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Asymmetric remote C-H borylation of internal
alkenes via alkene isomerization
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Recent years have witnessed the growing interest in the remote functionalization of alkenes

for it offers a strategy to activate the challenging C–H bonds distant from the initiation point

via alkene isomerization/functionalization. However, the catalytic enantioselective iso-

merization/functionalization with one single transition metal catalyst remains rare. Here we

report a highly regio- and enantioselective cobalt-catalyzed remote C–H bond borylation of

internal alkenes via sequential alkene isomerization/hydroboration. A chiral ligand featured

twisted pincer, anionic, and non-rigid characters is designed and used for this transformation.

This methodology, which is operationally simple using low catalyst loading without additional

activator, shows excellent enantioselectivity and can be used to convert various internal

alkenes with regio- and stereoisomers to valuable chiral secondary organoboronates with

good functional group tolerance.
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A lkenes containing multiple unactivated C(sp3)-H bond are
readily available and abundant feedstock starting materi-
als. Catalytic asymmetric strategies based on alkenes for

construction of chiral organic molecules are commonly used.
Asymmetric hydrofunctionalization of unactivated alkenes via
metal-hydride species has been well established for efficient
construction of chiral carbon centers (Fig. 1a)1–3. Among these
transformations, alkene isomerization is considered to be a side-
reaction to produce regio- and stereoisomers. However, this
sequential alkene isomerization/functionalization offers an
opportunity for the direct and enantioselective transformation of
remote unactivated C(sp3)-H bonds to carbon–carbon or
carbon–heteroatom bonds, which is fundamentally important and
challenging for highly efficient organic synthesis (Fig. 1b)4–15. A
general pathway for the remote functionalization of alkenes via
isomerization is illustrated in Fig. 1c. Alkene 1 undergoes coor-
dination and insertion into metal hydrogen bond to form alkyl
metal species B that initiates alkene isomerization. Species B goes
through β-H elimination to generate species C. After a serial of
chain-walking process, a more stable alkyl metal species F, such
as terminal alkyl or benzylic metal species, is formed as a terminal
intermediate. Finally, species F could be trapped with a variety of
reagents to afford products and regenerate catalyst, which offered
a favorable thermodynamic driving force.

Recent years have witnessed the important progress in the field
of catalytic alkene isomerization/functionalization with various
coupling reagents5,16, such as ArX17–19, CO2

20,21, CO/H2
22,

HBpin23–26, R3SiH27–29, and so on11,30,31, to afford the corre-
sponding coupling products. Additionally, the catalytic asym-
metric sequential functionalization/isomerization of alkenes
terminated by oxygen-motif has been demonstrated by
Sigman32,33. However, the catalytic enantioselective isomeriza-
tion/functionalization with one single transition metal catalyst is
restricted to only few examples5,16. Nishimura and coworkers34

used Iridium catalyst to achieve alkene isomerization terminated
by ether group and the following asymmetric hydroarylation. The
development of asymmetric alkene isomerization/functionaliza-
tion processes using single catalyst system is highly desirable.

Chiral organoboronates are of significant utility in asymmetric
synthesis for constructing a wide range of other functional groups
through C-B bond transformation in a stereospecific fashion35,36.
To date, several strategies37, such as stereospecific organobor-
onate homologation38,39, borylation of benzylic electrophiles40,41,
asymmetric hydrogenation of alkenylboronic esters42,43, and
asymmetric hydroboration of alkenes44–53, have been developed
for construction of chiral secondary organoboronates. However,
asymmetric hydroboration of a mixture of alkenes isomers to
deliver chiral products has not been previously reported. Our
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group is continuously investigating asymmetric iron- or cobalt-
catalyzed hydrofunctionalization of alkenes based on the ligand
design54–59. Recently, we have developed a cobalt-catalyzed
asymmetric sequential hydroboration/hydrogenation of internal
alkynes, affording a series of chiral secondary organoboronates56.
The control experiment demonstrated that cobalt-catalyzed
asymmetric hydroboration of internal alkenes afforded second-
ary organoboronates with poor enantioselectivity. It would be
ideal to develop a highly enantioselective cobalt-catalyzed
hydroboration of internal alkenes.

Here, we report a cobalt-catalyzed asymmetric remote C–H
borylation of internal alkenes via isomerization/hydroboration
using a imidazoline phenyl picoliamide (ImPPA) ligand with high
enantioselectivity (>97% ee in most cases) (Fig. 1c).

Results
Reaction optimization. The simple internal alkene 1a was
chosen as a model substrate (see Fig. 2 and Supplementary
Tables 1, 2). When chiral OIP ligand L1 was used54, the cobalt-
catalyzed isomerization/hydroboration reaction of 1a with
HBpin was carried out to deliver 2a in 99% yield, however, with
less than 5% ee. The use of amino-derivated ligand L260 or
iminoaniline-derivated ligand L361 led to a significant drop-off
in yield, whereas the use of L2 improved the enantioselectivity to
62% ee. Using a well-defined ligand L462, the remote borylative
reaction could afford 2a in 75% yield with 22% ee. Encoura-
gingly, when ligand L5 containing a methyl group at 6-position
on pyridine was used, the enantioselectivity was dramatically
promoted to 88% ee. Replacement of substituents on pyridine or
oxazoline improved the enantioselectivity to 93% ee (see Sup-
plementary Table 1). To our delight, the use of a more electron-
rich phenyl-protected imidazoline (L6) instead of oxazoline led
to a significant improvement in enantioselectivity (96% ee).
Assessment of various imidazolines showed that L8 with a more
bulky tert-butyl group was the most effective ligand to afford 2a

in 96% yield with 99% ee. Catalyst loading could be further
decreased to 2.5 mol% to afford 2a in 90% yield with 98% ee.
The standard conditions are identified as 1 mmol of alkene, 1.2
mmol of HBpin, 2.5 mol% of Co(OAc)2, 3 mol% of L8 in 1.0 mL
of Et2O for 20 h.

Substrate scope. With the optimized conditions in hand, we
explored the scope of the olefins (Table 1). The cyclohexyl alkene
could participate to deliver the isomerization/hydroboration
product 2b in 85% yield with 96% ee. The electron-donating and
electron-withdrawing groups on phenyl ring were tolerated to
afford 2c–2l in 31–84% yields with 97–>99% ee. Particularly,
ortho-substituted alkene 1k could also participate in the reaction
to afford 2k in 31% yield with excellent enantioselectivity (>99%
ee). The alkenes containing polycyclic ring and heterocycle, such
as 2-naphthyl (1 m), 1-naphthyl (1n), 3-pyridyl (1o) and 3-benzo
[b]thiophenyl (1p), could be converted to the corresponding
products 2m–2p in 64–87% yields with 97–>99% ee. Alkenes
containing various functional groups, such as acetal (1r), ester
(1s), amide (1t), tertiary alcohol (1u), and protected amine (1w)
could be tolerated to afford corresponding boronic esters in
46–71% yields with 86–99% ee. Particularly, alkene 1v with pri-
mary alcohol could also participate in the reaction and afford the
product in 43% yield with 99% ee. The reaction of terminal alkene
1× with HBpin afforded a mixture of the desired product 2× with
99% ee and terminal borylated product with a b/l ratio of 1/1. The
alkene with a linear undecyl group could be reacted to afford 2y
in 65% yield and 98% ee with a b/l ratio of 4/1. The reactions of
alkenes containing terminal tert-butyl (1z) and cyclohexyl group
(1aa) gave the benzylic borylated products with high regio- and
enantioselectivities, even walking over eight carbon–carbon bonds
(2ab, 58% yield, 99% ee). Remarkably, the trisubstituted alkene
1ac and 1ad could also participate in the transformation to afford
the corresponding products in 74% yield with 99% ee and 55%
yield with >99% ee, respectively. Alkene 1ae could also be
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Table 1 Substrate scope of enantioselective isomerization/hydroboration of alkenes

aStandard conditions: 1 (1 mmol), HBpin (1.2 mmol), Co(OAc)2 (2.5 mol%), L8 (3 mol%), Et2O (1M), r.t., 20 h
b48 h
cCo(OAc)2 (10 mol%), L8 (12 mol%)
dNMR yield for boronic ester in the parentheses; isolated yield for corresponding alcohol outside the parentheses
eCo(OAc)2 (5 mol%), L8 (6mol%)
fHBpin (2.0 eq.)
g1/1 rr
h4/1 rr
i11/1 rr
jZ/E= 1.2/1
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transformed to 2ae in 67% yield with 11/1 rr and 98% ee. Alkene
1af containing a disubstituted and a trisubstituted olefin has also
been tested in the reaction which afforded a mixture of (E)-2af
and (Z)-2af both in 94% ee. Vitamin E-derivated olefin 1ag was
smoothly converted to the corresponding product 2ag in 60%
yield with 98% de. Due to the unstability, some products (2m, 2s–
2w, 2ae–2ag) were obtained after being directly oxidized to the
corresponding alcohols. The absolute configuration was verified
by comparison of the optical rotation of 2q with previously
reported data and the other products were then assigned by
analogy63.

Gram-scale reaction and synthesis of bioactive molecule.
Notably, the preparation of 2a could be scaled up in 95% yield
with 99% ee using 1 mol% of Co(OAc)2 and 1.2 mol% of ligand
(Fig. 3a). Alkene (1ah) could be transformed smoothly to afford
2ah in 80% yield with 99% ee which could easily undergo C–C

bond cross-coupling in a stereospecific manner64 to synthesize
anti-breast-cancer agent 4 (Fig. 3b).

Mechanistic study and other applications. Cobalt-catalyzed
deuterium labeling experiment was also conducted with DBpin
(Fig. 4a). Stirring a mixture of 1ai and DBpin in the presence of 5
mol% of Co(OAc)2 and 6 mol% of L8 furnished d-2ai with 31%
D-incorporation in 2-position. Detectable amounts of deuterium
were also located in the interior (3–5) positions with 69% D-
incorporation in total. No deuterium was detected at benzylic
positions showed that species E underwent olefin reinsertion step
to prefer to form more stable benzylic cobalt species F rather than
non-benzylic alkyl cobalt species. It should be note that a mixture
of 1a and 1a′ (1/1) could be transformed smoothly to a single
product 2a in 95% yield with 99% ee under the standard condi-
tions (Fig. 4b), which demonstrated the power of this catalytic
system to utilize a mixture of geometrical and positional alkene
isomers. Alkenes (E)-1aj and (Z)-1aj were subjected to the
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reaction system and the result shows that the stereochemistry of
the starting olefin has no impact on the kinetics of the reaction
(see Supplementary Fig. 246). The reaction of product 2b under
the standard conditions using ligand Ent-L7 (the enantiomer of
L7) was conducted and no reaction occurred. The ee value of
boronate 2b did not change, which indicated that the formation
of the carbon boron bond was irreversible (Fig. 4c).

Time course study. The time course experiment (detail see
Supplementary Table 5) of 1b was conducted (Fig. 5). The
observation of alkenes 1ba, 1bb, and 1bc in the process showed
that the internal alkene 1b underwent a double bond walking
process to both the benzylic position and cyclohexyl position.
Only a small amount of the benzylic alkene 1bb (<5%) was
observed during the whole process, which demonstrated that the
benzylic alkyl cobalt species F might undergo a rapid σ-bond
metathesis with HBpin to afford the chiral organoboronic ester
2b.

Discussion
In summary, a highly regio- and enantioselective cobalt- cata-
lyzed remote C–H bond borylation of internal alkenes via
sequential alkene isomerization/hydroboration is developed. A
chiral ImPPA ligand featured twisted pincer, anionic, and non-
rigid characters is designed and used. This protocol is oper-
ationally simple and additional activator-free. The commonly
useless mixture of internal alkenes is used for highly efficient and
selective construction of valuable chiral secondary organobor-
onates with good functional group tolerance. The development of
asymmetric transformations based on ligand design will be con-
tinuously carried out at our laboratory.

Methods
Materials. For NMR spectra of compounds in this manuscript, see Supplementary
Figs. 1–204. For HPLC spectra of compounds in this manuscript, see Supple-
mentary Figs. 205–245. For the optimization of reaction conditions and control

experiments of alkene 1a, see Supplementary Tables 1, 2. For the experimental
procedures and analytic data of compounds synthesized, see Supplementary
Methods.

General procedure for remote C–H borylation of internal alkenes. To a 25 mL
flame-dried Schlenk flask cooled under nitrogen, Co(OAc)2 (0.025 mmol), L8 (0.03
mmol), Et2O (1 mL) were added. The mixture was stirred at room temperature for
5 min. Then, alkene (1.0 mmol), HBpin (180 μL, 1.2 mmol) were added in sequence
and stirred at room temperature for 20 h. The resulting solution was filtered by a
short pad of silica gel and washed by ether (10 mL × 2). The combined filtrate was
concentrated and purified by flash column chromatography using PE/EtOAc= 20/
1 as the eluent to afford the corresponding product.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary Information file. The X-ray crystallographic
coordinates for structures of (L8-H)·PdOAc has been deposited at the Cambridge
Crystallographic Data Centre (CCDC) under deposition nos. CCDC 1588226. The data
can be obtained free of charge from the Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk/data_request/cif. The experimental procedures and char-
acterization of all new compounds are provided in the Supplementary Information.
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