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Anatomical and physiological studies conducted in the 1960s identified the periaqueductal gray (PAG) and its descending
projections to the rostral ventromedial medulla (RVM) and spinal cord dorsal horn, as a primary anatomical pathway mediating
opioid-based analgesia. Since these initial studies, the PAG-RVM-spinal cord pathway has been characterized anatomically and
physiologically in a wide range of vertebrate species. Remarkably, the majority of these studies were conducted exclusively in males
with the implicit assumption that the anatomy and physiology of this circuit were the same in females; however, this is not the case.
It is well established that morphine administration produces greater antinociception in males compared to females. Recent studies
indicate that the PAG-RVM pathway contributes to the sexually dimorphic actions of morphine. This manuscript will review our
anatomical, physiological, and behavioral data identifying sex differences in the PAG-RVM pathway, focusing on its role in pain
modulation and morphine analgesia.

Copyright © 2009 D. R. Loyd and A. Z. Murphy. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

It was first reported that electrical stimulation of the
midbrain periaqueductal gray (PAG) produced profound
analgesia in the male rat in 1969 [1]. Since then, the
anatomical and physiological organization of the PAG and its
descending projections to the rostral ventromedial medulla
(RVM) and dorsal horn of the spinal cord have been well
characterized in a variety of species, including the rat [2–
9], cat [10–18], primate [19, 20], and rabbit [21] (see
Figure 1). The PAG-RVM-spinal cord pathway comprises an
essential neural circuit for opioid-based antinociception [6,
18, 22]. Intra-PAG administration of the mu opioid receptor
(MOR) agonist morphine, the most commonly prescribed
opiate for persistent pain relief, produces naloxone-reversible
analgesia [23] as well as naloxone-reversible excitation of
RVM neurons [7, 24, 25]. Similarly, lesions of the PAG
or intra-PAG administration of MOR antagonists [26–29]
attenuate the antinociceptive effects of systemic morphine
across a wide range of analgesiometric tests [30]. Studies

utilizing autoradiography, immunohistochemistry, and in
situ hybridization have shown that the PAG contains a high
density of MOR [31–38], with approximately 27–50% of
PAG neurons retrogradely labeled from the RVM expressing
MOR [35, 37].

While it is well established that the PAG-RVM-spinal
cord pathway is essential for the analgesic actions of both
systemic and intra-PAG morphine, these early studies were
conducted exclusively in male subjects. Only recently have
studies begun including “sex” as an independent vari-
able, and it is becoming increasingly clear that morphine
does not produce the same degree of antinociception in
males and females, especially following the induction of
persistent pain. Sex differences in morphine potency were
first reported in rodents in the late 1980s, when it was
shown that systemic morphine administration produced
a significantly greater degree of antinociception in males
using acute pain assays [39–42]. This phenomenon has
been repeated in multiple studies employing animal models
of pain, including orofacial [43] and visceral [44, 45]
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pain models, as well as persistent somatic pain models
[38, 46–52]. Although results on the contrary are also
reported, generally these studies have shown that mor-
phine produces a significantly greater degree of analge-
sia in males in comparison to females. Indeed, we have
recently reported that male rats have a significantly higher
MOR expression in the PAG, which is positively correlated
with morphine analgesia in male but not female rats
[38].

Recently, clinical studies in humans have also reported
sex differences in morphine analgesia. Of the limited number
of studies that examined “gender” or “sex” as an independent
variable, it has been reported that males experience greater
morphine analgesia compared to females [53–55]. In fact,
one study reported that females required 30% more mor-
phine to reach the same level of analgesia as males [55].
Similar to the rodent literature, the results in human studies
are not unequivocal. Sarton et al. [56] reported greater
morphine analgesia in females, while two studies reported
no sex difference [57, 58]. Sex differences in morphine
consumption also have been reported [59]; however, given
that the majority of negative side effects associated with
morphine consumption, including nausea, headache, and
dysphoria [57, 60], are exacerbated in females compared to
males, morphine consumption is not a reliable indicator of
morphine analgesia.

Sex differences in opioid analgesia are not limited to
mu opioid agonists. In both human and animal studies,
sex differences in the analgesic effects of kappa or delta
opioid agonists have also been reported, although again, not
without controversy [61–65]. Several factors are likely to
contribute to the disparate results between studies reporting
the presence or absence of a sex difference in opioid analgesia,
including differences in the type of pain being examined
(e.g., experimental acute pain versus postoperative pain
versus a chronic pain state), the route of drug administration
(e.g., oral versus intravenous versus intrathecal), the strain
differences in the rodents studies, and the efficacy of the
opiate being administered. Sex differences in basal pain
sensitivity, as well as estrous cycle effects, may also contribute
[54, 55, 57, 66–79].

While it is clear that sex differences in opioid anal-
gesia are not a simple and straightforward phenomenon,
when sex differences are reported, they are not trivial in
magnitude. In our persistent inflammatory [38, 46] and
visceral pain [44, 45] studies, the ED50 for females is
twice the ED50 of males. Similarly, morphine is approxi-
mately 5-fold more potent in producing antihyperalgesia
in arthritic males compared to arthritic females [52]. Sex
differences in morphine analgesia are not due to sex dif-
ferences in the pharmacokinetics of morphine in humans
[56] or rodents [50]. Rather, sex differences in morphine
analgesia are likely related to the inherent differences in
how the central nervous system of males and females
respond to opiates. To date, the mechanism(s) underly-
ing the sexually dimorphic actions of morphine remain
unknown.

Given that the PAG and its descending projections to the
RVM and dorsal horn of the spinal cord provide a primary
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Figure 1: A schematic of the descending inhibitory pathway for
pain modulation illustrating the projections from the midbrain
periaqueductal gray to the brainstem RVM and the spinal cord
dorsal horn.

pathway for the actions of opiates in pain modulation,
inherent differences in this pathway could contribute to
the sexually dimorphic actions of morphine. Thus, we
tested three hypotheses: (1) are there sex differences in the
anatomical organization of the PAG-RVM pathway? (2) is
there a sexually dimorphic response of the PAG-RVM output
neurons to persistent pain? (3) does the administration of
morphine differentially engage the PAG-RVM pathway in
male and female rats?

2. Sexually Dimorphic Organization of
a Descending Pain Inhibitory Pathway

We used neuroanatomical tract-tracing techniques to exam-
ine whether there were qualitative and/or quantitative differ-
ences in the neural projection from the PAG to the RVM in
male and female rats. Consistent with previous anatomical
studies [2, 80, 81], we reported that the dorsomedial,
lateral and ventrolateral PAG heavily project to the RVM
in both male and female rats [82]. While no qualitative sex
differences were noted in the overall distribution of PAG-
RVM projection neurons, females had significantly more
PAG-RVM output neurons across the rostrocaudal axis of
the PAG compared to males [83, 84] (Figures 2(a)–2(c)).
The average number of retrogradely labeled cells across
the rostrocaudal extent of the PAG was greater by a third
in female compared to male rats (Figure 3(a)). The most
prominent sex difference in retrograde labeling was observed
within the lateral and ventrolateral regions of the PAG,
an area known to contain a dense distribution of MOR
[34, 37].
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Figure 2: (a)–(c) Distribution of cells retrogradely labeled (FG+) from the RVM in males (left) and females (right) at three representative
rostrocaudal levels of the periaqueductal gray. Each black circle represents one FG+ cell. (d)–(f) Distribution of PAG cells that were
immunoreactive for AR (closed circles) or ERα (open circles). (g)–(i) Distribution of PAG cells retrogradely labeled from the RVM that
were also immunoreactive for AR (closed stars) or ERα (open stars).

3. Sexually Dimorphic Response of
the PAG-RVM Pathway to Persistent
Inflammatory Pain

Inflammatory pain results in the activation of descend-
ing modulatory circuits [8, 85] and contributes to both
hyperalgesia and antinociception [86–89]. We found that
the persistent inflammatory pain induced by injection of
complete Freund’s adjuvant (CFA) into the rat hindpaw
caused extensive activation of PAG neurons as measured by
Fos labeling. Interestingly, this activation was comparable
(both quantitatively and qualitatively) in male and female

rats [82]. However, when the analysis was restricted to PAG
neurons retrogradely labeled from the RVM, while females
have almost twice the number of PAG-RVM output neurons
in comparison to males, very few of these cells in female
rats expressed inflammation-induced Fos, suggesting that
this circuit is preferentially activated in males (Figure 3(b)).
Indeed we found that, overall, persistent inflammatory pain
activated approximately 43% of PAG-RVM neurons in the
dorsomedial, lateral and ventrolateral PAG of males, but
only half as many PAG-RVM output neurons were activated
by inflammatory pain in females. Activation of the PAG
and its descending outputs to the RVM results primarily in
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Figure 3: (a) Mean number of PAG cells retrogradely labeled from the RVM across the rostrocaudal axis in males (left) and females (right).
(b) Percentage of Fos-positive neurons that were retrogradely labeled from the RVM in males (left) and females (right) following twenty-four
hours of inflammation. (c) Average of the percentage of AR (left) and ERα (right) receptor-expressing PAG cells retrogradely labeled from
the RVM. (d) Percentage of Fos-positive neurons that were retrogradely labeled from the RVM in males (left) and females (right) following
twenty-four hours of inflammation and one hour of morphine (5 mg/kg).

the inhibition of dorsal horn neuronal responses to acute
noxious stimuli [90–95]; therefore, one would predict that
given the greater activation of the circuit in males than
females, males should have displayed reduced hyperalgesia
following induction of plantar inflammation. However, in
our behavioral studies, we found no sex differences in
either baseline withdrawal latencies or in CFA-induced
hyperalgesia. Therefore, our finding that the PAG-RVM
descending circuit is not being engaged to the same degree by
persistent inflammatory pain in males and females suggests
that there is an alternative mechanism for endogenous pain
modulation in female rats [96–99].

We have recently begun exploring this possibility using
combinatorial anterograde and retrograde tract-tracing in
combination with persistent pain-induced Fos labeling. The
results of these studies suggest that there are indeed sex
differences in both the efferent and afferent projections of the
PAG. Specifically, the amygdala, ventromedial hypothalamus,
and periventricular nucleus project more heavily to the PAG
in females than males. In contrast, the medial preoptic
area, parabrachial nucleus, and locus coeruleus project more
heavily to the PAG in males than females [100]. In addition,
our data indicate that the projections to the parabrachial
nucleus, locus coeruleus, and the A5/A7 noradrenergic cell
group appear to be greater in males (Loyd and Murphy,
unpublished observations). Obviously, further research on

the anatomy and physiology of pain modulatory circuits in
females is warranted.

4. Sex Differences in the Activation of the
Descending Inhibitory Pathway by Morphine

Although sex differences in PAG-RVM output neuron acti-
vation do not appear to contribute to sex differences in
pain, they do appear to contribute to sex differences in
morphine analgesia. Until recently, all studies examining the
mechanisms of morphine action in the PAG were conducted
exclusively in males; therefore it was unknown whether
morphine administration has the same physiological effect
on PAG neurons in females. Electrophysiological studies of
PAG neurons are limited because they examine the response
of a single neuron [7, 17, 101–109]. We have addressed this
problem by using tract-tracing techniques and Fos labeling
to measure the activity of populations of PAG-RVM neurons
in the PAG of males and females.

Systemic morphine administration attenuates the per-
sistent pain-induced Fos expression within the PAG of
male but not female rats [82] and is consistent with our
data showing that the ED50 for systemic morphine is
approximately twofold higher in females compared to males
whether administered systemically [46] or directly into the
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Figure 4: Distribution of PAG cells expressing Fos (black circles) and cells retrogradely labeled from the RVM expressing Fos (stars)
following: (a)–(c) one 5 mg/kg dose of morphine; (d)–(f) one 5 mg/kg dose of morphine per day for three consecutive days; (g)–(i) or
two 5 mg/kg doses of morphine per day for three consecutive days in males (left) and females (right) at three representative rostrocaudal
levels of the PAG.

PAG [38]. Interestingly, morphine administration, in the
absence of pain, resulted in a twofold greater activation
of PAG neurons compared to saline administration [84].
No sex difference was observed in the activation of PAG
neurons by morphine (see the black circles in Figures 4(a)–
4(c)), suggesting that in the absence of pain, morphine is
equipotent in its ability to depolarize PAG neurons. However,
when the analysis was limited to PAG neurons projecting
to the RVM, the number of neurons activated by morphine
was consistently and significantly higher in males compared
to females (see the stars in Figures 4(a)–4(c)) [84]. Indeed,

approximately half of PAG-RVM neurons in males were
activated by morphine, whereas only 20% were activated in
females (see Figure 3(c)). These results corroborate previous
studies demonstrating that morphine results primarily in the
net excitation of PAG-RVM neurons, most likely through the
removal of tonic GABA inhibition [35, 104, 110, 111]. The
finding that very few PAG-RVM neurons were activated by
morphine in females suggests that morphine may be limited
in effectiveness as a pain modulator.

Given that more PAG neurons project to the RVM
in female compared to male rats, it is possible that pain
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(b) Caudal PAG

Figure 5: Percentage of Fos-positive neurons that were retrogradely
labeled from the RVM (%Fos in FG+ cells) in male (solid bars)
and female (open bars) rats injected with either morphine or saline
once or twice daily for three days for the rostral ((a); Bregma−6.72,
−7.04, −7.74) and caudal ((b); Bregma −8.00, −8.30, −8.80) PAG.
A decrease in labeling is evident with an increase in the number
of morphine injections for male rats. The # indicates a significant
effect of treatment and the ∗ indicates a significant effect of sex.
Saline: morphine naı̈ve; 1 dose: saline pretreatment followed by one
dose of morphine; 3 doses: one dose of morphine per day; 6 doses: two
doses of morphine per day.

modulation in females is less dependent on opioids. If this
is the case, then direct activation of PAG output neurons
should produce greater antinociception in females, not
males. Microinjection of the GABA antagonist bicuculline
into the PAG produces antinociception [110, 112] by disin-
hibiting output neurons. Surprisingly, even though females
have more output neurons, the antinociceptive effect of

microinjecting bicuculline into the PAG is greater in males
[113].

5. Sex Differences in the Development of
Tolerance to Morphine

Repeated or continuous administration of morphine into the
ventrolateral PAG of male rats has been shown to result in the
development of tolerance [26, 114–118]. In addition, block-
ing opioid binding sites in the ventrolateral PAG attenuates
the development of tolerance to systemically administered
morphine [26]. Tolerance appears to be mediated by a
reduction in MOR signaling efficacy in PAG neurons [119],
an effect that is reversed when MOR coupling is enhanced via
upregulated adenylate cyclase activity [120]. If the PAG-RVM
pathway is essential for the development of tolerance, then
activation of the PAG-RVM pathway by morphine should
decline as tolerance develops, and changes in the activation
of this pathway would correlate with sex differences in the
development of tolerance to morphine. These hypotheses
were tested in male and female rats using behavioral testing
(hot plate) and immunohistochemistry to map the activation
of the PAG-RVM pathway following repeated morphine
administration.

Morphine was administered once or twice a day for three
days in rats that had previously received retrograde tracer
injections into the RVM. To examine the activation of PAG-
RVM neurons during the development of tolerance, males
and females were both administered 5 mg/kg of morphine,
the ED50 for males. Repeated administration of systemic
morphine induced tolerance in males to a significantly
greater extent than in females [83], consistent with previous
research administering equipotent doses of morphine to
examine sex differences in tolerance [47]. The half maximal
antinociceptive effect of a single injection of morphine
following the development of morphine tolerance was two
times greater for female compared to male rats. In parallel,
the activation of PAG-RVM neurons was significantly atten-
uated following repeated morphine administration in males
[83]. While there was no sex difference in the activation
of the PAG following three doses or six doses of morphine
over three days (see the black circles in Figures 4(d)–4(i)),
the activation of the PAG-RVM projection neurons steadily
declined in males only (see the stars in Figures 4(d)–4(i)).
Activation of the PAG-RVM pathway by morphine in female
rats was minimal, and therefore did not decline significantly
following repeated administration of morphine (Figure 5;
previously published [83]).

While together, these data provide compelling support
for a central role of the PAG in the development of morphine
tolerance; these studies administered the male ED50 dose
of morphine. While a single administration of this dose
of morphine resulted in comparable activation of the PAG
in males and females, it was suboptimal in producing
behaviorally defined antinociception in females and may
account for why females did not develop tolerance to the
same degree as males. Future studies employing sex-specific
ED50 doses are clearly warranted.
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6. Role of Gonadal Hormones in Sex
Differences in Morphine Analgesia

Studies in rodents indicate that sex differences in the orga-
nizational and activational effects of the gonadal hormones
estradiol and testosterone influence morphine analgesia.
For example, male rats castrated at birth demonstrate
decreased morphine potency in adulthood, while female
rats masculinized at birth demonstrate greater morphine
potency in adulthood [121, 122]. Similarly, morphine is
less effective in gonadectomized adult males and is more
effective in ovariectomized adult females [40, 123–128];
these effects can be reversed with hormone replacement
[44, 123, 129]. Moreover, the antinociceptive potency of
morphine has been reported to be greater during diestrus,
when circulating estradiol levels are lowest [43, 124, 125,
127, 130], which is corroborated by our recent findings
that MOR expression in female rats is the highest during
diestrus compared to proestrus and estrus [38]. Recently,
it was reported that microinjection of morphine directly
into the PAG produces less antinociception during estrus
(after estradiol peaks), while there was no sex difference
in morphine potency between diestrus females and males
[131]. We have recently reported similar findings in which
the antihyperalgesic effects of intra-PAG morphine were
significantly greater in females in diestrus in comparison to
proestrus and estrus [38].

The anatomical substrate(s) whereby gonadal steroids
influence pain and analgesia is unknown. Both androgen
(AR) and estrogen receptorsα (ERα) have been localized
in the PAG in the male rat [132]. Although it is not
known if these receptors are present in the female rat, they
have been localized in other species including the female
cat [12], golden hamster [133], guinea pig [134], and the
rhesus monkey [135, 136]. To date, however, the anatomical
distribution of both types of steroid receptor within the PAG
in reference to cells projecting to the RVM is not known.

We have combined neuroanatomical tract-tracing tech-
niques and steroid receptor immunohistochemistry to char-
acterize the expression of AR and ERα in the PAG-
RVM pathway of male and female rats [137]. In these
studies, we found that males had a significantly greater
number of AR immunoreactive neurons localized within
the dorsomedial, lateral and ventrolateral PAG compared to
females. Interestingly, both the qualitative and quantitative
expression of ERα in the PAG was comparable between
the sexes (see Figures 2(d)–2(f)). Both receptor types were
preferentially localized within the dorsomedial, lateral and
ventrolateral subdivisions of the PAG and increased in den-
sity along the rostrocaudal axis of the PAG with the highest
expression localized within the caudal PAG. In addition,
30–37% of PAG-RVM output neurons expressed AR or
ERα (Figure 3(d)) with the highest density of colabeling
in the lateral/ventrolateral region of PAG. ERa and AR
colocalization in PAG neurons projecting to the RVM was
comparable between the sexes [137] (Figures 2(g)–2(i)).
The high density of steroid receptors localized on PAG-
RVM output neurons may contribute to our observed sex
differences in morphine analgesia. Although there was no sex

difference in the anatomical localization of gonadal steroid
receptors in the PAG despite the higher density of AR in
males, 27–50% of PAG-RVM neurons contain MOR [37].
Given that morphine activates more of these neurons in male
compared to female rats, the interaction between morphine
and sex hormones is likely greater in the PAG of male
compared to female rats.

There are several mechanisms whereby gonadal steroids
may modulate opioid-sensitive PAG-RVM output neurons,
thereby potentially resulting in a dimorphic response to
morphine. First, estradiol has been shown to uncouple the
MOR from G protein-gated inwardly rectifying potassium
channels [138] resulting in an attenuation of morphine-
induced hyperpolarization. Second, estradiol has also been
shown to induce MOR internalization [139], thereby reduc-
ing available opioid binding sites on the cell membrane.
Interestingly, ERα is required for estradiol-induced MOR
internalization [140] supporting the hypothesis that colocal-
ization of MOR and ERα in the PAG-RVM output neurons
may provide a pain modulatory mechanism. Interestingly,
administration of estradiol to gonadectomized males rein-
states morphine analgesia while dihydrotestosterone does not
[141], suggesting that estrogens affect morphine potency in
both male and female rats [130].

7. Conclusions

Research spanning for four decades has shown that the PAG
and its descending projections to the RVM and spinal cord
dorsal horn constitute an essential neural circuit for opioid-
based analgesia. During the last half of that period, numerous
rodent and human studies have established sex differences
in the antinociceptive and analgesic effects of morphine;
however, the neural mechanisms underlying the sexually
dimorphic actions of morphine remain poorly understood. It
is now clear that the anatomical and physiological character-
istics of the PAG and its descending projections to the RVM
are sexually dimorphic, with clear biological consequences
in terms of morphine potency. Our studies, as well as
those of others, have shown that morphine is less potent in
females compared to males in the alleviation of persistent
pain. Future research efforts utilizing female subjects in
both the investigation of persistent pain mechanisms and
identification of both effective and potent pain therapeutics
are clearly warranted.

Acknowledgments

This work was supported by the National Institutes of Health
(NIH) Grants DA16272 and P50 AR49555 awarded to Anne
Z. Murphy, and NIH Grant DA015498 awarded to Michael
M. Morgan. The authors would like to thank Michael M.
Morgan for his helpful comments on the earlier versions of
this manuscript.

References

[1] D. V. Reynolds, “Surgery in the rat during electrical analgesia
induced by focal brain stimulation,” Science, vol. 164, no.
3878, pp. 444–445, 1969.



8 Neural Plasticity

[2] A. J. Beitz, R. D. Shepard, and W. E. Wells, “The periaque-
ductal gray-raphe magnus projection contains somatostatin,
neurotensin and serotonin but not cholecystokinin,” Brain
Research, vol. 261, no. 1, pp. 132–137, 1983.

[3] A. J. Beitz and R. D. Shepard, “The midbrain periaqueductal
gray in the rat. II. A Golgi analysis,” The Journal of
Comparative Neurology, vol. 237, no. 4, pp. 460–475, 1985.

[4] A. J. Beitz, “The midbrain periaqueductal gray in the rat.
I. Nuclear volume, cell number, density, orientation, and
regional subdivisions,” The Journal of Comparative Neurology,
vol. 237, no. 4, pp. 445–459, 1985.

[5] A. J. Beitz, “The organization of afferent projections to the
midbrain periaqueductal gray of the rat,” Neuroscience, vol.
7, no. 1, pp. 133–159, 1982.

[6] A. I. Basbaum and H. L. Fields, “Endogenous pain control
mechanisms: review and hypothesis,” Annals of Neurology,
vol. 4, no. 5, pp. 451–462, 1978.

[7] M. M. Behbehani and H. L. Fields, “Evidence that an
excitatory connection between the periaqueductal gray and
nucleus raphe magnus mediates stimulation produced anal-
gesia,” Brain Research, vol. 170, no. 1, pp. 85–93, 1979.

[8] F. G. Williams, M. A. Mullet, and A. J. Beitz, “Basal release
of Met-enkephalin and neurotensin in the ventrolateral
periaqueductal gray matter of the rat: a microdialysis study
of antinociceptive circuits,” Brain Research, vol. 690, no. 2,
pp. 207–216, 1995.

[9] S. L. Jones and A. R. Light, “Serotoninergic medullary
raphespinal projection to the lumbar spinal cord in the rat:
a retrograde immunohistochemical study,” The Journal of
Comparative Neurology, vol. 322, no. 4, pp. 599–610, 1992.

[10] L. J. Mouton and G. Holstege, “Segmental and laminar
organization of the spinal neurons projecting to the peri-
aqueductal gray (PAG) in the cat suggests the existence of
at least five separate clusters of spino-PAG neurons,” The
Journal of Comparative Neurology, vol. 428, no. 3, pp. 389–
410, 2000.

[11] V. G. J. M. Vanderhorst, L. J. Mouton, B. F. M. Blok, and G.
Holstege, “Distinct cell groups in the lumbosacral cord of the
cat project to different areas in the periaqueductal gray,” The
Journal of Comparative Neurology, vol. 376, no. 3, pp. 361–
385, 1996.

[12] V. G. J. M. Vanderhorst, F. C. Schasfoort, E. Meijer, F. W.
Van Leeuwen, and G. Holstege, “Estrogen receptor-alpha-
immunoreactive neurons in the periaqueductal gray of the
adult ovariectomized female cat,” Neuroscience Letters, vol.
240, no. 1, pp. 13–16, 1998.

[13] G. Holstege and R. J. Cowie, “Projections from the rostral
mesencephalic reticular formation to the spinal cord. An
HRP and autoradiographical tracing study in the cat,”
Experimental Brain Research, vol. 75, no. 2, pp. 265–279,
1989.

[14] I. A. Abols and A. I. Basbaum, “Afferent connections of the
rostral medulla of the cat: a neural substrate for midbrain-
medullary interactions in the modulation of pain,” The
Journal of Comparative Neurology, vol. 201, no. 2, pp. 285–
297, 1981.

[15] J. Sandkuhler, Q.-G. Fu, and M. Zimmermann, “Spinal path-
ways mediating tonic or stimulation-produced descending
inhibition from the periaqueductal gray or nucleus raphe
magnus are separate in the cat,” Journal of Neurophysiology,
vol. 58, no. 2, pp. 327–341, 1987.

[16] J. Sandkuhler, B. Maisch, and M. Zimmermann, “Raphe
magnus-induced descending inhibition of spinal nociceptive
neurons is mediated through contralateral spinal pathways

in the cat,” Neuroscience Letters, vol. 76, no. 2, pp. 168–172,
1987.

[17] Y. Shah and J. O. Dostrovsky, “Electrophysiological evidence
for a projection of the periaqueductal gray matter to nucleus
raphe magnus in cat and rat,” Brain Research, vol. 193, no. 2,
pp. 534–538, 1980.

[18] A. I. Basbaum, C. H. Clanton, and H. L. Fields, “Three
bulbospinal pathways from the rostral medulla of the cat:
an autoradiographic study of pain modulating systems,” The
Journal of Comparative Neurology, vol. 178, no. 2, pp. 209–
224, 1978.

[19] P. W. Mantyh, “Connections of midbrain periaqueductal gray
in the monkey. II. Descending efferent projections,” Journal of
Neurophysiology, vol. 49, no. 3, pp. 582–594, 1983.

[20] K. D. Gerhart, R. P. Yezierski, T. K. Wilcox, and W. D.
Willis, “Inhibition of primate spinothalamic tract neurons
by stimulation in periaqueductal gray of adjacent midbrain
reticular formation,” Journal of Neurophysiology, vol. 51, no.
3, pp. 450–466, 1984.

[21] J. R. Haselton, R. W. Winters, D. R. Liskowsky, C. L. Haselton,
P. M. McCabe, and N. Schneiderman, “Anatomical and
functional connections of neurons of the rostral medullary
raphe of the rabbit,” Brain Research, vol. 453, no. 1-2, pp.
176–182, 1988.

[22] A. I. Basbaum and H. L. Fields, “Endogenous pain control
systems: brainstem spinal pathways and endorphin circuitry,”
Annual Review of Neuroscience, vol. 7, pp. 309–338, 1984.

[23] T. L. Yaksh and T. A. Rudy, “Narcotic analgetics: CNS
sites and mechanisms of action as revealed by intracerebral
injection techniques,” Pain, vol. 4, no. 4, pp. 299–359, 1978.

[24] Z.-F. Cheng, H. L. Fields, and M. M. Heinricher, “Morphine
microinjected into the periaqueductal gray has differential
effects on 3 classes of medullary neurons,” Brain Research,
vol. 375, no. 1, pp. 57–65, 1986.

[25] M. M. Morgan, M. M. Heinricher, and H. L. Fields,
“Circuitry linking opioid-sensitive nociceptive modulatory
systems in periaqueductal gray and spinal cord with rostral
ventromedial medulla,” Neuroscience, vol. 47, no. 4, pp. 863–
871, 1992.

[26] D. A. Lane, P. A. Patel, and M. M. Morgan, “Evidence for an
intrinsic mechanism of antinociceptive tolerance within the
ventrolateral periaqueductal gray of rats,” Neuroscience, vol.
135, no. 1, pp. 227–234, 2005.

[27] R. E. Wilcox, J. A. Mikula, and R. A. Levitt, “Periaqueductal
gray naloxone microinjections in morphine-dependent rats:
hyperalgesia without “classical” withdrawal,” Neuropharma-
cology, vol. 18, no. 7, pp. 639–641, 1979.

[28] Q. P. Ma and J. S. Han, “Naloxone blocks the release of opioid
peptides in periaqueductal gray and N. accumbens induced
by intra-amygdaloid injection of morphine,” Peptides, vol. 12,
no. 6, pp. 1235–1238, 1991.

[29] Y. Zhang, L.-N. Du, G.-C. Wu, and X.-D. Cao, “Modula-
tion of intrathecal morphine-induced immunosuppression
by microinjection of naloxone into periaqueductal gray,”
Zhongguo Yao Li Xue Bao, vol. 19, no. 6, pp. 519–522, 1998.

[30] V. A. Lewis and G. F. Gebhart, “Evaluation of the peri-
aqueductal central gray (PAG) as a morphine specific locus
of action and examination of morphine induced and stim-
ulation produced analgesia at coincident PAG loci,” Brain
Research, vol. 124, no. 2, pp. 283–303, 1977.

[31] A. Mansour, H. Khachaturian, M. E. Lewis, H. Akil, and S. J.
Watson, “Autoradiographic differentiation of mu, delta, and



Neural Plasticity 9

kappa opioid receptors in the rat forebrain and midbrain,”
The Journal of Neuroscience, vol. 7, no. 8, pp. 2445–2464,
1987.

[32] A. Mansour, M. E. Lewis, H. Khachaturian, H. Akil, and
S. J. Watson, “Pharmacological and anatomical evidence of
selective μ, δ, and χ opioid receptor binding in rat brain,”
Brain Research, vol. 399, no. 1, pp. 69–79, 1986.

[33] H. B. Gutstein, A. Mansour, S. J. Watson, H. Akil, and H.
L. Fields, “Mu and kappa opioid receptors in periaqueductal
gray and rostral ventromedial medulla,” NeuroReport, vol. 9,
no. 8, pp. 1777–1781, 1998.

[34] A. E. Kalyuzhny, U. Arvidsson, W. Wu, and M. W.
Wessendorf, “μ-opioid and δ-opioid receptors are expressed
in brainstem antinociceptive circuits: studies using immuno-
cytochemistry and retrograde tract-tracing,” The Journal of
Neuroscience, vol. 16, no. 20, pp. 6490–6503, 1996.

[35] K. G. Commons, S. A. Aicher, L.-M. Kow, and D. W. Pfaff,
“Presynaptic and postsynaptic relations of μ-opioid receptors
to γ-aminobutyric acid-immunoreactive and medullary-
projecting periaqueductal gray neurons,” The Journal of
Comparative Neurology, vol. 419, no. 4, pp. 532–542, 2000.

[36] K. G. Commons, E. J. Van Bockstaele, and D. W. Pfaff,
“Frequent colocalization of mu opioid and NMDA-type
glutamate receptors at postsynaptic sites in periaqueductal
gray neurons,” The Journal of Comparative Neurology, vol.
408, no. 4, pp. 549–559, 1999.

[37] H. Wang and M. W. Wessendorf, “μ- and δ-opioid receptor
mRNAs are expressed in periaqueductal gray neurons pro-
jecting to the rostral ventromedial medulla,” Neuroscience,
vol. 109, no. 3, pp. 619–634, 2002.

[38] D. R. Loyd, X. Wang, and A. Z. Murphy, “Sex differences in μ-
opioid receptor expression in the rat midbrain periaqueduc-
tal gray are essential for eliciting sex differences in morphine
analgesia,” The Journal of Neuroscience, vol. 28, no. 52, pp.
14007–14017, 2008.

[39] K. L. Kepler, K. M. Standifer, D. Paul, B. Kest, G. W.
Pasternak, and R. J. Bodnar, “Gender effects and central
opioid analgesia,” Pain, vol. 45, no. 1, pp. 87–94, 1991.

[40] K. L. Kepler, B. Kest, J. M. Kiefel, M. L. Cooper, and R. J.
Bodnar, “Roles of gender, gonadectomy and estrous phase in
the analgesic effects of intracerebroventricular morphine in
rats,” Pharmacology Biochemistry and Behavior, vol. 34, no. 1,
pp. 119–127, 1989.

[41] A. I. Baamonde, A. Hidalgo, and F. Andres-Trelles, “Sex-
related differences in the effects of morphine and stress on
visceral pain,” Neuropharmacology, vol. 28, no. 9, pp. 967–
970, 1989.

[42] M. Kavaliers and D. G. L. Innes, “Sex and day-night
differences in opiate-induced responses of insular wild deer
mice, Peromyscus maniculatus triangularis,” Pharmacology
Biochemistry and Behavior, vol. 27, no. 3, pp. 477–482, 1987.

[43] K. Okamoto, A. Tashiro, H. Hirata, and D. A. Bereiter,
“Differential modulation of TMJ neurons in superficial
laminae of trigeminal subnucleus caudalis/upper cervical
cord junction region of male and cycling female rats by
morphine,” Pain, vol. 114, no. 1-2, pp. 203–211, 2005.

[44] Y. Ji, A. Z. Murphy, and R. J. Traub, “Estrogen modulation
of morphine analgesia of visceral pain in female rats is
supraspinally and peripherally mediated,” The Journal of
Pain, vol. 8, no. 6, pp. 494–502, 2007.

[45] Y. Ji, A. Z. Murphy, and R. J. Traub, “Sex differ-
ences in morphine-induced analgesia of visceral pain are

supraspinally and peripherally mediated,” American Journal
of Physiology, vol. 291, no. 2, pp. R307–R314, 2006.

[46] X. Wang, R. J. Traub, and A. Z. Murphy, “Persistent pain
model reveals sex difference in morphine potency,” American
Journal of Physiology, vol. 291, no. 2, pp. R300–R306, 2006.

[47] A. C. Barrett, C. D. Cook, J. M. Terner, R. M. Craft, and
M. J. Picker, “Importance of sex and relative efficacy at
the μ opioid receptor in the development of tolerance and
cross-tolerance to the antinociceptive effects of opioids,”
Psychopharmacology, vol. 158, no. 2, pp. 154–164, 2001.

[48] R. E. Bartok and R. M. Craft, “Sex differences in opioid
antinociception,” Journal of Pharmacology and Experimental
Therapeutics, vol. 282, no. 2, pp. 769–778, 1997.

[49] J. S. Boyer, M. M. Morgan, and R. M. Craft, “Microinjection
of morphine into the rostral ventromedial medulla produces
greater antinociception in male compared to female rats,”
Brain Research, vol. 796, no. 1-2, pp. 315–318, 1998.

[50] T. J. Cicero, B. Nock, and E. R. Meyer, “Sex-related differences
in morphine’s antinociceptive activity: relationship to serum
and brain morphine concentrations,” Journal of Pharmacol-
ogy and Experimental Therapeutics, vol. 282, no. 2, pp. 939–
944, 1997.

[51] B. Kest, S. G. Wilson, and J. S. Mogil, “Sex differences in
supraspinal morphine analgesia are dependent on genotype,”
Journal of Pharmacology and Experimental Therapeutics, vol.
289, no. 3, pp. 1370–1375, 1999.

[52] C. D. Cook and M. D. Nickerson, “Nociceptive sensitivity
and opioid antinociception and antihyperalgesia in Freund’s
adjuvant-induced arthritic male and female rats,” Journal of
Pharmacology and Experimental Therapeutics, vol. 313, no. 1,
pp. 449–459, 2005.

[53] P. L. Miller and A. A. Ernst, “Sex differences in analgesia:
a randomized trial of μ versus κ opioid agonists,” Southern
Medical Journal, vol. 97, no. 1, pp. 35–41, 2004.

[54] M. S. Cepeda, J. M. Africano, A. M. Manrique, W. Fragoso,
and D. B. Carr, “The combination of low dose of naloxone
and morphine in PCA does not decrease opioid requirements
in the postoperative period,” Pain, vol. 96, no. 1-2, pp. 73–79,
2002.

[55] M. S. Cepeda and D. B. Carr, “Women experience more pain
and require more morphine than men to achieve a similar
degree of analgesia,” Anesthesia and Analgesia, vol. 97, no. 5,
pp. 1464–1468, 2003.

[56] E. Sarton, E. Olofsen, R. Romberg, et al., “Sex differences
in morphine analgesia: an experimental study in healthy
volunteers,” Anesthesiology, vol. 93, no. 5, pp. 1245–1254,
2000, discussion 6A.

[57] R. B. Fillingim, T. J. Ness, T. L. Glover, et al., “Morphine
responses and experimental pain: sex differences in side
effects and cardiovascular responses but not analgesia,” The
Journal of Pain, vol. 6, no. 2, pp. 116–124, 2005.

[58] N. C. Gordon, R. W. Gear, P. H. Heller, S. Paul, C.
Miaskowski, and J. D. Levine, “Enhancement of morphine
analgesia by the GABA(B) agonist baclofen,” Neuroscience,
vol. 69, no. 2, pp. 345–349, 1995.

[59] C. Miaskowski, R. W. Gear, and J. D. Levine, “Sex related
differences in analgesic responses,” in Sex, Gender, and Pain,
R. B. Fillingim, Ed., pp. 209–232, IASP Press, Seattle, Wash,
USA, 2000.

[60] M. S. Cepeda, J. T. Farrar, M. Baumgarten, R. Boston, D. B.
Carr, and B. L. Strom, “Side effects of opioids during short-
term administration: effect of age, gender, and race,” Clinical



10 Neural Plasticity

Pharmacology and Therapeutics, vol. 74, no. 2, pp. 102–112,
2003.

[61] B. Kest, E. Sarton, and A. Dahan, “Gender differences
in opioid-mediated analgesia: animal and human studies,”
Anesthesiology, vol. 93, no. 2, pp. 539–547, 2000.

[62] R. M. Craft, “Sex differences in opioid analgesia: “from
mouse to man”,” Clinical Journal of Pain, vol. 19, no. 3, pp.
175–186, 2003.

[63] R. B. Fillingim and R. W. Gear, “Sex differences in opioid
analgesia: clinical and experimental findings,” European
Journal of Pain, vol. 8, no. 5, pp. 413–425, 2004.

[64] A. Dahan, B. Kest, A. R. Waxman, and E. Sarton, “Sex-specific
responses to opiates: animal and human studies,” Anesthesia
& Analgesia, vol. 107, no. 1, pp. 83–95, 2008.

[65] A. C. Barrett, E. S. Smith, and M. J. Picker, “Capsaicin-
induced hyperalgesia and μ-opioid-induced antihyperalgesia
in male and female Fischer 344 rats,” Journal of Pharmacology
and Experimental Therapeutics, vol. 307, no. 1, pp. 237–245,
2003.

[66] L. A. Rosseland and A. Stubhaug, “Gender is a confounding
factor in pain trials: women report more pain than men
after arthroscopic surgery,” Pain, vol. 112, no. 3, pp. 248–253,
2004.

[67] F. Aubrun, N. Salvi, P. Coriat, and B. Riou, “Sex- and age-
related differences in morphine requirements for postopera-
tive pain relief,” Anesthesiology, vol. 103, no. 1, pp. 156–160,
2005.

[68] R. Cogan and J. A. Spinnato, “Pain and discomfort thresholds
in late pregnancy,” Pain, vol. 27, no. 1, pp. 63–68, 1986.

[69] B. Hellström and U. M. Anderberg, “Pain perception across
the menstrual cycle phases in women with chronic pain,”
Perceptual and Motor Skills, vol. 96, no. 1, pp. 201–211, 2003.

[70] M. L. LaCroix-Fralish, V. L. Tawfik, and J. A. DeLeo, “The
organizational and activational effects of sex hormones on
tactile and thermal hypersensitivity following lumbar nerve
root injury in male and female rats,” Pain, vol. 114, no. 1-2,
pp. 71–80, 2005.

[71] I. Gaumond, P. Arsenault, and S. Marchand, “The role of
sex hormones on formalin-induced nociceptive responses,”
Brain Research, vol. 958, no. 1, pp. 139–145, 2002.

[72] A. M. Aloisi, I. Ceccarelli, P. Fiorenzani, A. M. De Padova,
and C. Massafra, “Testosterone affects formalin-induced
responses differently in male and female rats,” Neuroscience
Letters, vol. 361, no. 1–3, pp. 262–264, 2004.

[73] J. S. Mogil, E. J. Chesler, S. G. Wilson, J. M. Juraska, and
W. F. Sternberg, “Sex differences in thermal nociception and
morphine antinociception in rodents depend on genotype,”
Neuroscience and Biobehavioral Reviews, vol. 24, no. 3, pp.
375–389, 2000.

[74] J. M. Tall and T. Crisp, “Effects of gender and gonadal hor-
mones on nociceptive responses to intraplantar carrageenan
in the rat,” Neuroscience Letters, vol. 354, no. 3, pp. 239–241,
2004.

[75] J. M. Tall, S. L. Stuesse, W. L. R. Cruce, and T. Crisp,
“Gender and the behavioral manifestations of neuropathic
pain,” Pharmacology Biochemistry and Behavior, vol. 68, no.
1, pp. 99–104, 2001.

[76] A. R. Gintzler, “Endorphin-mediated increases in pain
threshold during pregnancy,” Science, vol. 210, no. 4466, pp.
193–195, 1980.

[77] A. M. Aloisi and I. Ceccarelli, “Role of gonadal hormones in
formalin-induced pain responses of male rats: modulation by
estradiol and naloxone administration,” Neuroscience, vol. 95,
no. 2, pp. 559–566, 1999.

[78] L. LeResche, L. Mancl, J. J. Sherman, B. Gandara, and S. F.
Dworkin, “Changes in temporomandibular pain and other
symptoms across the menstrual cycle,” Pain, vol. 106, no. 3,
pp. 253–261, 2003.

[79] A. Korszun, E. A. Young, N. C. Engleberg, et al., “Follic-
ular phase hypothalamic-pituitary-gonadal axis function in
women with fibromyalgia and chronic fatigue syndrome,”
Journal of Rheumatology, vol. 27, no. 6, pp. 1526–1530, 2000.

[80] A. J. Beitz, “The sites of origin brain stem neurotensin and
serotonin projections to the rodent nucleus raphe magnus,”
The Journal of Neuroscience, vol. 2, no. 7, pp. 829–842, 1982.

[81] E. J. van Bockstaele, G. Aston-Jones, V. A. Pieribone, M.
Ennis, and M. T. Shipley, “Subregions of the periaqueductal
gray topographically innervate the rostral ventral medulla in
the rat,” The Journal of Comparative Neurology, vol. 309, no.
3, pp. 305–327, 1991.

[82] D. R. Loyd and A. Z. Murphy, “Sex differences in the
anatomical and functional organization of the periaqueduc-
tal gray-rostral ventromedial medullary pathway in the rat: a
potential circuit mediating the sexually dimorphic actions of
morphine,” The Journal of Comparative Neurology, vol. 496,
no. 5, pp. 723–738, 2006.

[83] D. R. Loyd, M. M. Morgan, and A. Z. Murphy, “Sexually
dimorphic activation of the periaqueductal gray-rostral
ventromedial medullary circuit during the development of
tolerance to morphine in the rat,” European Journal of
Neuroscience, vol. 27, no. 6, pp. 1517–1524, 2008.

[84] D. R. Loyd, M. M. Morgan, and A. Z. Murphy, “Morphine
preferentially activates the periaqueductal gray-rostral ven-
tromedial medullary pathway in the male rat: a potential
mechanism for sex differences in antinociception,” Neuro-
science, vol. 147, no. 2, pp. 456–468, 2007.

[85] M. M. Morgan, M. S. Gold, J. C. Liebeskind, and C.
Stein, “Periaqueductal gray stimulation produces a spinally
mediated, opioid antinociception for the inflamed hindpaw
of the rat,” Brain Research, vol. 545, no. 1-2, pp. 17–23, 1991.

[86] Y. Guan, W. Guo, S.-P. Zou, R. Dubner, and K. Ren,
“Inflammation-induced upregulation of AMPA receptor
subunit expression in brain stem pain modulatory circuitry,”
Pain, vol. 104, no. 1-2, pp. 401–413, 2003.

[87] K. Miki, Q.-Q. Zhou, W. Guo, et al., “Changes in gene expres-
sion and neuronal phenotype in brain stem pain modulatory
circuitry after inflammation,” Journal of Neurophysiology, vol.
87, no. 2, pp. 750–760, 2002.

[88] Y. Guan, R. Terayama, R. Dubner, and K. Ren, “Plasticity
in excitatory amino acid receptor-mediated descending pain
modulation after inflammation,” Journal of Pharmacology
and Experimental Therapeutics, vol. 300, no. 2, pp. 513–520,
2002.

[89] K. Ren and R. Dubner, “Descending modulation in persistent
pain: an update,” Pain, vol. 100, no. 1-2, pp. 1–6, 2002.

[90] S. L. Jones and G. F. Gebhart, “Inhibition of spinal noci-
ceptive transmission from the midbrain, pons and medulla
in the rat: activation of descending inhibition by morphine,
glutamate and electrical stimulation,” Brain Research, vol.
460, no. 2, pp. 281–296, 1988.

[91] L. D. Aimone, S. L. Jones, and G. F. Gebhart, “Stimulation-
produced descending inhibition from the periaqueductal
gray and nucleus raphe magnus in the rat: mediation by
spinal monoamines but not opioids,” Pain, vol. 31, no. 1, pp.
123–136, 1987.

[92] A. J. Waters and B. M. Lumb, “Inhibitory effects evoked
from both the lateral and ventrolateral periaqueductal grey
are selective for the nociceptive responses of rat dorsal horn



Neural Plasticity 11

neurones,” Brain Research, vol. 752, no. 1-2, pp. 239–249,
1997.

[93] D. Budai and H. L. Fields, “Endogenous opioid peptides
acting at μ-opioid receptors in the dorsal horn contribute to
midbrain modulation of spinal nociceptive neurons,” Journal
of Neurophysiology, vol. 79, no. 2, pp. 677–687, 1998.

[94] B. G. Gray and J. O. Dostrovsky, “Descending inhibitory
influences from periaqueductal gray, nucleus raphe magnus,
and adjacent reticular formation. I. Effects on lumbar spinal
cord nociceptive and nonnociceptive neurons,” Journal of
Neurophysiology, vol. 49, no. 4, pp. 932–947, 1983.

[95] E. Carstens, T. Yokota, and M. Zimmermann, “Inhibition
of spinal neuronal responses to noxious skin heating by
stimulation of mesencephalic periaqueductal gray in the cat,”
Journal of Neurophysiology, vol. 42, no. 2, pp. 558–568, 1979.

[96] A. C. Barrett, C. D. Cook, J. M. Terner, E. L. Roach,
C. Syvanthong, and M. J. Picker, “Sex and rat strain
determine sensitivity to κ opioid-induced antinociception,”
Psychopharmacology, vol. 160, no. 2, pp. 170–181, 2002.

[97] K. J. Berkley, “Sex differences in pain,” Behavioral and Brain
Sciences, vol. 20, no. 3, pp. 371–380, 1997.

[98] R. B. Fillingim, “Sex, gender, and pain: women and men
really are different,” Current Review of Pain, vol. 4, no. 1, pp.
24–30, 2000.

[99] R. B. Fillingim and T. J. Ness, “Sex-related hormonal
influences on pain and analgesic responses,” Neuroscience and
Biobehavioral Reviews, vol. 24, no. 4, pp. 485–501, 2000.

[100] D. R. Loyd and A. Z. Murphy, “Anatomical and physiological
characterization of the midbrain periaqueductal gray in the
female rat: identification of novel pain pathways,” Society
for Neuroscience, abstract control number 921.3, San Diego,
Calif, USA, 2007.

[101] C. W. Vaughan, S. L. Ingram, M. A. Connor, and M. J.
Christie, “How opioids inhibit GABA-mediated neurotrans-
mission,” Nature, vol. 390, no. 6660, pp. 611–614, 1997.

[102] B. Chieng and M. J. Christie, “Inhibition by opioids acting
on μ-receptors of GABAergic and glutamatergic postsynaptic
potentials in single rat periaqueductal gray neurones in
vitro,” British Journal of Pharmacology, vol. 113, no. 1, pp.
303–309, 1994.

[103] B. Chieng and M. J. Christie, “Hyperpolarization by opi-
oids acting on μ-receptors of a sub-population of rat
periaqueductal gray neurones in vitro,” British Journal of
Pharmacology, vol. 113, no. 1, pp. 121–128, 1994.

[104] C. W. Vaughan and M. J. Christie, “Presynaptic inhibitory
action of opioids on synaptic transmission in the rat
periaqueductal grey in vitro,” The Journal of Physiology, vol.
498, part 2, pp. 463–472, 1997.

[105] P. B. Osborne, C. W. Vaughan, H. I. Wilson, and M.
J. Christie, “Opioid inhibition of rat periaqueductal grey
neurones with identified projections to rostral ventromedial
medulla in vitro,” The Journal of Physiology, vol. 490, part 2,
pp. 383–389, 1996.

[106] M. M. Behbehani, “The role of acetylcholine in the function
of the nucleus raphe magnus and in the interaction of this
nucleus with the periaqueductal gray,” Brain Research, vol.
252, no. 2, pp. 299–307, 1982.

[107] M. M. Behbehani, S. L. Pomeroy, and C. E. Mack, “Interac-
tion between central gray and nucleus raphe magnus: role
of norepinephrine,” Brain Research Bulletin, vol. 6, no. 5, pp.
361–364, 1981.

[108] M. M. Behbehani, “Effect of chronic morphine treatment
on the interaction between the periaqueductal grey and the

nucleus raphe magnus of the rat,” Neuropharmacology, vol.
20, no. 6, pp. 581–586, 1981.

[109] A. I. Basbaum and H. L. Fields, “The origin of descending
pathways in the dorsolateral funiculus of the spinal cord
of the cat and rat: further studies on the anatomy of pain
modulation,” The Journal of Comparative Neurology, vol. 187,
no. 3, pp. 513–531, 1979.

[110] J.-L. Moreau and H. L. Fields, “Evidence for GABA involve-
ment in midbrain control of medullary neurons that modu-
late nociceptive transmission,” Brain Research, vol. 397, no. 1,
pp. 37–46, 1986.

[111] M. M. Behbehani, M. R. Jiang, S. D. Chandler, and M.
Ennis, “The effect of GABA and its antagonists on midbrain
periaqueductal gray neurons in the rat,” Pain, vol. 40, no. 2,
pp. 195–204, 1990.

[112] M. M. Morgan, C. C. Clayton, and D. A. Lane, “Behavioral
evidence linking opioid-sensitive GABAergic neurons in the
ventrolateral periaqueductal gray to morphine tolerance,”
Neuroscience, vol. 118, no. 1, pp. 227–232, 2003.

[113] E. N. Fossum, A. L. McNeal, S. L. Ingram, and M. M. Morgan,
“Sex differences in antinociception following opioid and
non-opioid activation of the periaqueductal gray of the rat,”
Society for Neuroscience, abstract control number 71.17,
Washington, DC, USA, 2008.

[114] V. Tortorici and M. M. Morgan, “Comparison of morphine
and kainic acid microinjections into identical PAG sites on
the activity of RVM neurons,” Journal of Neurophysiology, vol.
88, no. 4, pp. 1707–1715, 2002.

[115] M. M. Morgan, E. N. Fossum, C. S. Levine, and S. L. Ingram,
“Antinociceptive tolerance revealed by cumulative intracra-
nial microinjections of morphine into the periaqueductal
gray in the rat,” Pharmacology Biochemistry and Behavior, vol.
85, no. 1, pp. 214–219, 2006.

[116] J. A. Siuciak and C. Advokat, “Tolerance to morphine
microinjections in the periaqueductal gray (PAG) induces
tolerance to systemic, but not intrathecal morphine,” Brain
Research, vol. 424, no. 2, pp. 311–319, 1987.

[117] Y. F. Jacquet and A. Lajtha, “The periaqueductal gray: site of
morphine analgesia and tolerance as shown by 2-way cross
tolerance between systemic and intracerebral injections,”
Brain Research, vol. 103, no. 3, pp. 501–513, 1976.

[118] V. Tortorici, C. S. Robbins, and M. M. Morgan, “Tolerance to
the antinociceptive effect of morphine microinjections into
the ventral but not lateral-dorsal periaqueductal gray of the
rat,” Behavioral Neuroscience, vol. 113, no. 4, pp. 833–839,
1999.

[119] E. E. Bagley, B. C. H. Chieng, M. J. Christie, and M.
Connor, “Opioid tolerance in periaqueductal gray neurons
isolated from mice chronically treated with morphine,”
British Journal of Pharmacology, vol. 146, no. 1, pp. 68–76,
2005.

[120] S. P. Hack, C. W. Vaughan, and M. J. Christie, “Modulation
of GABA release during morphine withdrawal in midbrain
neurons in vitro,” Neuropharmacology, vol. 45, no. 5, pp. 575–
584, 2003.

[121] E. K. Krzanowska, S. Ogawa, D. W. Pfaff, and R. J. Bodnar,
“Reversal of sex differences in morphine analgesia elicited
from the ventrolateral periaqueductal gray in rats by neonatal
hormone manipulations,” Brain Research, vol. 929, no. 1, pp.
1–9, 2002.

[122] T. J. Cicero, B. Nock, L. O’Connor, and E. R. Meyer,
“Role of steroids in sex differences in morphine-induced
analgesia: activational and organizational effects,” Journal of



12 Neural Plasticity

Pharmacology and Experimental Therapeutics, vol. 300, no. 2,
pp. 695–701, 2002.

[123] A. Ratka and J. W. Simpkins, “Effects of estradiol and
progesterone on the sensitivity to pain and on morphine-
induced antinociception in female rats,” Hormones and
Behavior, vol. 25, no. 2, pp. 217–228, 1991.

[124] E. C. Stoffel, C. M. Ulibarri, and R. M. Craft, “Gonadal
steroid hormone modulation of nociception, morphine
antinociception and reproductive indices in male and female
rats,” Pain, vol. 103, no. 3, pp. 285–302, 2003.

[125] E. C. Stoffel, C. M. Ulibarri, J. E. Folk, K. C. Rice, and R.
M. Craft, “Gonadal hormone modulation of mu, kappa, and
delta opioid antinociception in male and female rats,” The
Journal of Pain, vol. 6, no. 4, pp. 261–274, 2005.

[126] J. M. Terner, A. C. Barrett, E. Grossell, and M. J. Picker,
“Influence of gonadectomy on the antinociceptive effects of
opioids in male and female rats,” Psychopharmacology, vol.
163, no. 2, pp. 183–193, 2002.

[127] J. M. Terner, L. M. Lomas, and M. J. Picker, “Influence of
estrous cycle and gonadal hormone depletion on nociception
and opioid antinociception in female rats of four strains,” The
Journal of Pain, vol. 6, no. 6, pp. 372–383, 2005.

[128] E. K. Krzanowska and R. J. Bodnar, “Morphine antinoci-
ception elicited from the ventrolateral periaqueductal gray is
sensitive to sex and gonadectomy differences in rats,” Brain
Research, vol. 821, no. 1, pp. 224–230, 1999.

[129] J. M. Kiefel and R. J. Bodnar, “Roles of gender and
gonadectomy in pilocarpine and clonidine analgesia in rats,”
Pharmacology Biochemistry and Behavior, vol. 41, no. 1, pp.
153–158, 1992.

[130] R. M. Craft, J. S. Mogil, and A. M. Aloisi, “Sex differences in
pain and analgesia: the role of gonadal hormones,” European
Journal of Pain, vol. 8, no. 5, pp. 397–411, 2004.

[131] S. A. Bernal, M. M. Morgan, and R. M. Craft, “PAG
mu opioid receptor activation underlies sex differences in
morphine antinociception,” Behavioural Brain Research, vol.
177, no. 1, pp. 126–133, 2007.

[132] A. Z. Murphy and G. E. Hoffman, “Distribution of
gonadal steroid receptor-containing neurons in the preoptic-
periaqueductal gray-brainstem pathway: a potential circuit
for the initiation of male sexual behavior,” The Journal of
Comparative Neurology, vol. 438, no. 2, pp. 191–212, 2001.

[133] J. Boers, P. O. Gerrits, E. Meijer, and G. Holstege, “Estro-
gen receptor-alpha-immunoreactive neurons in the mesen-
cephalon, pons and medulla oblongata of the female golden
hamster,” Neuroscience Letters, vol. 267, no. 1, pp. 17–20,
1999.

[134] J. C. Turcotte and J. D. Blaustein, “Immunocytochemical
localization of midbrain estrogen receptor- and progestin
receptor-containing cells in female guinea pigs,” The Journal
of Comparative Neurology, vol. 328, no. 1, pp. 76–87, 1993.

[135] V. G. J. M. Vanderhorst, E. Terasawa, and H. J. Ralston
III, “Estrogen receptor-alpha immunoreactive neurons in
the ventrolateral periaqueductal gray receive monosynaptic
input from the lumbosacral cord in the rhesus monkey,” The
Journal of Comparative Neurology, vol. 443, no. 1, pp. 27–42,
2002.

[136] V. G. J. M. Vanderhorst, E. Terasawa, and H. J. Ralston
III, “Projections from estrogen receptor-α immunoreactive
neurons in the periaqueductal gray to the lateral medulla
oblongata in the rhesus monkey,” Neuroscience, vol. 125, no.
1, pp. 243–253, 2004.

[137] D. R. Loyd and A. Z. Murphy, “Androgen and estrogen
(α) receptor localization on periaqueductal gray neurons

projecting to the rostral ventromedial medulla in the male
and female rat,” Journal of Chemical Neuroanatomy, vol. 36,
no. 3-4, pp. 216–226, 2008.

[138] M. J. Kelly, J. Qiu, and O. K. Rønnekleiv, “Estrogen modu-
lation of G-protein-coupled receptor activation of potassium
channels in the central nervous system,” Annals of the New
York Academy of Sciences, vol. 1007, pp. 6–16, 2003.

[139] C. B. Eckersell, P. Popper, and P. E. Micevych, “Estrogen-
induced alteration of μ-opioid receptor immunoreactivity
in the medial preoptic nucleus and medial amygdala,” The
Journal of Neuroscience, vol. 18, no. 10, pp. 3967–3976, 1998.

[140] P. E. Micevych, E. F. Rissman, J.-Å. Gustafsson, and K. Sin-
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