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Functionally prioritised whole‑genome 
sequence variants improve the accuracy 
of genomic prediction for heat tolerance
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Abstract 

Background:  Heat tolerance is a trait of economic importance in the context of warm climates and the effects of 
global warming on livestock production, reproduction, health, and well-being. This study investigated the improve‑
ment in prediction accuracy for heat tolerance when selected sets of sequence variants from a large genome-wide 
association study (GWAS) were combined with a standard 50k single nucleotide polymorphism (SNP) panel used by 
the dairy industry.

Methods:  Over 40,000 dairy cattle with genotype and phenotype data were analysed. The phenotypes used to 
measure an individual’s heat tolerance were defined as the rate of decline in milk production traits with rising tem‑
perature and humidity. We used Holstein and Jersey cows to select sequence variants linked to heat tolerance. The 
prioritised sequence variants were the most significant SNPs passing a GWAS p-value threshold selected based on 
sliding 100-kb windows along each chromosome. We used a bull reference set to develop the genomic prediction 
equations, which were then validated in an independent set of Holstein, Jersey, and crossbred cows. Prediction analy‑
ses were performed using the BayesR, BayesRC, and GBLUP methods.

Results:  The accuracy of genomic prediction for heat tolerance improved by up to 0.07, 0.05, and 0.10 units in 
Holstein, Jersey, and crossbred cows, respectively, when sets of selected sequence markers from Holstein cows were 
added to the 50k SNP panel. However, in some scenarios, the prediction accuracy decreased unexpectedly with the 
largest drop of − 0.10 units for the heat tolerance fat yield trait observed in Jersey cows when 50k plus pre-selected 
SNPs from Holstein cows were used. Using pre-selected SNPs discovered on a combined set of Holstein and Jersey 
cows generally improved the accuracy, especially in the Jersey validation. In addition, combining Holstein and Jersey 
bulls in the reference set generally improved prediction accuracy in most scenarios compared to using only Holstein 
bulls as the reference set.

Conclusions:  Informative sequence markers can be prioritised to improve the genomic prediction of heat tolerance 
in different breeds. In addition to providing biological insight, these variants could also have a direct application for 
developing customized SNP arrays or can be used via imputation in current industry SNP panels.
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mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Heat tolerance is the ability of an animal to maintain its 
production and reproduction levels under hot and humid 
conditions. With increasing global warming effects on 
animal production, there is worldwide growing desire to 
breed for resilience to heat, in part, to meet the demand 
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of the increasing human population while coping with 
the challenges of hot and ever-changing production envi-
ronments [1]. Dairy cows are often prone to heat stress 
due to the elevated metabolic heat of lactation. Temper-
ature and humidity levels exceeding the thresholds that 
are considered as comfortable for the dairy cows and 
other farm animals can compromise production (reduced 
milk, growth, etc.), reproduction (e.g., reduced concep-
tion rates), and welfare (increased thirst and hunger), 
leading to substantial economic losses [2].

Considerable research has been conducted in many 
countries to assess heat tolerance and performance in 
farm livestock, including measuring changes in core body 
temperatures (e.g., rectal, vaginal, rumen, etc.) and ther-
mal indices [e.g., temperature–humidity index (THI)] [3]. 
To study the effect of THI on milk production of dairy 
cows, Ravagnolo et al. [4] introduced a method in which 
daily milk records are merged with temperature-humid-
ity data to measure the rate of milk decline associated 
with changes in heat stress. This method has been widely 
adopted in many countries [5–7] due to the availability 
of extensive test-day milk records from dairy farms and 
climate data from weather stations.

In Australia, Nguyen et  al. [7] used test-day milk 
records (milk, fat, and protein yield) and climate data col-
lected from across Australia’s dairying regions to evalu-
ate heat tolerance in dairy cattle, which culminated in 
the release to the dairy industry [through DataGene Ltd; 
(https://​datag​ene.​com.​au/)] of the first genomic breeding 
values for this trait in 2017, with an average reliability of 
38%. While current prediction estimates are promising, 
even a smaller lift in reliability is economically impor-
tant to the wider industry since the genetic improvement 
is linearly related to the selection intensity, accuracy of 
estimated breeding values (EBV), genetic variation and 
is inversely proportional to the generation interval [8, 9]. 
The accuracy of prediction is the only component that is 
influenced by research in different ways to drive genetic 
improvement for a given trait whereas the other compo-
nents (selection intensity, genetic variation, and genera-
tion cycle) are largely controlled by breeding companies 
and farmers.

Besides increasing the size of the reference population, 
one way to boost the accuracy of prediction is to increase 
the density of markers used in genomic predictions. 
However, replacing single nucleotide polymorphism 
(SNP) panels by the full set of whole-genome sequence 
variants has, in most cases, yielded limited, or no appre-
ciable increase in the accuracy of prediction for various 
traits in cattle [10], sheep [11], and avian species [12]. 
Alternatively, a substantial increase in accuracy of pre-
diction has been realized by augmenting standard indus-
try SNP panels (e.g., a 50k SNP array) with a small set of 

informative or causal mutations for a trait [11, 13–15]. 
To fully maximize predictions, this approach requires a 
careful selection of informative markers. Thanks to the 
1000 Bull Genomes project [16], it is now possible to 
use this sequence database to impute genotypes to the 
whole-genome sequence. This may facilitate a more accu-
rate selection of highly informative variants for genomic 
predictions, especially for complex traits such as heat tol-
erance. Specifically, having a large sample size and high-
resolution genotypes can help to identify many putative 
causal variants with medium- and small-sized effects.

In addition to sample size, the composition of the 
population used for discovering informative variants can 
have an impact on the genomic predictions of a trait. 
Several studies e.g., [17–19] have reported that the map-
ping precision of the causal variants underlying traits 
is improved in multi-breed compared to single-breed 
genome-wide association studies (GWAS), especially for 
quantitative trait loci (QTL) that segregate across breeds 
[19]. In a simulated study, van den Berg et al. [14] dem-
onstrated that using variants that are close to the causal 
mutations can improve genomic predictions. With real 
data, Raymond et al. [20] found that the accuracy of pre-
diction for stature increased when candidate variants that 
were discovered from a meta-GWAS of 17 cattle popula-
tions were used. In sheep, Moghaddar et al. [11] reported 
an enhanced accuracy of prediction for various produc-
tion traits when they used pre-selected variants from the 
QTL discovery set that comprised multiple breed com-
positions. Besides these studies and several others that 
used single-breed sets to discover variants for traits, e.g., 
[15, 21], there is still a dearth of information on the value 
of variants that are discovered from multi-breed popu-
lations in genomic predictions. Notably, it is critical to 
ensure that the population(s) used to discover informa-
tive sequence variants for a trait is (are) independent of 
that used to train subsequent genomic predictions to 
avoid bias, as demonstrated by [22].

The main objective of this study was to quantify the 
accuracy of prediction of heat tolerance in Holsteins 
when sets of selected sequence markers from a GWAS 
based on a large sample of Holstein cows were added 
to the standard-industry 50k SNP panel that is rou-
tinely used for genomic evaluations in Australia. The 
selected variants are likely linked to causal mutations 
that underpin the genetic basis for heat tolerance [23] 
and, therefore, could enable more accurate and sustained 
genomic selection for heat tolerance. In addition, we 
investigated the accuracy of prediction when informa-
tive sequence markers discovered in Holstein cows are 
used in the genomic predictions of numerically smaller 
breeds, including Jersey and crossbred cattle. Moreover, 
we investigated the gain in accuracy of prediction when 

https://datagene.com.au/
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using informative markers discovered in a combined set 
of Holstein and Jersey cows (i.e., a multi-breed QTL dis-
covery set). Finally, we compared the gain in accuracy 
when single-breed (Holstein bulls) versus multi-breed 
(Holstein + Jersey bulls) reference sets are used in the 
genomic predictions.

Methods
Phenotypes
The phenotypes were obtained from DataGene (Data-
Gene Ltd., Melbourne, Australia; https://​datag​ene.​com.​
au/), and included test-day milk, fat, and protein yield 
for Holstein, Jersey, and Holstein–Jersey crossbred cows 
collected from dairy herds between 2003 and 2017 that 
were combined with climate data (daily temperature and 
humidity) obtained from weather stations across Aus-
tralia’s dairying regions. The distribution of dairy herds 
and weather stations, data filtering, and the calculation 
of environmental covariate [i.e., temperature–humidity 
index (THI)] used in this work were described previously 
[23, 24].

The rate of decline (slope) in milk, fat, and protein 
yields due to heat stress events was estimated using reac-
tion norm models described by [24]. Briefly, data on milk, 
fat, or protein yields were adjusted for the fixed effects, 
including herd-test-day, year-season of calving, parity, 
Legendre polynomials (order 3) on the cow age on the 
day of the test, and the Legendre polynomials (order 8) 
on the interaction between parity and DIM. The num-
ber of records (tests) per Holstein bull (N = 3323) ranged 
from 4 to 263,067 and that per Jersey bull (N = 852) 
ranged from 5 to 54,242. The number of daughters per 
Holstein bull ranged from 1 to 18,613 with an average of 
149, and that per Jersey bull ranged from 1 to 3169 with 
an average of 88.8. The random non-genetic effect fitted 
in the model included a random regression on a linear 
orthogonal polynomial of THI, where the intercept rep-
resents the level of mean milk yield, and the linear com-
ponent represents the change in milk yield (slope) due to 
heat stress for each cow, and a residual term. The reaction 
norm models [4] were used in the analyses with the THI 
threshold set at 60 (i.e., if THI < 60, then THI = 60) based 
on previous work in Australia [7, 25] showing that milk 
yield traits begin to decline at this THI threshold. The 
analyses to derive trait deviations (TD), which represent 
phenotypes adjusted for all fixed effects (i.e., the slope 
for each cow) were conducted using ASReml v4.2 [26]. 
Slope solutions (i.e., TD) for each bull’s daughters were 
averaged to obtain heat tolerance slope traits for bulls 
and were equivalent to daughter trait deviations (DTD). 
As in [27], the DTD in this study should be treated as 
approximations equivalent to the averages of daughter 
phenotypes since the models did not include pedigree 

data. Notably, the derivation of intercept and slope traits 
in this initial step was necessary because of the computa-
tional resources required to fit complex models and the 
large sample size in our study. From here on, the slope 
traits derived from milk, fat, and protein yield records 
are referred to as heat tolerance milk (HTMYslope), fat 
(HTFYslope), and protein (HTPYslope).

Genotypes
Two genotype datasets were prepared for the above cows 
and bulls with heat tolerance phenotypes: the standard 50k 
SNP chip (i.e., Illumina 50k Bovine Bead Chip used in pre-
vious work in Australia  [7] and 15,098,486 imputed whole-
genome sequence variants (WGS). The WGS was imputed 
[28] using the genomic sequence data from Run7 of the 1000 
Bull Genome Project based on the ARS-UCD1.2 reference 
genome (http://​1000b​ullge​nomes.​com/), and variants were 
filtered on the estimated imputation accuracy (R2 > 0.4) and 
minor allele frequency (MAF > 0.005). The detailed imputa-
tion procedure is described in [23].

Study design: discovery, reference, and validation datasets
The animals with genotypes and heat tolerance pheno-
types included Holsteins (29,107 ♀/3323 ♂), Jerseys (6338 
♀/1364 ♂), and Holstein–Jersey crossbreds (790 ♀/0 ♂). 
These animals were split into three independent groups 
to achieve the specific objectives: (i) a QTL discovery set 
that was used to discover informative sequence mark-
ers for heat tolerance, (ii) a reference set that was used 
to develop genomic prediction equations, and (iii) inde-
pendent validation sets that were used to assess genomic 
prediction accuracy. The validation sets included three 
breed subsets: Holstein, Jersey, and crossbred cows. 
Across all the prediction scenarios, we ensured that the 
QTL discovery set used in the GWAS was independent 
of the reference set used in genomic predictions to mini-
mise bias in the predictions [22]. The different sets of 
animals used for each group (QTL discovery, reference, 
and validation) are described schematically in Fig. 1, with 
a more detailed description in the following paragraphs.

Scenario 1
Scenario 1 aimed at testing the value of pre-selected 
sequence variants from Holstein cows in the genomic 
prediction of the same breed as well as in the prediction 
of other numerically smaller breeds, including Jersey and 
crossbred cows: (i) a QTL discovery set that included 
20,623 Holstein cows born in 2012 or earlier; (ii) a refer-
ence set that included 3323 Holstein bulls with none of 
these bulls siring the cows in the discovery set to ensure 
the independence of the phenotypes between the two 
datasets; and (iii) three validation sets, i.e. (a) that was 
comprised of 1223 younger Holstein cows (born in 2013 

https://datagene.com.au/
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or later), which were not daughters of the Holstein bulls 
used in the reference set, (b) that included 6338 Jersey 
cows, and (c) that included 790 crossbred cows. Each 
of the three validation sets was randomly split into two 
subsets of approximately equal size (see Additional file 1: 
Table S1) to facilitate the calculation of standard errors of 
prediction.

Scenario 2
Scenario 2 aimed at testing whether pre-selected inform-
ative markers from a multi-breed population improves 
the accuracy of predictions compared to pre-selected 
markers from the single-breed QTL discovery set: (i) 
a QTL discovery set that included older cows i.e. Hol-
stein (N = 20,623 ♀; born in 2012 or earlier) and Jer-
sey (N = 5143 ♀; calved for the first time in 2014 or 
earlier); (ii) a reference set that comprised Holstein bulls 
(N = 3323); (iii) three validation sets, i.e. (a) Holstein 
cows (N = 1223 ♀; as described for “Scenario 1”), (b) Jer-
sey cows (N = 1195; younger cows that calved for the first 
time in 2014 or later); and (c) crossbred cows (N = 790; 
as for “Scenario 1”). Each validation set was randomly 
split into two subsets (see Additional file 1: Table S1), and 
these were the same subsets used in “Scenario 1” for Hol-
steins and crossbreds.

Scenario 3
Scenario 3 aimed at testing the accuracy of prediction 
when using a multi-breed reference set as follows: (i) a 
QTL discovery set of Holstein cows (N = 20,623; born in 
2012 or earlier as described for “Scenario 1”, i.e., the sin-
gle-breed discovery set); (ii) a reference set that consisted 
of a multi-breed set of Holstein bulls (N = 3323 ♂; as for 
“Scenario 1”) and Jersey bulls (N = 852 ♂); and (iii) three 
validation sets, i.e. (a) Holstein cows (N = 1223; as for 
“Scenarios 1 and 2”), (b) Jersey cows (N = 431) that were 
not daughters of the bulls used in the multi-breed refer-
ence set; and (c) crossbred cows (N = 790; as for “Scenar-
ios 1 and 2”). Validation sets were split into two subsets, 
and for Holstein and crossbred validation they were the 
same subsets as in “Scenarios 1 and 2”.

QTL discovery and selection of informative markers (‘top 
SNPs’)
To identify informative sequence variants for heat toler-
ance traits (using the “discovery” sets described above), 
we performed a GWAS using mixed linear models to test 
associations between individual SNPs and cow’s slope 
traits using the GCTA software [29]. The details of the 
GWAS for the Holstein discovery set are described in 
[23]. Briefly, a linear model was fitted to cow’s (N = 20,623 

Fig. 1  Overview of the analyses with the three study scenarios. ‘Scenario 1’: the QTL discovery set was comprised of a subset of 20,623 older 
Holstein cows (born in 2012 or earlier); the reference set included only Holstein bulls (N = 3323) that were not sires of cows in the discovery set; 
validation sets included Holsteins, Jersey, and crossbred cows. ‘Scenario 2’: the QTL discovery set was comprised of a combined set of Holsteins 
(N = 20,623) and Jersey cows (N = 5143); the reference set included only Holstein bulls (N = 3323; as described for “Scenario 1”) that were not sires 
of the Holstein cows in the discovery set; validation sets included Holstein (N = 1223), Jersey (N = 6338) and crossbred (N = 790) cows. ‘Scenario 3’: 
the QTL discovery set included only Holstein cows (N = 20,623; as described for “Scenario 1”); the reference set included a combined set of Holsteins 
(N = 3323) and Jersey (N = 852) bulls); validation sets included Holstein (N = 1223), Jersey (N = 431) and crossbred (N = 790) cows
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Holsteins) slopes for production trait (HTMYslope, 
HTFYslope, and HTPYslope that were pre-adjusted for 
the nongenetic effects described by [24]), for each auto-
somal SNP (~ 15  million SNPs). The model included a 
genomic relationship matrix (GRM) constructed based 
on the 50k SNP genotype data of the cows. The same 
model was used when performing GWAS for the multi-
breed (Holstein and Jersey cows; N = 25,766) QTL dis-
covery set except that an additional binary covariate was 
fitted to account for breed effect.

To increase the power of GWAS to identify pleiotropic 
variants for heat tolerance from the three slope traits, 
we combined the above single-trait GWAS results in a 
multi-trait meta-GWAS (following methods described in 
[30]), and described for the Holstein data set in [23].

Using either the single-trait or multi-trait GWAS 
results, we selected informative variants defined as ‘top 
SNPs’ for each slope trait as follows:

1.	 Moving along each chromosome in 100-kb sliding 
windows, we chose the single most significant SNP 
from within the 100-kb window and then moved 
50 kb along the chromosome to the next 100-kb win-
dow. This was repeated starting from the proximal to 
the distal end of each chromosome, as in [11]. To be 
selected, the SNP had to pass a GWAS threshold of 
−log10(p value) ≥  3. In addition, we tested a more 
relaxed GWAS threshold of −log10(p value) ≥  2 to 
determine if it could help the capture of variants with 
much smaller effect sizes for heat tolerance in addi-
tion to those with large effects [23].

2.	 Among each set of selected ‘top SNPs’, we removed 
one SNP of any pair in strong linkage disequilibrium 
(LD) (r2 > 0.95) using the PLINK software [31], with 
the [−  indep-pairwise 50 5 0.95] option, where LD is 
calculated within 50-SNP sliding windows, each time 
sliding five SNPs along the chromosome.

Genomic prediction using BayesR and BayesRC methods
We used BayesR [17, 32] to calculate genomic breed-
ing values (GBV) for each cow in the validation set 
based on the standard-industry 50k SNP data. BayesR 
assumes one class of SNPs that are modelled as a mix-
ture of four normal distributions corresponding to 
zero-, small-, medium- and large-sized effects [17, 32]. 
Currently, the Australian dairy industry uses the stand-
ard 50k SNP panel for routine genomic evaluations; 
thus, it served as the benchmark to test the added value 
of selected sequence variants (i.e., ‘top SNPs’). Further-
more, the standard-industry 50k SNP panel includes a 
set of variants that were not selected intentionally for 
heat tolerance, which was ideal for our study.

The BayesR model fitted 42,572 variants (SNPs with 
a MAF > 0.005) from the 50k SNP panel using bulls 
(N = 3323) as reference set:

where y is a vector of heat tolerance slope phenotypes 
(HTMYslope, HTFYslope, and HTPYslope) or inter-
cept (i.e., mean yield) traits (MYint, FYint, and PYint); 
X is a design matrix; β is a vector of fixed effect solu-
tions; W is a centred design matrix of SNP genotypes; 
v is a vector of SNP effects, modelled to have four 
possible normal distributions: v ∼ N (0, Iσ 2

i
) , where 

σ 2
i
=

{

0.0, 0.0001 ∗ σ 2
v , 0.001 ∗ σ

2
v , 0.01 ∗ σ

2
v

}

, corresponding to 
zero-, small-, medium- and large-sized effects, respec-
tively with σ 2

v  the additive genetic variance; e is a vector 
of residual errors N (0,Eσ 2

e ) , with E a diagonal matrix cal-
culated as diag(1/wi ), with wi being a weighting factor for 
bull i calculated based on the available number records 
following [33]:

where h2 is the heritability; c is the proportion of the 
genetic variance that is not accounted by the SNPs 
( c = 0.2); and p is the number of daughters for each bull.

The same model (Eq. 1) was used when analysing the 
multi-breed reference population (Holstein and Jersey; 
N = 4175), except that a binary covariate was fitted to 
account for the breed effect. To account for polygenic 
effects, we tested models with or without pedigree rela-
tionships, which yielded correlation estimates of SNP 
effects close to 1.0. Therefore, based on these prelimi-
nary analyses, we decided not to include pedigree data 
in the subsequent models.

To calculate GBV using a combined set of 50k SNPs 
and the pre-selected SNPs from GWAS (i.e., 50k + ‘top 
SNPs’) for the validation cows, we used the BayesRC 
method [34]. BayesRC is an extension of BayesR in 
which two or more classes of SNP effects are modelled: 
the SNPs within each class are fitted as a mixture of 
four normal distributions as in BayesR so that the mix-
ture distribution can differ for each SNP class. In our 
study, the SNPs from the standard 50k array (42,572 
SNPs) were allocated to class I and the pre-selected 
‘top SNPs’ from GWAS to a separate class II. Class I 
variants are considered as a random set from the 50k 
array (as indicated earlier), while Class II variants (‘top 
SNPs’) may be enriched with causal and/or highly pre-
dictive mutations for heat tolerance.

For both BayesR and BayesRC models, we performed 
five Markov chain Monte Carlo (MCMC) replicate 
chains, each with 40,000 iterations, of which 20,000 

(1)y = Xβ+Wv + e,

(2)wbulli =
1− h2

ch2 + (4−h2)
p

,
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were discarded as burn-in for all the traits. These itera-
tions gave stable convergence across the five replicates. 
The results from these replicates were averaged to get 
the final estimate. To facilitate the calculation of standard 
errors, we randomly split the validation cows into two 
subsets of approximately equal size (see Additional file 1: 
Table  S2) and then performed analyses (i.e., the BayesR 
and BayesRC) for each subset, separately.

For each analysis (described above), the accuracy of 
prediction was calculated as described in [11]: 
Accuracy =

rGBV ,phen
√

h2
 , where rGBV ,phen is the correlation of 

GBV with TD phenotypes (slope or intercept traits); (h2 is 
the genomic heritability of the trait computed from 50k 
SNP data based on 29,107 Holstein cows). These herita-
bility estimates used to calculate prediction accuracies 
are in Additional file  1: Tables S2 and S3. The corre-
sponding standard errors of the accuracies were esti-
mated as: SE = SD/

√

N  , where N  is the number of 
random validation subsets ( N  = 2); SD is the standard 
deviation of the accuracies of prediction calculated from 
the two validation sets per breed (i.e., Holstein, Jersey, 
and crossbred cows). The dispersion bias of the accuracy 
of prediction for different traits was assessed as the 
regression coefficient of the TD phenotypes on the GBV 
in the validation set and their corresponding standard 
errors calculated as described for the SE of the accuracies 
of prediction above. The regression coefficient = 1.0 indi-
cates no dispersion bias, whereas values > 1.0 or < 1.0 
indicate that the GBV are subject to deflation or inflation, 
respectively.

Results
Genomic heritability
Genomic heritability estimates based on 29,107 Hol-
stein cows using the 50k SNP array were similar for all 
the slope (heat tolerance) traits (see Additional file  1: 
Table  S2). The genomic heritability estimates based on 
Jersey cows (N = 6338) were comparable to those based 
on Holstein cows with values of 0.26 ± 0.02, 0.23 ± 0.02, 
and 0.25 ± 0.02 for the HTMYslope, HTFYslope and 
HTPYslope traits, respectively (see Additional file  1: 
Table  S2). However, the values for crossbred cows 
(N = 790) were estimated with large standard errors 
[0.58 ± 0.10 (HTMYslope); 0.34 ± 0.11 (HTFYslope); 
0.51 ± 0.10 (HTPYslope)], which is most likely due to 
the small sample size used. In contrast, the genomic 
heritability estimates for intercept traits were relatively 
larger than those for heat tolerance traits (see Additional 
file 1: Tables S2 and S3). In this study, we computed the 
accuracy of genomic predictions across all validation 
sets using the heritability estimates from Holstein cows 
(N = 29,107) that were estimated with the smallest stand-
ard errors.

Pre‑selection of heat tolerance SNPs (i.e., top SNPs)
Single‑breed (Holstein cows) QTL discovery set
Table  1 includes the number of selected informative 
sequence variants for heat tolerance defined as ‘top SNPs’ 
from single-trait GWAS and multi-trait meta-analyses of 
the Holstein cow discovery set (i.e., the single-breed dis-
covery set; see “Methods” section—“Scenario 1”). Using 
a more stringent GWAS cut-off threshold of − log10(p-
value) ≥ 3 resulted in about a fivefold smaller number of 
selected ‘top SNPs’ than a comparatively relaxed GWAS 
cut-off of − log10(p-value) ≥ 2. The numbers of selected 
‘top SNPs’ at a − log10(p-value) ≥ 2 from single-trait 
GWAS (after pruning pairs of markers in strong LD, 
r2 > 0.95) were equal to 9207 (HTMYslope), 9352 (HTFYs-
lope), and 9633 (HTPYslope), and the numbers of those 
selected at a − log10(p-value) ≥ 3 were equal to 1654 
(HTMYslope), 1708 (HTFYslope) and 1624 (HTPYslope) 
(Table 1). The largest number of ‘top SNPs’ was obtained 
for HTPYslope, followed by HTFYslope and HTMYs-
lope (Table  1). Although the number of variants that 
passed the GWAS cut-off was largest for HTPYslope, the 
strength of the GWAS signal (peak) across the genome 
(see Additional file 2: Figs. S1 and S2) was relatively weak 
for this trait compared to the other traits (i.e., HTMYs-
lope and HTFYslope).

A large proportion (> 50%) of the selected ‘top SNPs’ 
had a lower MAF compared to the SNPs in the 50k panel 
(see Additional file  2: Fig. S3). Compared to single-trait 
GWAS, and as expected, fewer ‘top SNPs’ were selected 
from the multi-trait meta-analyses of slope traits at a 
more stringent [− log10(p-value) ≥ 3; N = 2365 SNPs] 
than at a relaxed GWAS cut-off [− log10(p-value) ≥ 2; 
N = 9090 SNPs] (Table 1). Comparatively, a slightly larger 
number of ‘top SNPs’ was selected across intercept traits 
than across heat tolerance traits (see Additional file  1: 
Table S4).

Table 1  Number of informative markers for heat tolerance 
defined as ‘top SNPs’ selected from single-trait GWAS and multi-
trait meta-analyses of heat tolerance slope traits of Holstein 
discovery cow set (N = 20,623)

Markers were selected based on the GWAS cut-off thresholds of − log10(p-
value) ≥ 2 and − log10(p-value) ≥ 3. The values in brackets are the final number 
of SNPs after adding selected ‘top SNPs’ to the 50k SNP data used in the BayesRC 
analyses (i.e., 42,572 SNPs + top SNPs). Traits are defined as heat tolerance milk 
(HTMYslope), fat (HTFYslope) and protein (HTPYslope) yield slope traits

Trait ‘Top SNPs’ (− log10(p-
value) ≥ 2)

‘Top SNPs’ 
(− log10(p-
value) ≥ 3)

HTMYslope 9207 (51,750) 1654 (44,219)

HTFYslope 9352 (51,894) 1708 (44,277)

HTPYslope 9633 (52,168) 1624 (44,190)

Meta-GWAS 9090 (51,636) 2365 (44,929)
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The proportion of phenotypic variance accounted 
for by the ‘top SNPs’ at a GWAS p-value cut-off of 
(− log10(p-value) ≥ 2; Table  1) varied across traits and 
populations. In general, the ‘top SNPs’ for HTMYslope 
explained a relatively larger variance compared to the ‘top 
SNPs’ for HTFYslope and HTPYslope across the studied 
scenarios. In the Holstein validation set, variance esti-
mates for HTMYslope, HTFYslope and HTPYslope were 
0.24 ± 0.05, 0.22 ± 0.05, and 0.21 ± 0.05, respectively. In 
the Jersey validation set, variance estimates explained by 
the ‘top SNPs’ for HTMYslope, HTFYslope and HTPYs-
lope were 0.23 ± 0.02, 0.18 ± 0.02 and 0.22 ± 0.02, respec-
tively. The variance estimates in the crossbred validation 
set were 0.55 ± 0.10, 0.24 ± 0.10, 0.37 ± 0.10, for HTMYs-
lope, HTFYslope and HTPYslope, respectively. The large 
standard error for the variance estimates in crossbreds is 
likely due to their small sample size (N = 790).

Multi‑breed (Holstein + Jersey cows) QTL discovery set
When Holstein cows (N = 20,623) were combined with 
Jersey cows (N = 5143) in the QTL discovery set (i.e., the 
multi-breed QTL discovery set, see “Methods” section—
“Scenario 2”), we found a smaller number of selected 
‘top SNPs’ (after pruning pairs of markers in strong 
LD, r2 > 0.95) from the single-trait GWAS at − log10(p-
value) ≥ 2 [HTMYslope = 6132; HTFYslope = 6286; 
HTPYslope = 6422] compared to those from the sin-
gle-breed QTL discovery set at the same significance 
cut-off (described above). However, when compared to 
the single-breed GWAS (only Holstein cows), using a 
multi-breed QTL discovery set (Holsteins + Jersey cows) 
increased the strength of the GWAS signals in some 
genomic regions (e.g., on Bos taurus chromosome (BTA) 
14 near the DGAT1 gene) (see Additional file 2: Figs. S4 
and S5).

Genomic prediction using selected SNPs 
from the single‑breed discovery set (‘Scenario 1’)
Figure  2 shows the accuracy of predictions when the 
selected ‘top SNPs’ from a single-breed (Holstein cows; 
N = 20,623) QTL discovery set were added to the stand-
ard 50k SNP array and analysed using the BayesRC 
model. For this comparison, the reference set included 
only Holstein bulls (N = 3323) and the validation set 
included Holstein (N = 1223), Jersey (N = 6338) and 
crossbred (N = 790) cows. The gain in accuracy for the 
different traits and models varied across the three vali-
dation sets. The increase in the accuracy of prediction 
was generally consistent for HTMYslope across most of 
the different scenarios (50k + ‘top SNPs’) tested, but not 
for HTFYslope and HTPYslope, particularly in the Jer-
sey validation set. In general, the increase in accuracy 
of prediction ranged from 0.001 to 0.09, with the largest 

increase (0.09) observed for HTMYslope in the crossbred 
validation set. In the Holstein validation set, the accu-
racy of prediction across all scenarios hardly changed for 
HTMYslope ranging from − 0.01 to 0.008 units, whereas 
the changes for HTFYslope and HTPYslope ranged from 
0.03 to 0.05 and from 0.04 to 0.06, respectively (Fig.  2). 
For the intercept traits in the Holstein validation set, 
fitting 50k + ‘top SNPs’ (in the BayesRC model) gener-
ally increased the accuracy of prediction compared to 
BayesR (using only 50k SNPs) by up to 0.04, 0.03 and 0.05 
for FYint, PYint and MYint, respectively (see Additional 
file 2: Fig. S6).

For the crossbred validation set, the change in the 
accuracy of prediction from BayesRC (50k + ‘top SNPs’) 
over BayesR (fitting only 50k SNPs) ranged from − 0.004 
to 0.09, from − 0.06 to 0.02, and from − 0.04 to 0.009 for 
HTMYslope, HTFYslope, and HTPYslope, respectively 
(Fig.  2). Similarly, compared to BayesR (using only 50k 
SNPs), the accuracy of prediction for the intercept traits 
in crossbreds hardly changed across most prediction 
scenarios when fitting 50k + ‘top SNPs’ (BayesRC), with 
changes ranging from − 0.01 to 0.01, from − 0.02 to 0.02, 
and from − 0.04 to − 0.02 for MYint, FYint, and PYint, 
respectively (see Additional file 2: Fig. S6).

In the Jersey validation set (using 50k + ‘top SNPs’ in 
the BayesRC), we observed that the accuracy for HTMYs-
lope increased compared to that of BayesR (using only 
50k SNPs) across all prediction scenarios, with changes 
ranging from 0.01 to 0.05 units. However, the accuracy 
of prediction decreased considerably for HTFYslope 
(− 0.10) and HTPYslope (− 0.09) when the ‘top SNPs’ 
from Holstein cows were used in Jerseys with a slightly 
larger decrease in accuracy of prediction when using ‘top 
SNPs’ from the single-trait GWAS than those from the 
multi-trait meta-analysis (Fig.  2). Similarly, compared 
to BayesR using only 50k SNPs, the accuracy of predic-
tion dropped for intercept traits when fitting the ‘top 
SNPs’ from the Holstein cow discovery set in Jerseys with 
changes ranging from − 0.10 to − 0.03 (FYint) and from 
− 0.09 to − 0.04; (PYint), while the accuracy of predic-
tion for MYint from BayesRC increased from 0.02 to 0.06 
compared to BayesR (see Additional file 2: Fig. S6).

Across all prediction scenarios (Fig. 2), using ‘top SNPs’ 
from the relaxed GWAS cut-off value of [− log10(p-
value) ≥ 2 (~ 9000 SNPs) in the BayesRC model did not 
yield a substantial difference in accuracy of predic-
tion compared to those based on the ‘top SNPs’ from a 
more stringent GWAS threshold [− log10(p-value) ≥ 3 
(~ 2000  SNPs). The change in accuracy of prediction 
across all validation sets and traits ranged from − 0.07 
to 0.09 units and from − 0.10 to 0.06 units when the ‘top 
SNPs’ from relaxed and more stringent GWAS cut-off 
p-values were added to the 50k SNP panel (BayesRC) 
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compared to the results from BayesR (using only 50k) 
(Fig. 2). In general, using ‘top SNPs’ from the more strin-
gent GWAS cut-off in the BayesRC model yielded a larger 
dispersion bias than the ‘top SNPs’ from the relaxed 
GWAS cut-off threshold for heat tolerance slope traits 
(see Additional file  2: Fig. S7). However, for intercept 
traits, the BayesRC model using 50k + top SNPs showed 
little or no increase in the dispersion bias (see Additional 
file 2: Fig. S8).

Moreover, there was no substantial difference in accu-
racy from BayesRC when using the ‘top SNPs’ from sin-
gle-trait GWAS versus the ‘top SNPs’ from multi-trait 
meta-GWAS of slope traits across different prediction 
scenarios (Fig.  2). The change in accuracy based on the 
selected ‘top SNPs’ from the single-trait GWAS ranged 
from 0.002 (HTMYslope) to 0.06 (HTPYslope), from 
− 0.05 (HTFYslope) to 0.02 (HTMYslope), and from 
− 0.06 (HTFYslope) to 0.07 (HTMYslope) in Holsteins, 
Jerseys, and crossbred validation sets, respectively. These 

Fig. 2  Accuracy of genomic predictions (Holstein only reference) using either 50k SNP data (colored grey) or 50k + a range of ‘top SNPs’ sets 
(selected from the Holstein QTL discovery set). The ‘top SNPs’ were selected from single-trait GWAS (colored blue) and multi-trait meta-analysis 
(colored orange) at a less stringent cut-off threshold of − log10(p-value) ≥ 2 [~ 9000 SNPs] and at a more stringent p-value of − log10(p-value) ≥ 3 
[~ 2000 SNPs]. Accuracy of predictions are provided for three cow validation sets: a Holsteins, N = 1223), b Jersey, N = 6338), and c Holstein–Jersey 
crossbreds, N = 790). The traits analysed are heat tolerance milk (HTMYslope), fat (HTFYslope), and protein (HTPYslope) yield slopes. The genomic 
predictions were generated using either BayesR (50k SNP set) or BayesRC (50k + top SNPs). Vertical lines represent the standard errors calculated 
from two random validation subsets
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changes are comparable to those obtained using ‘top 
SNPs’ from the meta-analysis of slope traits with changes 
ranging from − 0.01 (HTMYslope) to 0.06 (HTPYslope), 
from − 0.10 (HTFYslope) to 0.05 (HTMYslope), and from 
− 0.006 (HTPYslope) to 0.09 (HTMYslope) in Holsteins, 
Jersey, and crossbred validation sets, respectively. Since 
the results were comparable when using ‘top SNPs’ from 
either relaxed or stringent GWAS cut-off values, we here-
after, only report the results based on the ‘top SNPs’ from 
the single-trait GWAS at the relaxed cut-off threshold 
(i.e., − log10(p-value) ≥ 2).

The dispersion bias across heat tolerance traits in the 
Holstein validation set (’Scenario 1’) showed that the 
GBV were deflated (see Additional file 2: Fig. S7). In con-
trast, the predictions were less biased (i.e., regression 
coefficient values closer to 1.0) for the intercept traits, 
particularly for MYint and PYint in the Holstein valida-
tion set (see Additional file 2: Fig. S8). In the Jersey vali-
dation set, the dispersion bias for HTFYslope showed 
that the GBV were inflated (see Additional file 2: Fig. S7). 
Also, the GBV were inflated in the Jersey validation set 
for HTPYslope when the ‘top SNPs’ were added to the 
50k SNP array and analysed using BayesRC [i.e., 1.11 in 
the BayesR model versus 0.79 in the BayesRC model; (see 
Additional file 2: Fig. S7)]. The dispersion bias for the Jer-
sey validation set was inflated across intercept traits (see 
Additional file 2: Fig. S8). The predictions were extremely 
deflated in the crossbreds, particularly for HTMYslope 
(bias > 1.7), which is likely due to the small sample size 
and population used. The dispersion bias for heat toler-
ance traits was even more pronounced when the selected 
‘top SNPs’ were added to the 50k SNP data using the 
BayesRC model compared to the estimates using the 
BayesR model and only the 50k SNP data (see Additional 
file 2: Fig. S7).

Genomic prediction using selected SNPs from multi‑breed 
discovery set (‘Scenario 2’)
Figure  3 shows the change in accuracy of prediction 
(based on the BayesRC) when the selected ‘top SNPs’ 
(GWAS cut-off of − log10(p-value) ≥ 2) from the multi-
breed (Holstein + Jersey cows) QTL discovery set were 
added to the 50k SNP array for which the reference set 
consisted only of Holstein bulls. In general, the change 
in accuracy of prediction across all traits and validation 
sets ranged from − 0.05 (HTPYslope) in Jersey to 0.11 
(HTMYslope) in crossbred cows. In the Holstein valida-
tion set (N = 1223), the accuracy of prediction increased 
across all traits with the greatest increase for HTPYslope 
(0.03) followed by HTFYslope (0.02) and HTMYslope 
(0.005), respectively. In this validation set, the disper-
sion bias was higher than 1.0 across all traits, indicating 
deflated GBV. The bias decreased slightly for HTMYslope 

but increased for HTPYslope and HTFYslope when the 
‘top SNPs’ were fitted in the BayesRC model (Fig. 3).

In the Jersey validation set (N = 1195), the change in 
accuracy of prediction (based on the BayesRC model) 
was not consistent across traits (Fig. 3). When using the 
selected ‘top SNPs’ from the multi-breed QTL discovery 
set, the accuracy of prediction increased for HTMYslope 
(0.03) and HTFYslope (0.02) but decreased for HTPYs-
lope (− 0.05). These values contrast with those obtained 
using selected ‘top SNPs’ from the single-breed QTL 
discovery set (only Holsteins; see “Methods”, “Scenario 
1”), where we found a change in accuracy of 0.09, 0.04, 
and 0.01 for HTMYslope, HTFYslope, and HTPYslope, 
respectively, when using a smaller subset of Jersey cows 
(i.e., N = 1195) instead of 6338 cows (as in “Scenario 1”). 
Unlike in “Scenario 1” where we found that GBV were 
inflated across heat tolerance traits (see Additional file 2: 
Figure S7) in Jerseys, the predictions were generally close 
to 1.0 in “Scenario 2”, particularly for HTMYslope (Fig. 3).

In the crossbreds (N = 790), using ‘top SNPs’ discov-
ered in the multi-breed (Holsteins + Jersey cows) set 
(based on the BayesRC models) yielded a larger (0.11 
units) change in accuracy of prediction than with BayesR 
(using only 50k SNPs) for HTMYslope compared to a 
drop in accuracy from BayesRC over BayesR of − 0.005, 
and − 0.03 units for HTFYslope and HTPYslope, respec-
tively (Fig.  3). Comparatively, using the ‘top SNPs’ from 
the single-breed (only Holsteins) QTL discovery set in 
crossbreds (‘Scenario 1’) yielded a change in accuracy 
from BayesRC over BayesR of 0.09, 0.02, and − 0.006 for 
HTMYslope, HTFYslope, and HTPYslope, respectively. 
As in “Scenario 1”, the dispersion bias in crossbreds for 
HTMYslope was extreme (> 1.7) compared to the other 
traits. In this crossbred validation set (‘Scenario 2’), the 
bias increased more for HTMYslope but decreased for 
HTFYslope and HTPYslope when fitting the selected ‘top 
SNPs’ in BayesRC (Fig. 3).

Genomic prediction using multi‑breed reference set 
(‘Scenario 3’)
When we used a multi-breed (Holstein + Jersey bulls) 
reference set in which the ‘top SNPs’ were only from the 
Holstein cow QTL discovery set (see “Methods” section, 
“Scenario 3”), we found a consistent increase in the accu-
racy of prediction in most cases (Fig.  4). The accuracy 
of prediction decreased only for HTMYslope (−  0.06) 
and HTPYslope (−  0.002) in the Jersey validation set 
for this scenario. The change in accuracy of prediction 
from BayesRC over BayesR for HTMYslope, HTFYs-
lope, and HTPYslope were: [−  0.01, 0.05, and 0.05], 
[− 0.06, − 0.002, and 0.01], and [0.10, 0.03, and 0.04] in 
the Holstein (N = 1223), Jersey (N = 431) and crossbred 
(N = 790) cow validation sets, respectively (Fig. 4). These 



Page 10 of 18Cheruiyot et al. Genetics Selection Evolution           (2022) 54:17 

changes in accuracy of prediction are slightly larger com-
pared to those found when using a single-breed refer-
ence set (Fig. 2; “Scenario 1”) from BayesRC over BayesR, 
with values for HTMYslope, HTFYslope and HTPYs-
lope of [0.001, 0.04, and 0.06], [0.05, − 0.06 and − 0.07], 
[0.09, 0.02, and − 0.006] in the Holstein (N = 1223), Jer-
sey (N = 6338), and crossbred (N = 790) validation sets, 
respectively. To be more comparable, when considering 
only a subset of Jersey cows (N = 431) in the validation 
set where the reference set consisted of a single breed 
(only Holstein bulls; “Scenario 1’), we found a change 
in accuracy from BayesRC over BayesR of −  0.02, 0.03, 

and −  0.06 for HTMYslope, HTFYslope, and HTPYs-
lope, respectively. Compared to estimates from the “Sce-
nario 1” and “Scenario 2” analyses above, we observed 
the smallest bias (i.e., values around 1.0) when using the 
multi-breed reference set in the Holstein validation set. 
However, in the Jersey validation set, we found extreme 
bias (> 2.0) for HTPYslope, whereas the bias was smaller 
for HTFYslope. In the crossbreds, the bias was large 
for HTMYslope (> 1.5) and HTFYslope (> 1.3), whereas 
we observed a small bias (values closer to 1.0) for the 
HTPYslope trait.

Fig. 3  Accuracy and dispersion bias in Holstein (N = 1223), Jersey (N = 1195) and crossbred (N = 790) cows when using 50k + ‘top SNPs’ selected 
from the multi-breed (Holstein + Jersey) QTL discovery set. Holstein bulls (N = 3323) were used as the reference set for genomic predictions. The 
‘top SNPs’ were selected based on a single-trait GWAS cut-off of [− log10(p-value) ≥ 2]. The traits analysed are heat tolerance milk (HTMYslope), fat 
(HTFYslope), and protein (HTPYslope) yield. Vertical lines represent the standard errors calculated from two random validation subsets
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BayesR versus BayesRC methods
To test whether allocating selected informative markers 
to a separate SNP class (see “Methods”) in BayesRC can 
show added benefit in our study, we combined 50k + ‘top 
SNPs’ from a single-breed (Holsteins) QTL discovery set 
and re-calculated GBV using BayesR where all SNPs were 
allocated to a single class. The total number of 50k + ‘top 
SNPs’ used in BayesR and BayesRC was 51,750, 51,894, 
and 52,168, for HTMYslope, HTFYslope, and HTPYs-
lope traits, respectively (Table 1). The accuracy of predic-
tion (± SE) was slightly higher for two of the three traits 
from BayesRC [0.49 ± 0.01 (HTMYslope); 0.53 ± 0.02 

(HTFYslope); 0.45 ± 0.007 (HTPYslope)] compared to 
BayesR [0.51 ± 0.01 (HTMYslope); 0.51 ± 0.02 (HTFYs-
lope); 0.44 ± 0.01 (HTPYslope)]. These results suggest 
that allocating SNPs to different classes in BayesRC, 
yields marginal benefit in the prediction of heat toler-
ance traits over BayesR. Moreover, there was little dif-
ference in the regression coefficient of predictions 
(± SE) between BayesRC [1.42 ± 0.002 (HTMYslope); 
1.31 ± 0.08 (HTFYslope); 1.21 ± 0.02 (HTPYslope)] and 
BayesR [1.33 ± 0.005 (HTMYslope); 1.32 ± 0.17 (HTFYs-
lope); 1.21 ± 0.02 (HTPYslope)].

Fig. 4  Accuracy and bias of genomic predictions in Holstein (N = 1223), Jersey (N = 431) and crossbred (N = 790) cows when using the 
multi-breed reference set (Holstein and Jersey bulls; N = 4175). The selected ‘top SNPs’ used in the BayesRC were from the Holstein cow discovery 
set (N = 20,623) based on the single-trait GWAS cut-off of [− log10(p-value) ≥ 2]. The traits analysed are heat tolerance milk (HTMYslope), fat 
(HTFYslope), and protein (HTPYslope) yield slopes. Vertical lines represent the standard errors calculated from two random validation subsets
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Discussion
In this paper, we present a genomic prediction analysis 
of heat tolerance traits using a large sample size of over 
40,000 cattle, comprising Holstein, Jersey, and cross-
bred individuals. The primary objective was to inves-
tigate if selected sequence variants from a GWAS in 
Holstein cattle benefits genomic prediction of heat tol-
erance phenotypes in the same breed (i.e., within-breed 
prediction). The hypothesis is that the selected variants 
are linked to causal mutations that underpin the genetic 
basis of heat tolerance, and thus could enable more accu-
rate and sustained genomic selection for this trait. In 
addition, we also tested the value of pre-selected vari-
ants from Holstein cattle for the genomic prediction of 
breeds with numerically smaller sample sizes, such as 
Jersey and crossbreds. Furthermore, we investigated the 
benefits of using informative markers from a multi-breed 
(Holstein + Jersey cows) QTL discovery set for genomic 
prediction of heat tolerance. Overall, our results show 
that we can increase the accuracy of prediction of heat 
tolerance by up to 0.10 unit in some scenarios when pre-
selected sequence variants are added to the standard-
industry 50k SNP panel. However, the change in the 
accuracy of prediction when using pre-selected sequence 
variants in BayesRC (i.e., 50k + top SNPs) varied consid-
erably across traits and prediction scenarios.

We used the BayesR and BayesRC methods to test dif-
ferent prediction scenarios. For BayesR, when only 50k 
SNP data were used, we found a high accuracy of predic-
tion in Holsteins and crossbreds compared to Jerseys. We 
expected a lower accuracy in Jerseys because we used 
Holstein bulls as a reference set for genomic predictions 
(see “Methods”, “Scenario 1”). These breeds are geneti-
cally divergent and may differ regarding the linkage dis-
equilibrium of variants with causal mutations, they may 
not share all the same causal variants, or some variant 
effects may differ between these breeds [35]. As such, 
when we combined Holstein and Jersey bulls in the refer-
ence set (multi-breed reference set; see “Methods”, “Sce-
nario 3”) and performed analysis using BayesR (without 
pre-selected ‘top SNPs’), we found a substantial improve-
ment in the accuracy of prediction across all traits for 
Jerseys which is consistent with the multi-breed genomic 
predictions reported in previous studies e.g., [17, 35].

For the BayesRC model, where 50k + selected ‘top 
SNPs’ were fitted in the analysis, we found a consistent 
increase in the accuracy of prediction across traits when 
using the ‘top SNPs’ that were selected from the Holstein 
discovery set for the prediction of the Holstein valida-
tion cows (i.e., within-breed QTL discovery and valida-
tion set; see “Methods”, “Scenario 1”). Similarly, the use 
of ‘top SNPs’ from the Holstein discovery set in crossbred 
cattle based on BayesRC performed reasonably well, as 

expected since our crossbred cows share a similar genetic 
background with Holsteins (i.e., there were mostly F1 and 
backcrosses to Holstein). The gain in accuracy of predic-
tion for Holsteins and crossbreds likely benefited, in part, 
from a powerful GWAS QTL discovery set (we used a 
sample size of 20,623 Holstein cows, each having around 
15 million imputed sequence variants) and the method-
ology used for genomic prediction. To date, comparable 
GWAS have used a sample size of at most 5000 individu-
als e.g., [5] to search for variants linked to heat tolerance 
in dairy cattle. We expect an even greater increase in 
accuracy of prediction in the future with larger sample 
sizes for GWAS to increase the power of QTL discovery.

However, the genomic predictions in Jerseys performed 
rather poorly, particularly for HTFYslope and HTPYs-
lope, with accuracies decreasing when the selected ‘top 
SNPs’ from the Holstein discovery set were added to 
the 50k SNP set and used in BayesRC. Given that Hol-
stein and Jersey are genetically divergent breeds, using 
informative QTL from Holstein in a Jersey validation 
may have introduced noise in the genomic predictions 
since the common QTL may not be tracked across these 
breeds. Also, the drop in accuracy could be due to the 
non-additive genetic effects (i.e., dominance and epista-
sis) between Holstein and Jersey. Simulation studies e.g., 
[36] found that the additive genetic correlations between 
divergent populations can drop to values as low as 0.45 
if reasonably large epistatic interactions exist among 
loci, which can impact genomic predictions across 
populations.

However, it is rather unclear why the accuracy of pre-
diction increased for HTMYslope in Jerseys but not for 
HTFYslope and HTPYslope when using selected ‘top 
SNPs’ from Holsteins. One reason could be due to a dif-
ference in genetic architecture of these traits. One way to 
explain this result is to examine the direction of effect for 
the SNPs between populations. For example, by impos-
ing the GWAS cut-off p-value of 0.001 in both Holstein 
bulls and Jersey cows, we found that 72% (N = 774) and 
71% (N = 524) of the effects for the significant SNPs for 
HTMYslope and HTFYslope, respectively, were in the 
same direction. Comparatively, we found a larger pro-
portion of significant SNPs (GWAS p-value < 0.001) hav-
ing the same direction of effects for HTMYslope (85%; 
N = 420) and HTFYslope (95%; N = 1240) between Hol-
stein bulls versus Holstein cows (i.e., within-breed com-
parison) (see Additional file  1: Table  S5). Besides the 
direction of effects for the SNPs between populations, a 
smaller number of ‘top SNPs’ for HTMYslope was dis-
covered from the GWAS in Holstein cattle at the relaxed 
cut off (p < 0.01) (Table  1) compared to HTPYslope and 
HTFYslope, suggesting that HTMYslope is controlled 
by relatively few QTLs with large effects compared to 
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the other traits. This is supported by the strength [based 
on the magnitude of − log10(p-value)] and the number 
of significant GWAS signals across the genome based 
on the Manhattan plot (see Additional file 2: Figure S1). 
For HTMYslope, we observed four strong peaks on four 
chromosomes (i.e., BTA5, 6, 14, and 20). This contrasts 
with the HTFYslope trait for which we observed multiple 
clear GWAS signals across the genome (see Additional 
file  2: Figure S1). Moreover, these results are consistent 
with the evidence that the ‘top SNPs’ for the HTMYslope 
trait explained a relatively larger proportion of pheno-
typic variance compared to the ‘top SNPs’ for other traits 
across prediction scenarios.

By comparing the GWAS in Holsteins (N = 20,623) 
and Jersey (N = 6338) cows, we found the greatest over-
lap of top significant SNPs (i.e., top SNPs that were at 
least within 1-Mb regions in both breeds) for HTMYs-
lope mapping to the genomic regions showing strong 
signals on BTA5, 14, 20, and 25. This overlap explains, 
in part, the greater consistency of the increase in accu-
racy of prediction for HTMYslope than for HTFYslope 
and HTPYslope. In this context, our findings are in line 
with those of [32], who reported that only a fraction of 
the QTL for milk yield segregate across Holstein and Jer-
sey cattle. Overall, these results suggest that breed × SNP 
interactions exist, meaning that the informative markers 
obtained from Holstein are of little or no value for the 
prediction in Jersey. These findings have implications in 
the genomic prediction of complex traits such as heat tol-
erance since it is not unusual for one country to incorpo-
rate genetic variants discovered in an independent study 
from another country in their genomic evaluations, e.g., 
a meta-analysis of SNP effects from multiple countries 
using SNP-multiple across country evaluation (MACE) 
[37]. In addition, the results in this study seem to indi-
cate that HTMYslope could be a more reliable indicator 
trait of heat tolerance and could be given greater weight 
in the selection index that incorporates heat tolerance, 
although further work is needed to confirm this. Cur-
rently, the Australian dairy industry gives more economic 
weight to HTPYslope (6.92) than to HTMYslope (− 0.10) 
or HTFYslope (1.79) in the calculation of heat tolerance 
genomic breeding values based on weights for milk pro-
duction traits [38, 39].

Previous research studies in cattle e.g., [18, 19] have 
reported that the mapping of putative causal mutations 
is more precise when using multi-breed populations in 
GWAS and have proposed pathways that underpin heat 
tolerance [23]. In this study, we found some improve-
ment in the predictions, especially in Jersey, when using 
‘top SNPs’ from a discovery set of combined Holstein and 
Jersey cows (i.e., the multi-breed QTL discovery set). For 
example, the accuracy of prediction increased by 0.03 

for HTFYslope when using ‘top SNPs’ selected from the 
multi-breed discovery set in Jersey compared to a drop 
of 0.06 when the ‘top SNPs’ from the Holstein QTL dis-
covery set (single breed) was used in BayesRC (Fig. 3). In 
principle, combining divergent breeds in the QTL discov-
ery set may help to break long-range LD, such that the 
selected ‘top SNPs’ are closer to the causal mutations 
[17] than when a single-breed QTL discovery set is used. 
For example, the top significant SNP on BTA14 mapped 
to the upstream region of the SLC52A2 gene and in an 
intron of the HSF1 gene when using the single-breed and 
multi-breed QTL discovery sets, respectively (see Addi-
tional file 2: Figure S9). The HSF1 gene is associated with 
thermotolerance in dairy cattle [5, 6, 23]. The smaller 
number of ‘top SNPs’ detected in our study with the 
multi-breed than with the within-breed QTL discovery 
set is consistent with the work of [19] and is attributed, in 
part, to the causal variants not all segregating across the 
Holstein and Jersey breeds.

However, we could still see a decrease in accuracy 
of prediction (− 0.05) for HTPYslope when using the 
‘top SNPs’ from a multi-breed discovery set in Jersey, 
although not as high as that (− 0.08 units) found when 
using the ‘top SNPs’ from the single-breed (Holsteins) 
discovery set. As discussed earlier, one reason for the 
observed poor prediction for these traits in Jerseys could 
be partly due to the breed × SNP interactions or non-
additive epistatic interactions among loci across breeds. 
Notably, our multi-breed QTL discovery set was highly 
dominated by Holstein individuals which explains, in 
part, the limited gain in accuracy when the selected ‘top 
SNPs’ from the multi-breed discovery set were used in 
the Jerseys. Besides, we used Holstein bulls as a reference 
set in genomic predictions in Jerseys. Since these breeds 
are divergent, a better approach to improve predictions 
in Jerseys would have been to use ‘top SNPs’ from a 
multi-breed or within-breed (Jersey) QTL discovery set 
and a reference set of the same breed (Jersey) or multi-
breed set. However, compared to Holstein, the smaller 
number of Jersey individuals in our study means that it 
was not possible to split the Jersey dataset to obtain inde-
pendent subsets with sufficient power for use in the QTL 
discovery and reference set for genomic predictions. This 
implies that there may be more room for improvement 
in accuracy of prediction for Jerseys when more animals 
with phenotype and genotype data are available in the 
future.

We compared the added value of informative markers 
(i.e., ‘top SNPs’) from single-trait GWAS versus multi-
trait meta-GWAS in the genomic predictions. The aim 
of the meta-analysis of slopes was to increase the power 
of GWAS and obtain a set of ‘top SNPs’ with putative 
pleiotropic effects for heat tolerance phenotypes. There 
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is a recent trend towards developing custom SNP arrays 
that include variants with pleiotropic effects across mul-
tiple traits [40, 41]. In this study, we found a comparable 
increase in accuracy of prediction when we used ‘top 
SNPs’ from single-trait GWAS or from the meta-analy-
sis, although the accuracy of prediction varied consider-
ably across traits and validation sets used (Fig.  2). Our 
recent work [23] suggests that heat tolerance traits (milk, 
fat, and protein slopes) are regulated differently in heat-
stressed dairy cows. As such, we think that the relatively 
lower accuracy realized from using selected ‘top SNPs’ 
from the meta-GWAS of slope traits in some scenarios 
(e.g., HTMYslope across the three validation sets; Fig. 2) 
could be due to the possible inclusion of non-causal ‘top 
SNPs’ in genomic prediction, which arose from combin-
ing SNP effects for different heat tolerance phenotypes. 
However, we observed a smaller drop in accuracy of 
prediction when using ‘top SNPs’ from the meta-GWAS 
compared to ‘top SNPs’ from the single-trait GWAS in 
Jerseys from the BayesRC over BayesR (Fig. 2).

In general, we demonstrated an increase in the accu-
racy of prediction of heat tolerance when informative 
sequence markers were added to the 50k SNP panel by 
up to 0.07, 0.05, and 0.10 units in Holstein, Jersey, and 
crossbred cows in some cases, respectively. Our findings 
are within the range of those reported for complex traits 
in cattle e.g., [42] and sheep e.g., [11, 13]. For example, 
Al Kalaldeh et  al. [13] reported an increase in accuracy 
of prediction by 0.09 units for parasitic resistance in 
Australian sheep, while de Las Heras-Saldana et al. [42] 
found an increase of up to 0.06 units for carcass traits 
in cattle. These results indicate that informative mark-
ers can be prioritised, especially for the development of 
customized SNP arrays [41]. Adding informative variants 
for heat tolerance to the custom SNP panels as in [41] 
ensures that higher accuracies of prediction are achieved, 
which will help to drive genetic gain for this trait. More-
over, we expect that the genetic prediction of this trait 
would be sustained over generations when informa-
tive variants that are closer to the causal mutations are 
included in the custom SNP panels, as demonstrated by 
Khansefid et al. [43]. These authors found that using the 
custom XT_50k SNP panel, which contains prioritised 
sequence markers, gave a consistent and superior accu-
racy of prediction (compared to standard SNP panels) 
in crossbred cows (crossbreds represents “more distant 
relationships or many generations”). However, caution is 
needed when using pre-selected sequence variants from 
Holsteins in the prediction of Jerseys, considering that we 
found a decrease in accuracy, in most cases, when using 
the ‘top SNPs’ from the Holstein discovery set in Jerseys 
(Fig. 2). This agrees with the simulation work by [14] who 

reported that the decrease in accuracy of predictions 
across-breeds depended on the distance between causal 
mutations and the markers.

Some studies, e.g., [11, 13], using genomic best linear 
unbiased prediction (GBLUP), have reported increased 
accuracy of prediction when fitting pre-selected sequence 
variants from GWAS together with standard 50k SNPs 
compared to fitting only standard 50k SNPs, especially 
when modelling separate GRM for 50k SNPs and pre-
selected SNPs. To compare our results (from the BayesR 
and BayesRC analyses), we used GBLUP on the Holstein 
validation set (as in “Scenario 1”; see “Methods”) to fit 
pre-selected heat tolerance SNPs (‘top SNPs’) either as 
one GRM (i.e., combined set of 50k + top SNPs) or sepa-
rate GRM (i.e., 2 GRM) for 50k and ‘top SNPs’. Although 
the accuracy of prediction increased when fitting two 
GRM compared to fitting only one GRM in the GBLUP 
model, BayesR and BayesRC outperformed GBLUP for 
the prediction of HTMYslope and HTFYslope but not 
for that of HTPYslope (see Additional file  1: Table  S6) 
and see Fig. 2. This is comparable to the work of [44] who 
reported better predictions for milk yield and fat yield 
traits from Bayesian models than GBLUP models in Dan-
ish cattle.

In this study, a sizable proportion of the selected ‘top 
SNPs’ for heat tolerance (slopes) overlapped with the 
selected ‘top SNPs’ for the intercept traits: 11% (HTMYs-
lope), 17% (HTFYslope) and 21% (HTPYslope) (see Addi-
tional file  1: Table  S7). Notably, when assuming QTL 
windows of 1  Mb, more than 90% of the selected ‘top 
SNPs’ for heat tolerance traits fell within the same win-
dows with those for intercept traits, which is consistent 
with the high (−  0.80) phenotypic correlations between 
these traits. In our recent work [23], we demonstrated, 
through conditional GWAS analyses, that the top GWAS 
hits/signal for heat tolerance are also important for milk 
production traits (i.e., intercept). Therefore, a key ques-
tion is whether using the selected sequence variants for 
heat tolerance in genomic evaluations can impact milk 
production. We investigated this assuming (1) selec-
tion is for milk production traits (or Australian Selec-
tion Index (ASI), i.e., traits are weighted according to the 
way Australian farmers are paid for milk, fat, and pro-
tein) and (2) selection is for the balanced performance 
index (BPI) which includes production and functional 
traits [39]. To see the impact of using pre-selected SNPs 
in genomic evaluations of Holsteins, the correlation 
between EBV for heat tolerance (estimated with only 50k 
SNPs or 50k + selected sequence variant from GWAS—
‘top SNPs’) and ASI or BPI values were used. The corre-
lation estimates (see Additional file 1: Table S8) suggest 
that adding the pre-selected SNPs for heat tolerance 
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(including those that overlapped with intercept traits) to 
the standard-industry 50k array has little to no impact 
on the ASI and BPI. However, we observed a favourable 
correlation between heat tolerance and BPI when pre-
selected ‘top SNPs’ from HTMYslope are added into the 
50k array (i.e., 0.06 (50k) versus 0.10 (50k + meta-GWAS 
top SNPs; see Additional file  1: Table  S8). These results 
are comparable to those of [7], who found that the cur-
rent selection practices in Australia based on BPI will 
lead to a negligible decrease in heat tolerance (measured 
as the rate of decline in yield).

In addition, some reports e.g., [3, 4] have raised concerns 
that selection for heat tolerance may negatively impact the 
genetic progress for milk production due to a strong genetic 
correlation of about − 0.80 between these traits [23]. Nota-
bly, the effects of all the overlapping SNPs for HTMYslope 
(see Additional file 1: Table S7) were in the same direction 
with those for MYint, whereas the effects of the overlapping 
SNPs for HTFYslope and HTPYslope were in opposite direc-
tions with their corresponding intercept traits (i.e., FYint 
and PYint). However, the overlap of top SNPs for MYint and 
HTMYslope is only 11% (see Additional file 1: Table S7).

Most of our dispersion bias of prediction for heat tol-
erance traits from BayesR and BayesRC were deflated. 
However, we also observed inflated predictions, in some 
cases, especially in Jerseys. In all our Bayesian analyses, 
we used only bulls in the reference population and only 
cows in the validation of genomic predictions. As such, 
the smaller variance of bull phenotypes resulting from 
averaging daughter slope solutions (see “Methods”) 
explains, in part, the observed bias, especially in the Hol-
stein cow validation set. To test this, we split Holstein 
cows into reference (older cows) and independent valida-
tion (young cows) sets. Consequently, we found that the 
GBV were inflated, which supports our hypothesis. Nev-
ertheless, the magnitude of bias observed in this study 
may not be a big issue in the genomic evaluations of heat 
tolerance, where breeding values are calculated jointly 
based on bull and cow phenotypes using different weight-
ings according to the amount of information [7, 38].

By comparing the Bayesian (BayesR and BayesRC) 
versus the GBLUP models (fitting either 1 or 2 GRM 
as described earlier), we found slightly less biased pre-
dictions from the former than the latter models (see 
Additional file  1: Table  S6). This was expected since 
the Bayesian models simultaneously account for all the 
markers in the analysis and assume different distribu-
tions of SNP effects. However, recent studies in sheep 
[11] and cattle [43] have reported no difference in dis-
persion bias between the BayesR or emBayesR versus 
GBLUP models. We also assessed the dispersion bias 
of prediction for heat tolerance traits from the GBLUP 

and BayesR models using the linear regression (LR) 
method described by Legarra and Reverter [45]. We 
did this by first estimating SNP effects from: (1) the 
full (N = 3323 ♂) Holstein reference set, and (2) a ran-
domly selected reduced (N = 1662 ♂; 50%) reference 
set. We found no dispersion bias when regressing the 
GBV in the Holstein validation cows (N = 1223) gener-
ated from the full reference bull set on the GBV from 
the reduced reference bull set (see Additional file  1: 
Table  S9). This suggests that the SNP effects from 
these reference sets are robust in terms of genomic 
predictions.

The fact that the dispersion bias of prediction, in most 
cases, was more pronounced when the selected ‘top 
SNPs’ were added to the 50k SNP array and analysed 
with BayesRC is consistent with some previous studies 
[20, 21], which is likely due to a phenomenon called the 
“Beavis effect” [46] that originates from the overestima-
tion of the effect size of the pre-selected variants. The 
lower bias found when fitting the selected ‘top SNPs’ 
from the stringent GWAS cut-off than from the relaxed 
GWAS cut-off does not agree with the results of 
Veerkamp et  al. [21], who reported a larger bias when 
markers were strongly pre-selected. Here, we used the 
Bayesian approach (BayesRC), while Veerkamp et  al. 
[21] applied GBLUP. In our study, fitting separate GRM 
for the 50k and the selected ‘top SNPs’ (i.e., two GRM) 
in the GBLUP models reduced the dispersion bias com-
pared to fitting only one GRM for the 50k + top SNPs 
(see Additional file 1: Table S6).

In this study, we investigated the utility of pre-
selected sequence variants in the genomic prediction of 
heat tolerance for milk production traits (milk, fat, and 
protein yield). It is also worthwhile to investigate the 
added value of prioritised sequence variants for heat 
tolerance on other traits that are affected by heat stress 
(e.g., fertility) because there are likely to be benefits 
from achieving higher systemic heat tolerance across 
multiple traits. This added value could be significant 
since the economic selection indices, e.g. for the Aus-
tralian dairy industry, are formulated to capture differ-
ent aspects of farm profitability, including production, 
fertility, health, functional, and type as well as feed effi-
ciency traits [39]. Selecting for thermotolerance would 
be advantageous if the goal is to simultaneously achieve 
an optimal level of heat tolerance for multiple traits 
[24]. Therefore, further studies are needed to investi-
gate the benefits of sequence variants in improving heat 
tolerance with respect to other traits that are likely to 
be affected by heat and humidity, such as fertility and 
health traits.
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Conclusions
Our results show that the accuracy of genomic predic-
tion for heat-tolerance milk yield traits (milk, fat, and 
protein) can be improved when the selected sequence 
variants linked to heat tolerance are added to the stand-
ard 50k SNP panel, with values ranging from 0.01 to 
0.10 units depending on the prediction scenario. How-
ever, when predicting across breeds, adding informative 
sequence markers from the Holstein cow discovery set 
to the standard 50k SNP array (i.e., 50k + top SNPs from 
GWAS) decreased the accuracy of prediction in Jerseys 
compared to using only 50k SNP set, especially for the 
heat tolerance fat and protein yield traits. We observed 
improved predictions, particularly in the Jersey valida-
tion when using pre-selected markers from the multi-
breed (Holstein + Jersey cows) SNP discovery set, where 
the reference population used included Holstein and 
Jersey bulls (i.e., the multi-breed reference set). Priori-
tised sequence markers from single-trait GWAS yielded 
greater accuracy than those from the multi-trait meta-
analysis of slope traits. Overall, the results show that 
sequence variants can be prioritised to improve the accu-
racy of heat tolerance and has a direct application in the 
development of custom SNP arrays.
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