filopodia induced by Cdc42 have been
shown to contain focal adhesion proteins such as paxillin
(Nobes and Hall, 1995) or VASP (Krugmann et al., 2001;
Sigal et al., 2007) and the actin-based molecular motor protein
myosin X (Tokuo and Ikebe, 2004; Sousa and Cheney, 2005),
which are typically located at the tip of the protrusions. In
contrast, the PLPPR1-labeled filopodia lack paxillin and VASP
at their tips; instead, these proteins were found at the base
of these filopodia (Sigal et al., 2007). However, myosin X is
also found at the tips of PLPPR1-labeled filopodia (Sigal et al.,
2007; Yu et al., 2015). The actin bundling protein fascin is
considered as marker of filopodia and many cells require fascin-
bundled F-actin to generate filopodia (Vignjevic et al., 2003).
Fascin was found in the shafts of PLPPR1-induced filopodia,
raising the intriguing possibility that PLPPRs generate a distinct
filopodia type in cells. However, the molecular composition
of filopodia may differ depending on the cell type, and, to
date, such analyses have not been undertaken in primary
neurons.

In summary, PLPPRs induce changes in cell morphology
that are predominantly associated with filopodia formation.
How this family of proteins governs these changes remains
an open question, since none of the well-described pathways
appears to influence PLPPR-dependent filopodia formation.
Alternatively, instead of distinct signaling pathways and
proteins governing protrusion dynamics, filopodia may form
in response to diverse upstream signaling involving stochastic
combinations of actin regulators (Dobramysl et al., 2021). This
idea seems to be in agreement with current data that has
failed to pinpoint the involvement of any individual well-known
filopodia-inducing proteins in the formation of PLPPR-based
filopodia.
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Phospholipid phosphatase-related
proteins and lysophosphatidic acid
signaling

Owing to the homology with PLPPs there has been
considerable interest in the possible involvement of PLPPRs in
neuronal LPA signaling. LPA plays essential roles in cortical
development, myelination, pain, synapse transmission and
plasticity, and axonal growth (Yung et al., 2015; Birgbauer,
2021).

Lysophosphatidic acid acts via numerous receptors
suggesting a significant redundancy in signaling. Besides a
group of six characterized GPCRs termed LPAR1-6, LPA
also interacts with purinergic receptors, nuclear transcription
factors and TRP-like channels (Nieto-Posadas et al., 2012;
Jang et al., 2014; Yung et al., 2015). LPA-induced LPAR1/6
signaling involves Gs, Gi/o, Gq/11 and G12/13 proteins and
controls cellular proliferation via RAS/ERK1/2, cell survival
via PI3K/AKT, cell migration via PI3K/RAC, changes in cell
shape via RhoA/ROCK and calcium mobilization via Gq/PLC
pathways (Kumagai et al., 1993; Kranenburg et al., 1999;
Fang et al., 2000; Mills and Moolenaar, 2003). The main
source of extracellular LPA is autotaxin (ATX), a secreted
Phospholipase D ectoenzyme, which hydrolyzes extracellular
lysophospholipids, mainly lysophosphatidylcholine, to LPA
(Tokumura et al., 1999; Herr et al., 2020). However, LPA
is also produced independently via a phospholipase A1/A2
pathway acting on phosphatidic acid (Sonoda et al., 2002; Aoki
et al., 2008). LPA is present at low nanomolar to micromolar
concentrations in the CNS and cerebrospinal fluid (CSF) (Yung
et al., 2014) and is rapidly cleared from fluids, with a half-life
of 2–3 min in blood (Salous et al., 2013). Dephosphorylation of
LPA leads to in situ inactivation, which is executed by members
of the PLPP family (Tang et al., 2015).

Interestingly, LPA exerts both protrusive and retractive
effects in neuronal shape and morphology (Sheng et al.,
2015; Yung et al., 2015). This is largely because of its
potency in inducing changes on actin filament dynamics and
microtubule organization depending on the specific LPAR
repertoire of neuron cell types. Neuronal LPA responses
controlling migration, neurite retraction, cell rounding, growth
cone collapse as well as axonal branching are attributed, at least
in part, to one or more of LPAR1-6. For example, classical LPA-
induced growth cone retraction involves LPAR1/2 receptors
(Yung et al., 2015). Similarly, LPAR3 contributes partially
to LPA-induced branching in neuronal cell lines and rodent
neurons (Furuta et al., 2012). However, analysis of individual
or even triple KO animals have not produced convincing data
for LPAR1/2/3 being essential for axonal retraction or branching
in vitro or in vivo (Birgbauer and Chun, 2010; Birgbauer, 2015,
2021; Yung et al., 2015). Instead, atypical LPA receptors like the
TRP-like channel TPRM2 has been suggested to be responsible

for some LPA responses, such as neurite retraction (Jang et al.,
2014). Interestingly, at least some of the functions mediated by
PLPPRs involve LPA signaling. Considering this contribution
of PLPPRs in transducing or controlling LPA effects in neuron
physiology, there have been many reports suggesting different
modes of function for individual PLPPRs (Figures 4A–C).

Role as lysophosphatidic acid
phosphatases

Upon identification of PLPPRs and in light of their
homology with PLPPs, PLPPRs were considered to possess
LPA phosphatase activity. Despite initial reports suggesting
LPA-ectophosphatase activity in PLPPR4 by measuring the
product of LPA dephosphorylation, monoacylglycerol (MAG)
in cell supernatants and membranes (Bräuer et al., 2003;
Figure 4A), ectophosphatase activity was not detectable in
subsequent experiments for PLPPR4 (McDermott et al., 2004)
or PLPPR1 (McDermott et al., 2004; Savaskan et al., 2004).
Considering that no additional data have been published for
other PLPPRs, the agreement is that PLPPRs do not exhibit LPA
phosphatase activity (Strauss and Bräuer, 2013). This notion
is consistent with the changed catalytic motifs C1-C2-C3 in
PLPPRs. Thorough inspection of PLPP and PLPPR alignments
suggests that the PSGH-loop, which serves as a ligand gate
(Tong et al., 2016), would be likely blocked, while the predicted
phosphate binding residues are severely disturbed in PLPPRs.
Nevertheless, the putative lipid-tail binding and pore-forming
residues may be preserved (Figure 1B). Thus, it seems plausible
that at least some PLPPRs may have retained direct binding to
LPA or similar lipid-like molecules.

Regulation of lysophosphatidic acid
signaling pathways

Numerous studies have suggested that PLPPR1, PLPPR4,
and PLPPR5 – following overexpression in neuronal cell
lines or neurons – antagonize LPA downstream signaling
and its effects on cellular morphology and neurite retraction
(Bräuer et al., 2003; Broggini et al., 2010, 2016; Iweka et al.,
2020; Figure 4C, see also Figure 5A). LPA causes neurite
retraction and axon collapse mostly via the Rho/ROCK pathway
(van der Bend et al., 1992; Tigyi et al., 1996; Kranenburg
et al., 1999). PLPPR1 has been shown to reduce LPA- and
serum dependent RhoA activation and to diminish LPA-
induced ROCK-dependent phosphorylation of myosin light
chains, myosin phosphatase 1 (MYPT1), as well as the ERM
proteins Ezrin, Radixin and Moesin (Iweka et al., 2020).
The proposed mechanism involves engagement of RhoA in
inactive complexes with RhoGDI upon overexpression of
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FIGURE 4

Putative modes of PLPPR interaction with LPA signaling. (A) PLPPRs may inactivate LPA via ectophosphatase activity. (B) PLPPRs may limit
extracellular LPA in a direct or indirect manner, functioning as transporters or scavengers or by influencing an unknown LPA transporter.
(C) PLPPRs impinge on LPA intracellular signaling either directly or indirectly, by inducing or inhibiting LPAR-mediated downstream signaling.
Note that several, but not all of the modes presented imply direct binding of LPA to PLPPRs. For details, please refer to text.

PLPPR1. Although the details and specificity of interactions
have not been delineated, these experiments suggest that
exogenous PLPPR1 impedes LPA-induced dissociation of
RhoA from RhoGDI (Iweka et al., 2020). In a similar
manner, overexpression of PLPPR5 reduces LPA-activated
RhoA in cell lines, particularly at low submicromolar LPA
concentrations (Broggini et al., 2010). Thus, a pattern emerges
that PLPPRs may function as a fine-tuning device for LPA-
induced RhoA activity. However, it is not known how
PLPPR1 and PLPPR5 modify the strength of LPA-induced
RhoA/ROCK signaling and how the relationship to parallel
LPAR-engagement of the Rho/ROCK pathway is achieved. From
published data, it would appear that an interaction with LPAR-
RhoA/ROCK signaling represents a constitutive function of
PLPPR1 and PLPPR5 although this has not been formally
tested.

The changes imposed by PLPPR1 and PLPPR5 on
LPA-induced RhoA/ROCK pathway activation have been
instrumental in explaining the resistance of PLPPR1 or PLPPR5-
overexpressing cells toward LPA-induced neurite retraction
(Broggini et al., 2010, 2016; Iweka et al., 2020). A similar effect
has been reported for PLPPR4-overexpressing neuroblastoma
cells (Bräuer et al., 2003) but, in comparison to PLPPR1
and PLPPR5, PLPPR4 appears to function in a different
mode (see below). PLPPR3, on the other hand, has been
proposed to function in a directly opposite manner to PLPPR1

and PLPPR5. Specifically, extending axons of thalamocortical
explants confronted with a polarized concentration of LPA
cannot invade the LPA-rich zone. In contrast, PLPPR3 KO
thalamocortical axons appear to be able to cross the LPA zone,
suggesting that the repulsive effect of LPA is mediated by
PLPPR3 (Cheng et al., 2016). LPA is a known chemorepellent
that causes growth cone collapse (Birgbauer and Chun, 2010).
PLPPR3 KO thalamocortical neurons exposed locally to low
concentrations of LPA do not exhibit the typical turning
response of WT neurons but seemed to be attracted by
LPA instead. This appears to be an LPA-specific response
since PLPPR3 KO axons were repelled by Sema3A (Cheng
et al., 2016), another chemorepellent operating in this system.
Interestingly, PLPPR3 KO growth cones are insensitive – even
at high concentrations – to undergo the characteristic LPA-
induced collapse seen in WT neurons (Cheng et al., 2016).
These results suggest that PLPPR3 functions as an atypical
LPA receptor or LPA sensor that enables axonal LPA responses
(Figure 4C). A possible mechanism responsible for this effect
may involve interaction of PLPPR3 with Radixin, an ERM
family protein. Radixin is known to function as a membrane-
cytoskeletal linker which binds to F-actin and regulates its
dynamics (Fehon et al., 2010). PLPPR3 and Radixin interact
via multiple sites in the C-terminal tail of PLPPR3 in close
proximity with CaM-binding and PP2A binding homology
regions of PLPPR4 (Figure 1C), and the interaction is increased
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upon LPA stimulation. Loss of PLPPR3 results in reduced
Rho/ROCK-dependent phosphorylation of ERM proteins, at
basal conditions and upon LPA treatment (Cheng et al., 2016). It
is still uncertain whether PLPPR3 similarly functions to enable
axonal responses to LPA in other types of neurons (i.e., cortical
or hippocampal). Nonetheless, it is likely that this LPA-sensing
role of PLPPR3 relates to its effects on axonal filopodia and
branches under basal conditions, an exciting possibility that
requires further studies.

Role as lysophosphatidic acid
transporters

The first characterized PLPPR, PLPPR4 exhibits a different
mode of function toward LPA signaling. Pioneering studies
from the Nitsch and Vogt groups demonstrated that PLPPR4
is necessary and sufficient for LPA cellular uptake, and they
presented PLPPR4 as potential LPA transporter or scavenger
(Figure 4B). The first indication of this function came when
WT hippocampal neurons were incubated with a fluorescent
analog of phosphatidic acid (NBD-PA) (Trimbuch et al., 2009).
In this assay, PLPPR4 KO neurons appeared to exhibit a 50%
reduction of NBD-PA uptake compared to WT neurons. These
results were later verified with fluorescent LPA uptake assays in
neurons and in cell lines stably expressing PLPPR4 (Vogt et al.,
2016). Furthermore, mass spectrometry experiments showed
increased C17-LPA uptake (an unnatural analog of LPA) and
its major metabolite C17-MAG in stably expressing PLPPR4
cell lines compared to control cells. Interestingly, PLPPR4
heterozygous hippocampal neurons showed an intermediate
activity in LPA uptake compared to WT, suggesting a gene-
dose-dependent effect. Although the structural details of the
PLPPR-mediated transport function are not yet known, Vogt
et al. (2016) have characterized a PLPPR4 mutant that abolishes
LPA uptake activity. Cells expressing PLPPR4 R346T, a mutation
located in the C-terminus proximal to the 6th transmembrane
region (Figure 1C), show diminished ability to take up
LPA compared to wild-type PLPPR4 despite similar plasma
membrane localization. Surprisingly, the deleterious effect of the
R346T mutation appears to be due to reduced O-glycosylation
of the neighboring S347 residue. It appears that phosphorylation
does not play a role in this response since both phospho-mimetic
and phospho-ablating S347 mutants are deficient in LPA uptake.
Although it is still unknown how the R346T mutation affects
O-glycosylation of S347 and how LPA is transported across
the membrane, the fact that PLPPR4 induces LPA transport
is well supported by data. Intriguingly, this RS motif is not
conserved in the short ICD PLPPRs (Figure 1C) and PLPPR3
contains an A residue next to R, resembling the PLPPR4
S347A mutant that lacks LPA transporter activity (Vogt et al.,
2016), suggesting that LPA transport is a PLPPR4 specific
function.

Phospholipid phosphatase-related
proteins in developmental growth
and regeneration

Neurite outgrowth, axonal and
dendritic branching

There is substantial evidence that PLPPRs govern neurite
and/or branch formation (Figure 3A). These effects likely relate
to filopodia-inducing activities of PLPPRs as filopodia are
known precursors of neurites and axonal/dendritic branches
and dendritic spines (Sekino et al., 2007; Mattila and
Lappalainen, 2008; Gallo, 2013; Leondaritis and Eickholt,
2015; Sainath and Gallo, 2015). PLPPR1 overexpression in
neuroblastoma cells increases the number and length of neurites
(Broggini et al., 2016), while PLPPR3 expression in stem-cell
derived motor neurons led to a PI3K-dependent formation
of multiple axons per cell. However, PLPPR3 KO did not
affect the number of neurites in hippocampal neurons (Brosig
et al., 2019). PLPPR5 knockdown in immature rat cortical
neurons decreases the number of neurites (Broggini et al.,
2010). The involvement of RhoA-Rho kinase signaling pathway
has been investigated for PLPPR5-induced neurite formation.
Co-expression of constitutively active RhoA with PLPPR5
abolished the formation of neurites seen in PLPPR5 expressing
cells, suggesting that PLPPR5 may act upstream of RhoA or
independently of it.

There is conflicting evidence if PLPPRs also regulate
neurite growth. It was reported that knockdown of PLPPR5,
but not PLPPR1, in neuronal cells inhibits neurite extension
(Broggini et al., 2010; Velmans et al., 2013). However, PLPPR1
overexpression in cortical neurons results in increased neurite
lengths and axonal branches (Fink et al., 2017). PLPPR3, on
the other hand, appears to exert a different control on axonal
branching and growth. Expression of PLPPR3 increases axonal
branches, while PLPPR3 loss results in fewer axonal branches
(Brosig et al., 2019). Interestingly, the latter is accompanied
by an increase of the primary axon length. A detailed analysis
of branch generation patterns in WT vs. PLPPR3 KO neurons
suggests that the deficiency in filopodia formation seen in
immature hippocampal neurons directly translates into fewer
axonal branching events from filopodia with an overall decrease
of branch stability (Fuchs and Eickholt, 2021). As such, PLPPR3
is the only PLPPR where the induction of axonal branches later
in development is directly and almost etiologically related to the
induction of filopodia in earlier stages.

Phospholipid phosphatase-related protein family members
with expression patterns that peak later in development
(i.e., PLPPR4 and PLPPR5) are involved in controlling
dendritic arborization and formation of dendritic spines
(Figure 3A). Cell culture experiments show that PLPPR4
KO hippocampal neurons have significantly fewer high-
order dendritic branches (Liu et al., 2016). Moreover,
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FIGURE 5

Models of PLPPR modulation of neuronal growth, guidance, regeneration and excitatory signaling. (A) Overexpression of several PLPPRs
overcomes neuronal growth inhibition mediated by established inhibitory signals (LPA, CSPGs, myelin-associated glycoprotein). (B) PLPPR3
alters LPA-sensitivity of thalamocortical neurons to enter the developing cortex, thereby affecting axon guidance. (C) PLPPR1 overexpression
improves re-innervation of neuron in the corticospinal tract in spinal cord injury models by increasing branching in uninjured neurons and by
promoting extension of axons through the lesion. (D) PLPPR4 affects neurotransmitter release at excitatory synapses by reducing available LPA
to act on presynaptic LPA-receptors. Possible roles of other PLPPRs are highlighted by question marks. For details, please refer to text.

PLPPR4 KO neurons show decreased dendritic spine
density compared to wild type neurons, and overexpression
of PLPPR4 in WT neurons significantly increased spine
density. Importantly, PLPPR4 does not affect overall spine
morphology, as the length and area of spines are not altered
in the PLPPR4 KO (Liu et al., 2016). Along the same line,
overexpression of PLPPR5 in mature hippocampal neurons
increases dendritic spine density while knock-down of
endogenous PLPPR5 using shRNA reduces dendritic spine
density (Coiro et al., 2014). It is likely that the neurite and
branch outgrowth activity of PLPPRs involves LPA and/or
other extracellular growth inhibition signals and associated
pathways. This feature is discussed in more detail in subsequent
sections.

Axon guidance

Axon guidance is the process where neuronal axons
navigate to their correct (intermediate or final) targets, guided
by different classes of extracellular signals (Tessier-Lavigne
and Goodman, 1996). Several guidance molecules have been
discovered, such as Netrins that can act both as chemoattractant
via DCC receptor and chemorepellent via UNC-5 receptor
(Kennedy et al., 1994). Downstream of netrin, DCC interacts
with TRIM9 (Winkle et al., 2014) and TRIM67 (Boyer
et al., 2018), E3 ubiquitin ligases that localize to filopodia
tips and function in axon projection (Menon et al., 2021).
Interestingly, TRIM67 interacts with PLPPR4 and PLPPR3
following overexpression in HEK293 cells and was shown to
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stabilize PLPPR4 protein levels, enhancing neurite outgrowth
responses in N1E-115 cells (Yaguchi et al., 2012). In addition
to this, PLPPR4 interacts with TRIM67 along filopodia tips, in
axons, and in growth cones of cortical neurons (Menon et al.,
2021). It is hypothesized that PLPPR3 and PLPPR4 may regulate
TRIM-dependent changes in PI(3,4,5)P3 membrane levels and
netrin-dependent branches (Menon et al., 2021). Altogether,
these recent studies strengthen the finding of a regulatory role
of PLPPRs during axon guidance. Indeed, PLPPR3 is essential
for correct guidance of thalamocortical axonal projections into
the intermediate zone during development (Cheng et al., 2016;
Figure 5B). Proper guidance in this case depends on autotaxin-
derived LPA and protein-protein interactions between PLPPR3
and radixin. Accordingly, adult PLPPR3 KO mice exhibit
dampened neuronal activity at the cortical projection site as
well as impaired local information processing as manifested
by whisker-dependent sensory discrimination (Cheng et al.,
2016).

Neuronal regeneration

Neuronal regeneration after trauma is a complex process
and interventions aimed at engaging the intrinsic capability of
neurons for survival and regenerative growth and/or modifying
the signaling mechanisms that respond to inhibitory molecules
are actively pursued (Fawcett and Verhaagen, 2018; Griffin and
Bradke, 2020). Interestingly, there are several lines of evidence
that PLPPRs may impinge on regeneration processes following
CNS injury.

Regenerative sprouting is an endogenous neuronal
mechanism that takes place following axonal trauma (Griffin
and Bradke, 2020), or in response to overstimulation of
neuronal networks, for example in epilepsy (Cavarsan et al.,
2018). In the latter case, abnormal regenerative sprouting may
be viewed as a pathological feature associated with aggravated
seizure development (Cavarsan et al., 2018). PLPPR4 was
originally identified by screening for genes upregulated in
the hippocampus during regenerative axon sprouting after
transection of entorhinal axons in adult rodents (Bräuer et al.,
2003). Subsequent studies have suggested the fluctuation of
expression levels of PLPPR1, PLPPR4 and PLPPR5 during
regenerative sprouting in the hippocampus upon recovery
from toxic insults such as kainic acid injection (Savaskan
et al., 2004), or drug-induced developmental seizures (Ni
et al., 2010, 2011, 2013). However, inconsistencies in the
experimental protocols and lack of evidence that altered PLPPR
expression contributes to regenerative sprouting precludes
any definite answer in these studies. On the contrary, a
functional association of PLPPR1 with regenerative sprouting
has been uncovered in corticospinal motor neurons (Fink
et al., 2017). PLPPR1 was identified as one of the genes that
are significantly upregulated in intact sprouting neurons

compared to quiescent intact neurons after pyramidotomy.
In addition, overexpression of PLPPR1 significantly increased
neurite growth and branching as well as regeneration of
axons after crush in vitro. In vivo, pyramidal neuron-specific
PLPPR1 overexpression increased sprouting of intact resident
corticospinal axons after pyramidotomy (Fink et al., 2017;
Figure 5C). Interestingly, a similar effect was also observed
after systemic pharmacological inhibition of LPAR1, suggesting
the functional coupling of PLPPR1 to LPA-LPAR1 signaling
(Fink et al., 2017). LPA levels are significantly increased upon
neuronal trauma (Santos-Nogueira et al., 2015), and both
LPAR1 and LPAR2 have been shown to be responsible for LPA-
induced microglia/macrophage activation and demyelination
during secondary damage after spinal cord contusion injury
(Santos-Nogueira et al., 2015; López-Serrano et al., 2019). These
effects have been primarily ascribed to microglial LPA signaling
(Santos-Nogueira et al., 2015; López-Serrano et al., 2019);
instead, PLPPR1 appears to regulate LPA-LPAR1 signaling in
neurons and reinforces plasticity of intact neurons after injury
(Fink et al., 2017).

In addition to regenerative sprouting upon trauma,
enhancement of neuron survival as well as counteracting
chondroitin sulfate proteoglycan (CSPG)- and myelin-
associated inhibition of axonal growth are essential during
regeneration (Fawcett and Verhaagen, 2018; Griffin and
Bradke, 2020). Neurotrophins and PI3K/PTEN-mediated
mTOR signaling have been shown to boost neuron survival
and axonal regrowth in several in vivo studies (Liu et al.,
2010; Griffin and Bradke, 2020; Nieuwenhuis and Eva, 2022),
while PTEN also directly contributes to proteoglycan and
myelin-induced inhibition of growth cones (Henle et al., 2013).
Considering the association of PLPPR3 with PTEN and PI3K
signaling (Brosig et al., 2019; Fuchs et al., 2020), an influence
on neuronal survival and axonal regrowth is likely, but this has
not been tested directly. Similarly, PLPPR1 has emerged as a
strong candidate for inducing regeneration via counteracting
proteoglycan and myelin-associated inhibition (Broggini et al.,
2016; Iweka et al., 2020; Figure 5A). Overexpression of PLPPR1
in hippocampal neurons counteracts the inhibitory effects
of CSPGs and myelin on neurite outgrowth and a similar
effect is observed in neuroblastoma cells and LPA-induced
neurite retraction (Broggini et al., 2016; Iweka et al., 2020).
Interestingly, PLPPR1 appears to counteract the effect of LPA
on Rho GTPase activation and downstream signaling via
interactions with RhoGDI (Iweka et al., 2020). It is also likely
that counteraction of growth inhibition by PLPPR1 might
represent an indirect effect, since PLPPR1 overexpression
increases also the cellular adhesion on inhibitory substrates
such as chondroitin sulfate proteoglycans (Tilve et al., 2020).
However, it should be emphasized that these results were
obtained from gain-of-function experiments with PLPPR1
(i.e., overexpression in cell lines) and there is currently no
evidence that PLPPR1 counteracts Rho-mediated inhibition at
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the endogenous levels in primary neurons. Notwithstanding
these uncertainties, the overexpression of PLPPR1 in Thy1.2
driven PLPPR1 transgenic mice enhances regenerative axonal
sprouting of motor cortical neurons after spinal cord injury
and results in partial functional recovery of motor behavior
in Schnell-swim-tests (Broggini et al., 2016). The studies by
Broggini et al. (2016), Fink et al. (2017) and Iweka et al. (2020)
clearly establish PLPPR1 as a neuronal membrane protein that
facilitates regeneration of axons after trauma (Figures 5A,C).
Whether this applies to other PLPPRs, either alone or in
complexes with PLPPR1, awaits further studies. Furthermore,
the fact that in most studies so far PLPPR1 appears to be
equally effective in counteracting LPA-, proteoglycan- and
myelin-dependent inhibition of growth (Broggini et al., 2016;
Iweka et al., 2020) suggests a more general mechanism of
function than the LPA/LPAR association suggested for other
PLPPRs (i.e., PLPPR4).

Although there have been no conclusive studies on PLPPR-
dependent neuronal survival or apoptosis, it has been reported
that knockdown of PLPPR4 in neural stem cells decreases
neuron viability in vitro, supposedly via induction of apoptotic
death (Hashimoto et al., 2013). It is noteworthy that the
H253A mutant of PLPPR4, which disables the conserved LPA
binding motif of PLPPRs and PLPPs (Figure 1B) and prevents
PLPPRs from plasma membrane localization, cannot support
PLPPR4-dependent neuronal survival (Hashimoto et al., 2013).
Whether this function is unique for PLPPR4 and whether it
depends on LPA and LPARs remains to be studied. However,
recent studies have suggested aggravated phenotypes upon
hypoxia/ischemia insults and drug-induced seizures in PLPPR5
KO mice, potentially due to PLPPR5-dependent neuron survival
(Sun et al., 2021, 2022a; Wang et al., 2021).

Phospholipid phosphatase-related
proteins in synaptic transmission

The first evidence that PLPPRs can function as regulators
of synaptic transmission came from studies analyzing
PLPPR4 function. Electron microscopy and synaptosomal
fractionation revealed localization at the postsynaptic density
of hippocampal glutamatergic synapses, while PLPPR4 is
absent from presynaptic terminals (Trimbuch et al., 2009). As
a postsynaptic membrane protein, PLPPR4 regulates functions
of LPA and its LPAR receptors in glutamatergic synapses.
LPA has neuromodulatory roles in both glutamatergic and
GABAergic neurons (Roza et al., 2019; Birgbauer, 2021). Early
studies showed that LPA enhances NMDA-evoked currents
in CA1 hippocampal neurons (Lu et al., 1999), while later
studies suggested LPA-dependent short-term depression of
both glutamatergic and GABAergic synapses in hypoglossal
motor neurons (García-Morales et al., 2015). The LPA effects

on synaptic transmission occur primarily via LPAR1 and
LPAR2 receptors (Trimbuch et al., 2009; Choi and Chun, 2013;
García-Morales et al., 2015; Roza et al., 2019). Interestingly,
PLPPR4 KO mice suffer from juvenile epileptic seizures from
around postnatal day 20 onward and exhibit a mortality rate of
50% at 3–4 weeks (Trimbuch et al., 2009; Unichenko et al., 2016;
Vogt et al., 2016). The epileptic seizures correspond to increases
in excitatory synaptic transmission, which is readily observed
in CA1 pyramidal neurons, with no effects on inhibitory
events (Trimbuch et al., 2009). Of note, hyperexcitability of
CA1 pyramidal neurons upon PLPPR4 loss correlates with
PLPPR4 gene dosage, with PLPPR4 heterozygous neurons
exhibiting an intermediate phenotype (Trimbuch et al., 2009).
Detailed analysis of the hyperexcitability phenotype revealed
that PLPPR4 functions by dampening LPA-LPAR2 signaling
in glutamatergic synapses (Figure 5D). LPA is synthesized by
astrocyte-derived autotaxin in glutamatergic synaptic clefts
(Thalman et al., 2018), and acts on presynaptic LPAR2 receptors
by increasing glutamate release in CA1 hippocampal neurons
(Trimbuch et al., 2009; Roza et al., 2019). Postsynaptic PLPPR4
appears to function as LPA transporter and/or scavenger that
removes LPA from the synaptic cleft (Trimbuch et al., 2009;
Vogt et al., 2016; Figure 5D).

PLPPR4 is not the only member of the PLPPR family
associated with seizures. PLPPR5, which is positioned on the
same chromosome region within 300 kb distance from the
PLPPR4 gene in humans and rodents, has also been associated
with epilepsy, albeit in a drug-induced animal model. In these
experiments, pilocarpine, a muscarinic agonist was used to
induce seizures in juvenile mice and seizure susceptibility was
studied in the surviving adult mice after injection of penicillin,
a beta-lactam antibiotic (Wang et al., 2021). Although the
experimental approach differs markedly from the PLPPR4
studies described in the previous paragraph, PLPPR5 KO mice
were found to be more prone to epilepsy with a lower seizure
latency compared to WT mice (Wang et al., 2021). Interestingly,
PLPPR5 has been also shown to localize to dendrites of mature
(DIV14) hippocampal neurons (Coiro et al., 2014), and likely
in spines in vivo although it is excluded from the PSD (Gross
et al., 2022). Contrary to PLPPR4, however, electrophysiological
analyses of PLPPR5-deficient hippocampal neurons in vitro
suggest hypoactivity, with a decrease in mEPSCs frequency
but normal mEPSCs amplitude (Coiro et al., 2014). This
hypoactivity is likely mediated by the reduced numbers of
excitatory synapses quantified by vGlut1/GluR2 overlapping
puncta on dendrites (Coiro et al., 2014). Unfortunately, there
are no mechanistic molecular details whether PLPPR5 (or
other PLPPRs) functions in a manner analogous to PLPPR4 in
synaptic transmission (Figure 5D).

Further analysis of PLPPR4 KO mice suggests association
of PLPPR4 with human neurodevelopmental diseases. On the
one hand, electrophysiological studies of WT and PLPPR4 KO
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mice show a developmental switch from hypo-excitability to
hyper-excitability in the somatosensory barrel cortex during
postnatal developmental stages (PND16-19 to PND25-31),
suggesting a developmentally regulated role of PLPPR4 in
synapse function (Unichenko et al., 2016). Intriguingly, PLPPR4
KO mice that survive to adolescence, grow to display deficits
in whisker-mediated sensory perception (Unichenko et al.,
2016). On the other hand, behavioral analysis of PLPPR4
heterozygous mice, which are viable and seizure-free, suggest
stress-related behavioral changes and altered resilience against
psychiatric disorders (Vogt et al., 2016). These phenotypes
depend on the LPA transporter-like, postsynaptic function
of PLPPR4, since decreases in pre-pulse inhibition of the
startle response in PLPPR4 heterozygous mice is reversed after
intraperitoneal administration of PF8380, a potent inhibitor
of the LPA-synthesizing enzyme autotaxin (Vogt et al., 2016).
Furthermore, the PLPPR4 R346T variant detected as a single
nucleotide polymorphism in humans, and associated with an
endophenotype for psychiatric disorders, is a loss of function
mutant for the LPA transporting activity of PLPPR4 (Vogt et al.,
2016). Regardless of whether other PLPPRs are involved in
LPA uptake, PLPPR4 deficiency emerges as a novel correlate
to endophenotypes for psychiatric disorders, schizophrenia and
resilience to stress.

A somewhat similar connection is seen in PLPPR1 KO
mice. Preliminary studies show that PLPPR1 KO female mice
exhibit hypoactivity and general anxiety, heightened sensitivity
to fear and impaired pre-pulse inhibition of the startle response
(Iweka, 2018). These findings further highlight the potential
contribution of PLPPR deficiency to neuropsychiatric diseases.
Whether effects of PLPPR1 deficiency directly depend on
synaptic LPA synthesis and/or LPA-LPAR2 signaling (as is the
case for PLPPR4) is not known.

Dendritic spine dynamics have been repeatedly linked to
synaptic plasticity and often serve as a functional output
that underlies deficits in processes associated with learning
and memory. Interestingly PLPPR4 KO neurons exhibit
reduced spine density that is readily observed in the CA1
and DG regions in young (P12-19) and adult animals (Liu
et al., 2016). Reduced spine density correlates well with
impaired LTP (long-term potentiation) at Schaffer collateral-
CA1 synapses in acute slices from PLPPR4 KO mice and
a lower performance of PLPPR4 KO mice in the Morris-
water maze test examining spatial learning (Liu et al., 2016).
Mechanistically, the reduced spine density observed in PLPPR4
KO depends on PP2A-mediated activation of integrin (ITGB1)
and relates to changes in cellular adhesion (Liu et al.,
2016), but not on LPA-dependent LPAR2 signaling (Vogt
et al., 2016). For example, the PLPPR4 R346T variant, that
is defective in LPA transport, can fully rescue the reduced
spine density phenotype of PLPPR4 KO neurons (Liu et al.,
2016). Synaptic plasticity is often associated with changes in

levels of neurotrophins, particularly BDNF (Leal et al., 2015).
Analysis of NGF, BDNF and NT-3 levels in hippocampal
tissue of wild type and PLPPR4 KO mice show increased
protein levels of NT-3 while NGF and BDNF were not affected
(Petzold et al., 2016). The effect of PLPPR4 loss on NT3
levels depends on LPA/LPAR2-signaling (Petzold et al., 2016),
suggesting that increased NT3 levels is due to the LPA-
dependent hyperexcitability at the glutamatergic synapse, and
not associated with the reduced spine density and deficits in
LTP.

Concluding remarks and
perspectives

Phospholipid phosphatase-related proteins represent a
pleiotropic family of neuronal transmembrane proteins. In
this review, we have attempted to organize and categorize
their mechanisms of function toward induction of filopodial-
type membrane protrusions, their relation to LPA signaling
and the implications for neurite growth and branching, axon
guidance and regeneration and synaptic transmission and
plasticity. Below, we briefly outline four areas of research that
we believe will aid in better understanding PLPPR roles in CNS
development and disease.

(1) What can we learn from structural features of
PLPPRs? Structural features that distinguish PLPPRs from
each other likely mediate functions specific to PLPPRs
while conserved features likely harbor shared functions
(Figures 1C,E). The ICD of all PLPPRs, and therefore likely
the shared domains of all ICDs such as the proline motif,
represent a major determinant of plasma membrane association,
induction of filopodia and protein-protein interactions of
PLPPRs. Interestingly, long ICDs include a calcium-regulated
calmodulin binding site (Tokumitsu et al., 2010). Thus,
it is a possibility that PLPPR4 and PLPPR3 functions in
synaptic transmission and guidance are regulated also by
calcium/calmodulin signaling.

(2) What is the molecular logic of the PLPPR interaction
with LPA signaling? Currently, we lack the molecular insight
necessary to understand the functional implications of the
interaction of PLPPRs with LPA signaling. Indeed, several
LPA-dependent phenotypes of PLPPRs are compatible with
a mode of action where PLPPRs effectively antagonize
LPA-induced LPAR activation. However, other studies have
highlighted mechanisms compatible with an LPA receptor
(or sensor) function (Figure 4). Although the possibility for
direct LPA binding to PLPPRs is intriguing (and likely true
given the high sequence similarity to LPA-binding PLPPs), it
has not been experimentally tested so far. Concerning LPA
transport mechanisms, there is currently no consensus of
how LPA is taken up by cells (Salous et al., 2013). Rapid
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clearance of extracellular LPA by endothelial cells appears
not to involve dephosphorylation of LPA or transporters of
the organic anion transporter family (Salous et al., 2013);
therefore, analyses of PLPPR4 dependent LPA-transport could
provide insight. An additional question relates to the fate of
internalized LPA. In cell lines, uptake of LPA is invariably
followed by metabolism (dephosphorylation) to monoacyl
glycerol (MAG) (Salous et al., 2013; Vogt et al., 2016) and
minor amounts of diacyl glycerol and phosphatidic acid (van
der Bend et al., 1992) suggesting that LPA may feed into
other lipid-biosynthetic pathways. Future studies aiming at
molecular characterization of the LPA-PLPPR interaction will
reveal whether they share common modalities and will likely
significantly advance the field of LPA pharmacology particularly
in the CNS.

(3) Phospholipid-related protein-induced filopodia:
shared or distinct mechanisms? The filopodia inducing
activity of PLPPRs is a unifying feature and has provided
a solid framework for investigating their roles in neuron
developmental growth and differentiation. It is likely that
this cellular activity relates to some extent to PLPPR-
dependent regulation of axon guidance, regeneration and
synaptic plasticity. The question remains, however, whether
PLPPRs engage any of the known molecular machineries
of filopodia formation or even whether individual PLPPRs
utilize the same mechanisms (Figure 3). There is evidence
connecting three PLPPRs (PLPPR1, PLPPR3, and PLPPR5)
to phosphoinositide signaling, which is instrumental for
activation or recruitment of several filopodia-associated
F-actin remodeling proteins (Schink et al., 2016). It is
therefore conceivable that PLPPRs could accumulate
phosphoinositides and thereby induce several parallel
filopodia-forming pathways leading to robustness in filopodia
formation.

From a completely different point-of-view, it is intriguing
that there is only a handful of transmembrane proteins
that have been similarly shown to induce filopodial-type
membrane protrusions (Maschietto et al., 2013; Caltagarone
et al., 2015; Formoso et al., 2015; Snyder et al., 2015; Ma
et al., 2017). In contrast to PLPPRs, these seem to induce
filopodia via the known molecular machineries. Of note,
certain transmembrane proteins can be selectively concentrated
to membrane regions of high positive curvature (as is
the case for filopodial membranes), suggesting that they
act as membrane curvature sensors (Aimon et al., 2014;
Kluge et al., 2022). Alternatively, transmembrane proteins
may themselves induce curvature on membranes due to
their inherent curvature (e.g., a concave shape) or acquired
asymmetry on the membrane (e.g., oligomerization or high local
concentration) (McMahon and Gallop, 2005). Theoretically,
such initial PLPPR-driven membrane-deforming events could
nucleate the actin cytoskeleton. Subsequent recruitment of

myosin X, ERM proteins, phosphoinositides, fascin, integrin
adhesome components, small GTPases and other filopodia
regulators may then further support and strengthen these
protrusions. PLPPR-overexpressing cells occasionally exhibit
elaborate branched networks of apparently stable – cytoskeleton
devoid – membrane protrusions (Yu et al., 2015; Brosig et al.,
2019; Tilve et al., 2020). It is interesting to speculate if this
is an epiphenomenon of PLPPR-induced physicomechanical
alterations in membrane tension and adhesion (Pontes et al.,
2017). Further research in some of the above exciting and
novel hypotheses will expand our understanding of this PLPPR
function and enrich our knowledge on models of filopodia
formation.

(4) Phospholipid phosphatase-related protein relation
to human diseases? Intriguingly, ongoing studies of the
phenotypes of PLPPR KO mice and PLPPR polymorphisms in
humans clearly suggest the dominant role of PLPPR deficiency
for several CNS diseases. This is not restricted only to PLPPR4,
for which the phenotypes of KO mice have been by now
thoroughly established and include epilepsy, resilience to stress,
psychiatric diseases and the regulation of food intake (Trimbuch
et al., 2009; Vogt et al., 2016; Schneider et al., 2018; Endle
et al., 2022). Further studies on PLPPR3 (Cheng et al., 2016;
Brosig et al., 2019), PLPPR1 (Iweka, 2018) and PLPPR5 (Wang
et al., 2021) mouse models will likely not only advance our
understanding of PLPPR involvement in synaptic transmission
and plasticity, circuit assembly, information processing and
neuron regeneration, but may extend to effects of LPA signaling.
Specifically for psychiatric diseases, anxiety and stress-related
disorders, studies have preferably focused on the LPAR1
receptor (Yung et al., 2015). Indeed, LPAR1-deficient mice
display a variety of behavioral phenotypes including anhedonia,
hypersensitivity to stress, increased anxiety, depression, learning
and memory deficiencies as well as pre-pulse inhibition deficits
(Yung et al., 2015; Moreno-Fernández et al., 2017). It is
thus plausible that some of these LPA-related phenotypes are
regulated by PLPPRs during development or even in the adult
(Thalman et al., 2018; Birgbauer, 2021). It is also likely that
additional pathologies may associate with PLPPR deficiency.
A recent histopathological analysis of myopathy in a KO
mice cohort suggested the association of PLPPR2 deficiency
with muscle lesions characterized by diffuse internalization of
myocyte nuclei, and myocyte necrosis (Vogel et al., 2021). In
addition, a S12A PLPPR1 polymorphism predicted to destabilize
the protein was recently found to be associated with early-
onset Parkinson’s disease (Wallen et al., 2018). Finally, several
PLPPRs have now been connected to cancer progression
and metastasis. Elucidating the roles of PLPPRs in these
disease conditions has potential to refine the functions of this
protein family. Moreover, being membrane proteins, PLPPRs
could also emerge as novel pharmacological targets in disease
contexts.
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