
Article
ComprehensiveProteomicCharacterizationReveals
Subclass-Specific Molecular Aberrations within
Triple-negative Breast Cancer
Max Kosok, Asfa

Alli-Shaik, Boon

Huat Bay,

Jayantha

Gunaratne

jayanthag@imcb.a-star.edu.sg

HIGHLIGHTS
Proteome profiling reveals

functionally distinct

subclasses within TNBC

Kinases and proteases

underlie unique functional

signatures among the

subclasses

Kinase-protease-centric

networks highlight

subclass-specific

molecular rewiring

Protein association

dysregulations reveal

TNBC subclass-specific

protein targets

DATA AND CODE

AVAILABILITY
PXD017025

Kosok et al., iScience 23,
100868
February 21, 2020 ª 2020 The
Authors.

https://doi.org/10.1016/

j.isci.2020.100868

mailto:jayanthag@imcb.a-star.edu.sg
https://doi.org/10.1016/j.isci.2020.100868
https://doi.org/10.1016/j.isci.2020.100868
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.100868&domain=pdf


Article

ComprehensiveProteomicCharacterizationReveals
Subclass-Specific Molecular Aberrations
within Triple-negative Breast Cancer
Max Kosok,1,2,3 Asfa Alli-Shaik,1,3 Boon Huat Bay,2 and Jayantha Gunaratne1,2,4,*

SUMMARY

Triple-negative breast cancer (TNBC) is themost aggressive subtype of breast cancer lacking targeted

therapies. This is attributed to its high heterogeneity that complicates elucidation of its molecular ab-

errations. Here, we report identification of specific proteome expression profiles pertaining to two

TNBC subclasses, basal A and basal B, through in-depth proteomics analysis of breast cancer cells.

We observed that kinases and proteases displayed unique expression patterns within the subclasses.

Systematic analyses of protein-protein interaction and co-regulation networks of these kinases and

proteases unraveled dysregulated pathways and plausible targets for each TNBC subclass. Among

these, we identified kinases AXL, PEAK1, and TGFBR2 and proteases FAP, UCHL1, and MMP2/14

as specific targets for basal B subclass, which represents the more aggressive TNBC cell lines. Our

study highlights intricate mechanisms and distinct targets within TNBC and emphasizes that these

have to be exploited in a subclass-specific manner rather than a one-for-all TNBC therapy.

INTRODUCTION

Triple-negative breast cancer (TNBC) that represents 10%–15% of all breast cancers is the most aggressive

breast cancer subtype characterized by high recurrence and poor prognosis (Ovcaricek et al., 2010). Unlike

receptor positive subtypes that include estrogen- and/or progesterone-receptor positive (ER+/PR+) and the

human epidermal growth factor receptor 2 positive (HER2+) subtypes, TNBC is a highly heterogeneous

breast cancer subtype, making it challenging to understand its underlying disease mechanisms and design

targeted treatments (Anders andCarey, 2009; Badve et al., 2011; Bauer et al., 2007). Several research groups

have attempted subclassifying TNBC toward the mutual goal of finding targeted therapies. TNBC has been

categorized under the basal-like category according to the PAM50 classification (Parker et al., 2009; Perou

et al., 2000; Sørlie et al., 2001) and has been further divided into two distinct subclasses as basal A and B

based on gene clustering (Neve et al., 2006). Another study based on gene expression analysis of TNBC

tumors has identified six subcategories with distinct gene ontologies as two basal-like (BL1 and BL2), two

mesenchymal (M and MSL), one immunomodulatory (IM), and one luminal androgen receptor subtype

(LAR) (Lehmann et al., 2011). Apart from these, subclassification based on specific marker expression,

such as claudin-low subtype characterized by low expression of claudin-3, -4, and -7 (Herschkowitz et al.,

2007; Prat et al., 2010) or based on elevated expression of positive markers such as cytokeratins, mainly

5, 6, 13, and 17, have also been reported (Bianchini et al., 2016; Foulkes et al., 2010; Nielsen et al., 2004).

The heterogeneous nature of TNBC is also accentuated at the protein level by large proteomic profiling

of breast cancer tissues and cell lines (Lapek et al., 2017; Lawrence et al., 2015;Mertins et al., 2016). Although

all these studies pointed to existence of subclasses within TNBC, their specific mechanistic differences or

pathway dysregulations were not explored in detail.

With no current effective therapy, there has been a huge interest in deconvoluting the oncogenic events

that lead to the development of TNBC, and several aberrantly activated pathways have been identified.

Among them, TGF-b signaling is linked to aggressive behavior such as TNBC cell migration, early metas-

tasis, as well as invasion and extravasation (Massagué, 2008; Padua et al., 2008; Papageorgis et al., 2010; Xu

et al., 2018). Other signaling pathways mediated by neurotrophic tyrosine kinase receptor (TrkB), Erk/NF-

kB, PI3K/AKT, and HIF-1a have also been associated with TNBC metastasis (Costa et al., 2018; Delaloge

and DeForceville, 2017; Kuo et al., 2017; Neophytou et al., 2018; Ponente et al., 2017; Tsai et al., 2017;

Wong et al., 2011). Despite several ongoing trials targeting such aberrant pathways, the clinical outcome

has been disappointing with limited benefit in TNBC patients. This underscores the complexity of TNBC
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at the molecular level and emphasizes the need for elucidating TNBC subclass-specific mechanisms

and pathways for effective personalized therapies.

Given the distinct genomic alterations and clinicopathological characteristics within different subtypes

of TNBC (Bareche et al., 2018), we hypothesized that an in-depth analysis of subclass-specific proteome

changes associated with pathway aberrations would reveal molecular vulnerabilities within TNBC, thus

identifying novel therapeutic targets. To this end, we carried out comprehensive proteomic profiling

of an array of breast cancer cell lines, employing multiplexed quantitative high-resolution mass spectrom-

etry (MS)-based proteomics followed by extensive peptide fractionation to record comprehensive quanti-

tative protein and peptide information across all cell lines. We interrogated the data extensively for

network and pathway aberrations, particularly associated with perturbed functional protein classes.

Through this strategized and systematic analysis, we identified TNBC inherent proteome-based sub-

classes, which were also reflected by distinct profiles of kinases and proteases, and their associated

functional networks. Finally, using correlation networks, we inferred that dysregulations of kinases and

proteases are centric in defining molecular traits unique to each breast cancer subtype and validated

kinase AXL as an effective target only in the aggressive TNBC subclass. Altogether, this study provides

in-depth proteomic profiles of TNBC cell line panel and reveals subclass-specific mechanisms and poten-

tial dysregulated targets, thus offering immense potential for clinical exploration.

RESULTS

In-depth Proteomic Profiling

We performed high-resolution MS-based deep proteomics profiling of 18 breast cancer cell lines

(12 TNBC, 3 ER+/PR+, and 3 HER2+) by multiplexed tandem mass tag (TMT) approach that allows reliable

and robust quantification of proteins across the different cell lines. Two complimentary offline peptide

fractionation methods, namely iso-electric focusing (IEF) and offline basic pH reverse-phase liquid

chromatography (bRP-LC), were employed prior to MS analysis to obtain a comprehensive proteome by

enhancing peptide coverage. Two biological replicates, accounting for 156 LC-MS runs, were included

to ensure reproducibility across the panel. The overall workflow is depicted in Figure 1A. Protein quantifi-

cation between the biological replicates as well as between the two fractionation approaches was

highly correlated (Figure S1A), indicating good reproducibility of our MS dataset. In total, we identified

a total of 233,910 peptides derived from 11,709 proteins at a false discovery rate (FDR) of 1%, of which

10,400 were quantified across all 18 cell lines (Figure 1B and Tables S1A and S1B), highlighting consistent

quantification with fewmissing values. By capturing unique peptide clusters, the implementation of the two

different fractionation approaches in parallel boosted the overall proteome coverage by 25% compared

with the proteome profiles obtained using only either of the two approaches (Figure 1C). With an average

of 22 peptides identified per protein, of which 16 peptides on an average were also isoform specific, the

improved peptide coverage contributed to reliable protein identification and quantification. To our

knowledge, this is the most comprehensive quantified proteomes of breast cancer cells, with the highest

average number of unique peptides per protein reported to date. Notably, our dataset also reports the

highest numbers for quantified proteins belonging to important functional classes such as transcription

factors, kinases, proteases, and phosphatases that have not been captured and profiled extensively thus

far by MS methods in the breast cancer landscape (Figure 1B). This high proteome coverage was obtained

mainly because of our strategized peptide fractionations that enhanced detection capability of peptides

by changing their chemical nature (high pH and isoelectric ambient).

Proteome-Based Clustering

To evaluate the quality of our MS dataset, we mapped expression levels of known molecular markers to

cell lines representing each breast cancer subtype. We observed high expression levels of ESR1 and

PGR in all ER+/PR+ cells, high levels of ERBB2 in HER2+ cells, and no/low expression of all these receptors

among the TNBC cell lines, adding confidence to our proteome dataset (Figure 2A upper histogram). Next,

we performed unsupervised clustering of the whole proteome expression data that revealed three main

clusters with all receptor positive cell lines grouped into one cluster and the TNBC cell lines bifurcating

into two distinct clusters (Figures 2A top tree and S1B). The two TNBC clusters corresponded to well-es-

tablished TNBC classification based on claudin and cytokeratin expression patterns (Figure 2A middle/

lower histogram). Our clustering also aligned with PAM gene expression classification (Neve classification)

for breast cancer cell lines that is based on 305 genes (Neve et al., 2006). On comparing our proteome-

based categories with the TNBCtype classification (Lehmann et al., 2011), we observed that mesenchymal
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(M) and mesenchymal stem-like (MSL) were representative of basal B, whereas basal-like 1 and 2 (BL1 and

BL2) resembled basal A subclass (Figure 2A middle panel). The BT20 cell line, which could not be distinctly

categorized by the TNBCtype classification, appeared to align with the basal A category in our analysis. A

similar grouping of BT20 was also reported by Lawrence et al. (2015) in their label-free proteomics study

that assigned them to a cluster resembling the BL1 category, thus validating our assignment. However,

in contrast to observations by both our study and that of the TNBCtype classification, the MSL MB-436

cell line was categorized within a group most similar to the BL2 group by Lawrence et al. (2015). Further-

more, our analysis, for the first time, also distinctly assigned the uncategorized TNBC cell line HCC1395

to the basal B subclass based on the proteome pattern. We also compared our proteome profile data

with published transcriptome data (Klijn et al., 2015) and noted modest correlation, consistent with previ-

ously reported observations (Figure 2A lower panel) (Lapek et al., 2017; Sacco et al., 2016; Zhang et al.,

2014). Principal component analysis (PCA) of the whole proteome distinctly demarcated the cell lines

into the luminal group with clear differentiation of ER+/PR+ and the HER2+ groups and the TNBC group

showing two subclasses with discrete patterning based on their proteome landscape (Figure 2B).

Next, we sought to ask whether sub-proteomes of major functional protein classes, which are important

regulators of cellular signaling, also show similar clustering pattern as the whole proteome. For this, we

considered selected functional groups that included kinases, proteases, phosphatases, and transcription

factors. PCA of the 321 overall quantified kinases [72% of the human kinome (Manning et al., 2002)] revealed

that the expression patterns of only these kinases were sufficient to reflect the same clustering pattern

among the different breast cancer cell lines as that obtained using the whole proteome, iterating

distinctive kinase expression patterns among the different breast cancer groups (Figure 2C). A similar clus-

tering was also observed for the 247 proteases [51% of human proteases (Rawlings et al., 2018)], with only

two cell lines (HCC1806 and MB-231) appearing as outliers based on their protease expression patterns

(Figure 2D). However, PCA of 133 phosphatases [71% of human phosphatases (Liberti et al., 2012)] and
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Figure 1. Comprehensive MS-based Proteomics Analysis of Breast Cancer Cells

(A) Schematic of the bottom-up proteome profiling pipeline for screening 18 breast cancer cell lines employing TMT multiplexing with two peptide

fractionation strategies.

(B) Number of identified (and overall quantified) proteins, unique peptides, and average number of peptide spectrummatches (PSM) in total, along with their

distribution in four functional protein classes. Percentage represents completeness of identification of each protein class.

(C) Total number of peptides identified in samples fractionated by IEF or bRP-LC.
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Figure 2. Proteome Profiles of Breast Cancer Cell Lines

(A) Clustering of the cell lines based on the whole proteome expression profiles is shown (top). Relative expression of ER+/PR+ and HER2+ and known claudin

and cytokeratin protein markers in breast cancer cell lines. Data are represented as mean G SEM, n = 4 (upper panel). Comparison to TNBCtype and Neve

classification of breast cancer cell lines based on gene expression studies is shown (middle panel). Correlation of protein abundance with mRNA expression

is shown (lower panel). The color schema for the respective proteins/categories is shown on the right.

(B) Principal component analysis (PCA) of the whole proteome distinguished cell lines into the luminal subtype (HER2+ and ER+/PR+) and TNBC subtype

(basal A and basal B).

(C and D) (C) PCA based on only kinases or (D) proteases showed distinct patterns in cell line classifications.
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1034 transcription factors [61% of human transcription factors (Ravasi et al., 2010)], which represents the

largest protein class, showed no obvious distinctive clustering among the different subclasses as by the

kinases or proteases (Figure S1C). These results suggested that kinases and proteases have differential sig-

natures among the different subgroups and potentially play prominent roles in orchestrating unique mech-

anisms within the groups. Hence, in this study, we focused on a kinase- and protease-centric perspective to

reveal subclass-specific aberrations.

Subgroup-specific Kinase and Protease Expression

Among the 2,440 differentially expressed (DE) proteins (ANOVA p value %0.05 and two-sample t-test p

value %0.05 for both pairwise comparisons), we observed 87 kinases and 62 proteases (Table S1A) that

were exclusively differentially expressed in one group in comparison to the other two groups. Mapping

these DE kinases onto the human kinome map (Manning et al., 2002) revealed that a majority of these

belonged to tyrosine kinases, CAMK, and AGC kinase families (Figures 3A and S2B). We also compared

these DE kinases with targets of approved drugs (www.drugbank.ca; Dec 2019, Figure S2A) and found

that a few of them including DDR2, ERBB2, EPHA2, PRKCA, CDK6, and AXL overlapped, indicating that

these DE kinases could be potential therapeutic targets, especially for the basal B subclass.

We observed 46, the highest number of DE kinases, specifically within basal B cell lines (Figure 3A right).

Some of these kinases have been previously described as promising therapeutic candidates in TNBC.

For example, PRKCA and CDK6 have been correlated with poor survival outcomes in TNBC and displayed

synergy in impeding tumor growth (Hsu et al., 2014). Targeting the hyperactive CDK4/6 axis in breast

cancer has attracted traction as a promising therapeutic (Matutino et al., 2018; Yamamoto et al., 2019),

and recently, CDK6 inhibition was proven effective for the MSL subclass of TNBC (Pernas et al., 2018).

CAMK1 and DDR2 have been linked to basal-like breast cancer wherein they drive metastasis by triggering

EMT (Bergamaschi et al., 2008; Corsa et al., 2016; Zhang et al., 2013). EPHA2 has emerged as a new target

impairing tumorigenesis in TNBC, and receptor tyrosine kinase AXL has also been reported to play

prominent roles in TNBC tumorigenesis (Leconet et al., 2017; Song et al., 2017). Apart from these targets,

our study also highlighted other kinases that are yet to be explored for clinical therapeutic interventions.

One among them is PEAK1 that modulates TGF signaling responses toward oncogenic progression in

breast cancer (Agajanian et al., 2015a, 2015b). Another kinase, NUAK1, has never been described in breast

cancer and opens possibilities for new therapeutic explorations in aggressive TNBC subtypes. Although

the roles of FYN in mediating EMT and promoting oncogenesis has been described in many cancers

including breast cancer (Chen et al., 2013; Xie et al., 2016), its specificity to TNBC or even particular subclass

has not been considered. In contrast to the vast array of kinases modulated in the basal B group, the basal

A displayed fewer kinases that changed significantly in abundance compared with both the luminal and

basal B groups. Tyrosine kinase LYN of the SRC family of kinases that has been linked to aggressive

phenotypes including EMT, migration, and invasion in TNBC and another tyrosine-like kinase MLKL

were overexpressed specifically within this group (Figure 3A left) (Choi et al., 2010; Tornillo et al., 2018).

From our data, we found that a majority of basal A-specific DE proteases were upregulated (Figure 3B left).

Significant upregulation of three kallikreins (KLK5/6/8), three caspases (CASP2/10/14), and three proteaso-

mal components (PSMB8/9/10) suggests involvement of complex protease machinery in driving basal

A-specific tumorigenesis. Interestingly, the proteases PSMB8/9/10, all are components of the immunopro-

teasome representing the modified proteasome that elicit T-cell-mediated immune response underpin-

ning immunomodulatory roles specifically in the basal A subclass (Rouette et al., 2016). Although some

of these proteases have been associated with breast cancer tumorigenesis previously (Haritos et al.,

2018; Yang et al., 2015), they have not been described in a subclass-specific manner except for CASP14

that was reported to correlate with tumors expressing high claudin and EGFR, characteristic of basal A

subclass (Handa et al., 2017). As compared with both luminal and basal A groups, basal B subclasses

showed the highest number of proteases that were altered in abundance. Moreover, in contrast to

the luminal and basal A subclasses, the majority of DE proteases belonged to the families of metallopro-

teases and serine proteases (Figures 3B and S2C). Among the metalloproteases, four proteases belonged

to the ADAM and ADAMTS family of proteins, with all showing basal B-specific upregulation except for

ADAM15. Serine protease FAP, which was found to be overexpressed by 3.6-fold in basal B specifically,

has been shown to increase proliferation, migration, and invasion of cancer cells (Huang et al., 2004; Jia

et al., 2014). A known metalloprotease MMP2 responsible for extracellular matrix (ECM) degradation in

invasive breast cancer was also particularly upregulated within this subclass (Jezierska and Motyl, 2009;
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Figure 3. Kinase and Protease Profiles of TNBC Subclasses

(A) Differentially expressed kinases (p%0.05) specific to either basal A or basal B compared with the other two subclasses mapped onto the human kinome

tree. The size and shade of the node represents the median log2 fold-change of the kinases within each subclass with red and blue representing up- and

downregulated kinases, respectively. Those kinases indicated with asterisk are differentially expressed by at least two-fold against both the luminal group
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Talvensaari-Mattila et al., 2003). Interestingly, another serine protease HTRA1, which has been widely re-

ported as a tumor suppressor protein with decreased expression being correlated to EMT, proliferation,

and angiogenesis (Klose et al., 2018; Lehner et al., 2013; Wang et al., 2012; Xia et al., 2013), was observed

to be highly overexpressed only in the basal B subclass. This suggests that there are context-specific roles

of HTRA1 that regulate differential mechanisms depending on the breast cancer subclasses. Among all the

altered proteases, UCHL1 was the only cysteine protease to be abundantly expressed in the basal B group.

Altogether, our study highlights differential expression patterns of kinase and protease families across

different breast cancer subtypes and iterates differential mediation of oncogenic responses across the

different subtypes.

Kinase- and Protease-Centric Pathway Aberrations within TNBC Subclasses

Next, we performed expression-based kinase- and protease-centric network analysis in order to under-

stand their involvement in subclass-specific molecular rewiring. For this, all human protein-protein interac-

tions (PPI) associated with the DE kinases and proteases were curated from the Pathway Commons

database to identify neighborhood interactors (Cerami et al., 2011). In addition to physical interactions,

functional interactions encompassing those that alter phosphorylation, influence expression, and regulate

complex formation were also included to dissect functional specifications within each subtype.

The network neighborhood was then filtered to retain only those proteins that overlapped with the DE

proteins within each subtype to assemble a subtype-specific kinase-protease-centric expression network

(Figures 4A and S3A).

On comparing the subclass-specific networks with each other, it was evident that the basal B network

displayed a denser topology than the basal A kinase-protease network; partly due to the higher number

of DE kinases and proteases identified within basal B subgroup. Despite being a sparse network with

only 30 kinases and proteases, the basal A kinase-protease network showed preferential ontology enrich-

ment for regulation of apoptotic processes, cell proliferation, and keratinization. We also identified several

DE proteins involved in WNT signaling in the neighborhood network, hinting that the modulated kinases

and proteases may have profound influence over WNT signaling regulation in basal A subclass. In addition,

the network highlighted kinases including STK24 (MST3), CSNK2A2, and LYN as hub proteins based on

their network centrality. Some of these including MST3 and LYN have been identified as pro-proliferative

and tumorigenic in TNBC (Cho et al., 2016; Tornillo et al., 2018), and hence implicated as targets, although

their specificity to possible subtypes have not been explored. The basal B neighborhood network, on the

other hand, revealed a close-knit functional association thus emphasizing on the complex interplay be-

tween kinases and proteases in this subtype. In agreement with the aggressive nature of the basal B group,

the kinase-protease network showed particular inclination toward processes associated with focal adhe-

sion, extracellular matrix organization, ephrin, and TGF signaling (Canel et al., 2013; Drabsch and ten Dijke,

2011; Lu et al., 2012; Wang, 2011), all of which mediate a more migratory and invasive phenotype. In

addition, proteins associated with angiogenic and platelet activation were also enriched in the proximity

neighborhood of basal B-specific kinases and proteases. The interaction network spanning a total of 75

kinases and proteases included the before-mentioned kinases AXL, PRKCA, PEAK1, CDK6, and EPHA2

and proteases FAP, MMP2, and UCHL1 in close connectivity with each other, emphasizing an intricate

rewiring of kinase-protease networks within the basal B subclass. Some of these kinases and proteases

have been shown to correlate with poor prognostic outcomes in breast cancer and are currently being

explored as therapeutic targets (Hsu et al., 2014; Leconet et al., 2017; Liu et al., 2019; Song et al., 2017).

We also inferred crucial hubs from the neighborhood network, a majority of which play key roles in invasion

and metastatic behavior. Specifically, we identified components of TGF signaling including SMAD3, EMT-

activator ZEB1, ECM regulators MMP2 and FN1, and transcriptional regulators JUN and SP1 as key proteins

in basal B subclass. A cluster assessment based on MCODE topological analysis highlighted several

intricately connected proteins, with the top enriched clusters showing functional preference for ECM

Figure 3. Continued

and the other TNBC subclass. Illustration was created using CORAL online tool (Metz et al., 2018) based on the human kinome tree courtesy Cell

Signaling Technology Inc (www.cellsignaling.com).

(B) Differentially expressed proteases (p %0.05) specific to either basal A or basal B compared with the other two subclasses mapped according to their

protease families. The median log2 fold-change of the protease within each subclass is represented by the node size and shade. Asterisk denotes those

proteases differentially expressed by at least two-fold against both the luminal group and the other TNBC subclass. Red and blue represent up- and

downregulated proteases, respectively. The protease families include S – serine, C cysteine, M – metallo, A aspartate, T – threonine proteases, and

P – peptidases.
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remodeling, focal adhesion, inositol phosphate metabolism, HIF-1, TGF, and ephrin signaling within

the basal B kinase-protease proximity network (Figure S3B). All these evidences suggest that the basal B

kinases and proteases work in concert with each other to rewire signaling pathways particularly involved

in cell migration and invasion, thus explaining their aggressive nature. This is strikingly different from the

signaling events and processes influenced by basal A-specific kinases and proteases.

With observations of distinct functional biases for the two subclasses based on ontology from the kinase-

protease proximity network, we next looked into cancer hallmark gene sets uniquely enriched within

each breast cancer subgroup using gene set enrichment analysis (GSEA) to assess oncogenic signatures

(Table S2A). As expected, the luminal cell lines showed enrichment of estrogen response process. In

addition, the luminal group also showed preferential enrichment of metabolism-associated processes

such as oxidative phosphorylation and fatty acid metabolism. Interferon-induced signaling was particularly

enhanced in basal A group, and the proliferation-associated p53 signaling pathway was also positively

enriched in basal A compared with basal B group. Along with EMT, which emerged as the top hallmark

in basal B group, other cancer hallmarks such as hypoxia, inflammatory response, and coagulation also dis-

played selective enrichment in the basal B group. To ascertain if the kinase and protease signatures within

each subtype underlie such differences, we specifically compared the distribution of only proteins within

the kinase-protease neighborhood belonging to these cancer gene sets (Figures 4B and S4A). Excitingly,

we found that the proximity proteins of kinases and proteases are representative of such functional

processes, and accordingly EMT, TGF signaling, TNFa signaling via NF-kB, coagulation, hypoxia, and in-

flammatory response, all showed elevated response in basal B subclass compared with luminal and basal

A groups. Similar functional biases were also observed for basal A subclass for interferon signaling

and luminal group for estrogen and metabolic response suggestive of intricate functional roles for kinases

and proteases in driving subclass-specific distinctive processes. We also looked into the KEGG pathway

database to assess pathway preferences for proteins within the kinase-protease neighborhood

and found that positive regulation of TGF, PI3K/AKT, HIF-1, RAP1, and sphingolipid signaling in basal B

cell lines could be effectively represented by the abundances of kinase-protease proximity proteins

(Figure S4B and Table S2B).

Dysregulated Kinase and Protease Associations within TNBC Subclasses

We expanded our analysis to investigate differences in the protein co-regulation networks between the

subclasses. For this, protein correlations were obtained between all protein pairs of the 10,400 quantified

proteins, and a high-confidence correlation network was obtained after filtering for significant associations.

The positive correlation network included a total of 92,643 co-regulated protein pairs, and the negative

correlation network comprised of 61,061 associating pairs, both corresponding to a minimum Spearman’s

rank correlation coefficient of�0.76 (Table S3). To infer cell-line-specific network aberration, we specifically

identified protein pairs displaying significant deviations from correlation in each cell line by performing

outlier analysis on all protein pairs in the significant protein-association networks (Lapek et al., 2017) (Table

S4). The median dysregulated associations based on positively and negatively correlating protein pairs

across all cell lines were 1,444 and 860, respectively. On mapping these dysregulated protein associations,

we observed differential patterning of proteins with deviations that aligned with the breast cancer sub-

types, particularly for those inferred from positive correlations. This suggested that protein dysregulations

are more likely to be conserved across different subtypes, and investigating such dysregulations can offer

insights on subtype-specific pathways and mechanisms. Thus to identify dysregulated proteins specifically

enriched within each breast cancer subtype we carried out enrichment analysis using hypergeometric

testing (Figures 5A and S5A and Tables S5A and S5B). This analysis highlighted that the basal B subclass

included the most number of dysregulated proteins (672), followed by luminal subtype with 455 and

basal A subclass with 171 dysregulated proteins. Through ontology-based enrichment analysis of these

dysregulated proteins, we observed subtype-specific dysregulated pathways (Figure 5A and Table S6).

For instance, proteins mainly involved in metabolism and mitochondrial translation were dysregulated in

Figure 4. Kinase-Protease-Centric Interaction Network

(A) Proximity network of differentially expressed kinases and proteases in each TNBC subclass. The kinases and proteases are depicted as green and blue

nodes, respectively, and the size of the nodes represents the median log2 fold-change against the other two subclasses, with larger nodes representing

increased fold-change and vice versa. The edges represent physical and functional interactions between proteins.

(B) Distribution of protein ratio within each breast cancer subtype for the indicated cancer hallmark gene sets (*, p value %0.05; **, p value %0.01; n.s., not

significant—using KS test).
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the luminal subgroup. In basal A, proteins involved in epidermis development/keratinization, innate

immune response, interferon signaling, and those regulating proliferation and apoptosis showed

dysregulation, whereas for basal B, those associated with ECM organization, migration, angiogenesis,

PI3K/AKT, and TGF signaling pathway were dysregulated. Thus the dysregulations inferred captured

functional distinctions between the two subclasses. In several instances, the associated proteins also dis-

played consistent pairwise dysregulation within subclasses, with basal B displaying the most number of

deviated protein pairs (Figure S5B and Tables S5C and S5D). For example, protein associations involving

EPHA2, TGFBI, DKK3, AXL, SERPINE1, and several collagens were dysregulated in a majority of the basal

B cell lines. In contrast, the basal A cell lines revealed far less number of conserved protein pairs, with as-

sociations involving SLPI, KLK5, and keratins showing perturbations in many cell lines in a basal A-specific

manner.

We posit that kinases or proteases displaying association perturbations with several other proteins in a

subtype-specific manner reflect their activity modulation in that particular subtype. Interrogating the dys-

regulated kinases and proteases among different breast cancer types, we found that the basal B group had

the highest representation of perturbed kinases and proteases (Figures 5B and S6 and Tables S5A and

S5B). Among them, AXL, DDR2, PEAK1, EPHA2, and FYN were also specifically overexpressed in basal B

stressing on possible key roles played by these kinases in the aggressive basal B subclass. In addition,

our analysis also identified several other kinases that were not significantly differently expressed but whose

associations have been dysregulated in a basal B-specific manner (Figures 5B and 5C). For example, recep-

tor kinases FGFR1 and TGFBR2 were predicted to be dysregulated only in basal B subclass. FGFR1 is re-

garded as a prognostic factor in TNBC, and TGF-b pathway components have been considered

promising targets for impairing tumorigenesis in TNBC (Bhola et al., 2013; Cheng et al., 2015; Jamdade

et al., 2015). Associated kinases that regulate these pathways including the neurotrophic tyrosine kinase

ROR1 that potentiates FGFR signaling in basal breast cancer, and activin signaling receptor-like kinase

AVCR1 that activates SMAD pathway were also predicted to be dysregulated in a basal B-specific manner

(Bashir et al., 2015; Pandey et al., 2019; Ramachandran et al., 2018) A member of the IRAK family of kinase,

IRAK1, which mediates toll-like receptor (TLR) signaling, has been particularly proposed as a therapeutic

target driving TNBC metastasis (Wee et al., 2015). Our dysregulation analysis predicted another member

IRAK2, which is crucial in late-phase TLR signaling, to be modulated in basal B. It is interesting to note that

many of the dysregulated kinases including TGFBR2, PEAK1, ACVR1, EPHA2, EPHA4, and AXL shared

perturbed associations with multiple proteins within the basal B subclass, suggesting prominent roles

for these kinases in driving oncogenic aberrations (Figure 5C). Apart from these kinases inferred from

positively correlated dysregulated associations, we also identified others that displayed deviations in their

negative correlation especially in the basal B group. Among them, the non-receptor tyrosine kinase TNK1

(KOS1) has been reported as a tumor suppressor in breast cancer that downregulates RAS signaling (Hoare

et al., 2008). Another transcriptional kinase, CDK13, however, is associated with aggressive features in

breast cancer and is regarded as a potential target for TNBC (Quereda et al., 2019). In comparison to

the extensive modulation of kinase association network in basal B group, only two kinases were identified

to be dysregulated in basal A class. The dysregulated MST1R kinase, also known as RON receptor tyrosine

kinase, is frequently overexpressed in TNBC, and anti-RON targeted therapy has been advocated based on

promising outcomes from preclinical TNBC models (Suthe et al., 2018).

Apart from kinases, we also observed several proteases displaying subtype specificity (Figures 5B, 5D, and

S6 and Tables S5A and S5B). Strikingly, in contrast to kinase perturbations, protease association dysregu-

lations were more pronounced in basal A subgroup. Proteases such as caspases 10 and 14, kallikreins 5

and 6, and calpain 13, all displayed perturbations with multiple proteins among the basal A cell lines,

implicating dysregulation of a wide array of protease families in the basal A subclass. Some of these

Figure 5. Dysregulated Proteins in Breast Cancer Subclasses

(A) Proteins with dysregulated associations in each breast cancer subclass mapped onto the background protein-protein association network derived from

co-regulation analysis of protein abundances from all breast cancer cell lines. The network includes only positive correlations (for negative correlations see

Figure S5A). The corresponding functional annotation of the dysregulated proteins for each subclass is indicated below.

(B) Dysregulated kinases and proteases specifically enriched within each TNBC subclass are depicted as heatmap based on -log10 transformed p values

derived from hypergeometric testing. Kinases or proteases derived from dysregulations of positive associations and negative associations are depicted as

red and blue, respectively. K denotes kinases and P denotes proteases.

(C and D) (C) Perturbed association network of kinases and (D) proteases specifically dysregulated in basal B subclass. Red edges denote perturbations

inferred from positive associations and blue edges represent perturbations inferred from negative associations.
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including KLK5 and CASP14 are prognostic markers for aggressive TNBC (Handa et al., 2017; Yang et al.,

2015). In the basal B subclass, we predicted multiple metalloproteases (MMP2 and MMP14), ADAM family

proteases (ADAM12 and ADAMTS1), and deubiquitinases (UCHL1 and STAMBPL1) to be specifically dys-

regulated. AlthoughMMP2 protease was found to be both dysregulated and also overexpressed in basal B

group, we predicted MMP14 to be particularly modulated in basal B subclass based on our dysregulation

analysis. Of note, ADAM12 has been reported to promote cancer stemness in claudin-low breast cancer

(Duhachek-Muggy et al., 2017), and this aligns with our prediction that ADAM12 is dysregulated specifically

in the basal B subclass that expresses low claudin. Apart from these, a class of serine proteases encompass-

ing PRSS23 and PRSS8 were also found to have dysregulated associations in the basal B group. PRSS8, also

known as prostasin, has been reported to inhibit breast cancer invasiveness (Chen and Chai, 2002), and our

analysis predicted negative association perturbations.

AXL Regulates Subclass-specific Migration and Invasion

Our comprehensive protein-protein network analysis revealed several TNBC subclass-specific potential

therapeutic targets including kinases and proteases. We validated some of these to highlight protein

expression differences within the three breast cancer groups byWestern blotting inmultiple representative

cell lines (Figure S7).

Multiple evidences suggest dysregulation of AXL, and its associations specifically in basal B subclass,

and validation experiments confirmed AXL overexpression exclusively in basal B subclass as against the other

groups (Figures 3A, 5C & 6A, S3B, and S7A). Hence, we hypothesized that basal B cells should be more sen-

sitive to AXL inhibitors than basal A cells. To test this, we treated seven TNBC cell lines representing basal A

(BT20, MB468, and HCC70) and basal B (BT-549, Hs578t, MB-157, and MB-231) subclass with AXL-specific in-

hibitor R428 that inhibits the autophosphorylation of AXL required for its activity (Korshunov, 2012; Sadahiro

et al., 2018). Using an antibody against phosphorylated AXL at tyrosine 779 (pAXL-Tyr779), we confirmed effec-

tive inhibition of AXL activity upon treatment with R428 inhibitor in basal B cell lines (Figure 6B). Next, we inves-

tigated whether inhibition of AXL suppresses the aggressive behavior of TNBC cell lines by assessing the

migration and invasion response of the selected TNBC cell lines to AXL inhibitor R428 using modified

wound-healing assays. The reduction in AXL activity with inhibitor treatment was accompanied with a signif-

icant decrease of invasion for all basal B cell lines, with Hs578t showing the highest sensitivity (�80% reduction

in invasion) (Figure 6C). As expected, the basal A cell lines showed no significant changes in their invasive po-

tential in response to AXL inhibitor (Figure 6C). The invasive feature of basal B cell lines was specifically respon-

sive to AXL inhibition as compared with the migratory potential that displayed cell-line-dependent responses

(Figure S7B). We also performed the functional assays using transient AXL knockdown in Hs578 T cell line, and

the results showed significant decrease in invasion, whereas migration showed no notable effects (Figures 6D

and 6E). Altogether, this suggested that AXL kinase and its associated mechanisms mediate aggressive

behavior specifically in basal B subclass and hence is an effective target for basal B but not basal A type tumors.

DISCUSSION

Deconvolution of TNBC complexity is necessary to resolve molecular mechanisms and devise effective

targeted therapies for this highly heterogeneous and aggressive breast cancer subtype. In this study,

we aimed to explore patterns of proteome profiles and pertinent pathway dysregulations within TNBCby em-

ploying advanced proteomics MS in combination with methodical computational approaches. The coupling

of proteomic MS with two peptide fractionation methods boosted the overall quality of our proteome data

with higher peptide and proteome coverage along with robust quantification accuracy as revealed by

good concordance between the biological replicates. This is exemplified by the identification of regulatory

proteins belonging to various functional classes such as kinases, transcription factors, and proteases, which

are generally not extensively profiled by conventional MS-based proteomics profiling and hence are often un-

derrepresented.With consistent high coverage of proteome across the panel, we obtained themost compre-

hensive quantitative proteome profile of breast cancer cell lines reported to date. Unsupervised clustering of

the unprecedented high-quality proteome revealed two major subclasses within TNBC, basal A and B, which

aligned with previously reported transcriptome-based classification. Moreover, for the first time, we observed

distinct expression profile patterning of kinases and proteases that were able to segregate the two TNBC

subclasses, stressing on key roles played by these protein classes within TNBC.

Although similar TNBC subclasses based on proteomics differences have been reported previously (Lapek

et al., 2017; Lawrence et al., 2015), our observation of exclusive subclass-specific kinase and protease

12 iScience 23, 100868, February 21, 2020



signatures offered direct phenotypic perspectives on the different TNBC subclasses. In fact, some of the

observed basal B-specific kinases and proteases have been previously shown to be linked with migratory

and invasive potential of tumors, supporting a more aggressive feature of basal B cell lines. We observed

several kinases including PEAK1, ACVR1, and NUAK1 specifically within the basal B subclass, and it is

worthwhile to assess their roles in mediating aggressive oncogenic features for exploring newer targets

for this subclass. We also found AXL with increased abundance specifically within the basal B subclass.

AXL has been previously shown to be associated with TNBC tumorigenesis, particularly in those cancers

cells displaying mesenchymal features (Bottai et al., 2016). AXL activates PI3K/AKT and JAK/STAT

pathways, resulting in increased cell survival and reduction of immune response, and also mediates

EMT and increases invasion (Gay et al., 2017; Goyette et al., 2018; Wilson et al., 2014). With its prominent

oncogenic roles, AXL has been proposed as a therapeutic target for TNBC and also for other cancers, and

one of its selective inhibitors R428 (BGB324; Bemcentinib) is under clinical trials for acute myeloid leukemia

A

C

B

D E

Figure 6. Subclass-specific Regulation of AXL Kinase

(A) Western blot analysis of AXL expression in selected basal A and B cell lines (only a section of Figure S7A is shown).

(B) Western blot analysis of AXL and pAXL-Tyr779 in selected basal B cell lines with and without AXL inhibitor (R428)

treatment.

(C) Invasive potential represented as relative gap closure rates between R428 and DMSO-treated cells. Data shown as

mean G SEM, n = 3. *, p value %0.05; **, p value %0.01; n.s., not significant (using t-test).

(D) Migratory and invasive potential represented as relative gap closure rates for Hs578t cell line treated with siRNA

against AXL (siAXL) or scramble (siSCR) as control. Data shown as meanG SEM, n = 3. *, p value%0.05; **, p value%0.01;

n.s., not significant (using t-test).

(E) Western blot analysis of AXL expression in Hs578T cell line treated with siRNAs.
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(AML), non-small cell lung cancer (NSCLC) (NCT02488408/NCT02424617) as well as for advanced TNBC

and adenocarcinoma of the lung in combination with pembrolizumab (Yule et al., 2018). Despite several

studies showing that AXL mediates TNBC tumorigenesis (Holland et al., 2010; Wilson et al., 2014), the pos-

sibility of subclass-specific functions or therapeutic implications has not been explored thus far. In fact,

in our study, we demonstrated that inhibition of AXL suppresses the migratory and invasive behavior spe-

cifically in the basal B subclass and hence, can be an effective target for tumors belonging to this subclass.

In comparison to kinases, proteases are far less studied, their repertoire of targets is not well understood,

and hence, only a few available specific inhibitors have been exploited in the clinic. With their profound

roles in various functional processes, particularly in mediating migration and invasion during tumor pro-

gression, there has been a leap in the number of studies focusing on elucidating the mechanistic roles

and defining their target substrates. It is therefore not surprising that except for CASP14, none of our

observed DE proteases have been reported in a subclass-specific manner, even though some of them

including FAP, MMP2, UHCL1, and kallikreins have been reported to be involved in breast cancer tumor-

igenesis in general (Haritos et al., 2018; Huang et al., 2004; Liu et al., 2019; Talvensaari-Mattila et al., 2003;

Yang et al., 2015).

The analysis of subclass-specific kinase-protease-centric signatures and their associated networks repre-

sented known functional signatures of each breast cancer type and also revealed several molecular

hubs, altered pathways, and signaling crosstalk that may signify intricate molecular rewiring within each

type. For the basal B class, the kinase-protease-centric network and signatures displayed functional incli-

nation to amore aggressive phenotype with potential crosstalk between signaling cascades.We found that

HIF-1 signaling and hypoxia-driven signatures were more pronounced in basal B as compared with basal A

subclass. Hypoxia has been shown to be linked to EMT and cancer progression in many solid tumors (Muz

et al., 2015), and its major regulator transcription factor HIF-1a is known to be associated with advanced

disease stage and poor clinical outcome in breast cancers (Liu et al., 2015; Yamamoto et al., 2008). Recent

studies demonstrated that HIF-1a is particularly overexpressed in TNBC tumors as compared with other

subtypes and favors invasive nature (Chen et al., 2014; Ponente et al., 2017). From the basal B kinase-pro-

tease network, we inferred that HIF-1a lies within the proximity neighborhood of protein kinase C a (PKCa

encoded by PRKCA). PKC isoforms including PKCa have been reported to play crucial roles in regulating

the stability, accumulation, and transactivation of HIF-1a during hypoxia (Datta et al., 2004; Lee et al., 2007).

PKCa has also been implicated in TNBC aggressiveness, and PKCa inhibitors have been advocated as

promising therapeutic agents (Humphries et al., 2014; Lin et al., 2017). With the observed basal B-specific

enhanced expression of PKCa, we postulate a robust activation and maintenance of HIF-1 signaling partic-

ularly within the basal B TNBC subgroup. Further, HIF-1a stabilization through deubiquitination by UCHL1,

a protease we found to be overexpressed within basal B, has also been reported to increase HIF-1

signaling, leading to angiogenesis and distant metastasis (Goto et al., 2015). Taken together, these data

suggest HIF-1 signaling to be specifically hyperactivated within the basal B group. The network also re-

vealed transcription factor JUN as one of the key functional hubs within the proximity neighborhood of

several altered kinases and proteases including MAPK7, DDR2, EPHA2, and FAP in the basal B subclass.

Among breast cancer types, overexpression and activation of JUN transcriptional cascade has been re-

ported especially in TNBC wherein it aggravates proliferation and migratory potential along with trig-

gering a stem cell phenotype (Xie et al., 2017). A potential crosstalk between JUN signaling and EPHA2

receptor is known to promote phenotypic alterations associated with tumorigenesis and acquiring stem-

cell-like properties in cancers (Song et al., 2014). With EPHA2 abundantly expressed in basal B, our results

support sustained activation of EPHA2 via JUN, whichmay be conducive for promoting aggressive features

within basal B subclass. In addition to pinpointing signaling hubs, we also identified EMT inducer ZEB1 as a

key molecular pivot within the basal B kinase-protease network supporting a more invasive and migratory

signature for this aggressive subclass (Zhang et al., 2015). Such evidences from our analyses thus add val-

idity to the relevance of unique kinase and protease signatures among different breast cancer subtypes and

reinforce their profound influence over key functional processes.

Although the analysis based on differentially regulated proteins, especially kinases and proteases,

provided insights on possible functional rewiring of basal A and basal B TNBC subclasses, signaling

pathways and networks underlie intricate involvement of several proteins beyond those that are only

differentially expressed. There exists a high degree of protein co-regulation and association in various

cellular processes, and any imbalance affecting the stoichiometry between proteins or within functional

complexes often leads to signaling aberrations making them vulnerable to transformations. We

14 iScience 23, 100868, February 21, 2020



hypothesized that inherent protein-association dysregulations exist within each subtype of breast cancer,

and mining for such functional differences at the systemic level will identify subtype-specific molecular ab-

errations. Indeed, we observed several protein associations that were consistently dysregulated in partic-

ular groups of breast cancer subtypes. Although not all dysregulated proteins identified through this anal-

ysis were differentially expressed in a subtype-specific manner, the functional differences among the breast

cancer subgroups were well represented. The basal B subclass displayed the highest number of dysregu-

lated proteins involved in perturbed associations. Several of these intricately associated proteins are

known to play vital roles in invasion and metastatic processes. For example, the specific prediction of

MMP14 in the more aggressive basal B group rather than the basal A group is interesting, as MMP14

is implicated in aggressive phenotypes of breast cancer and is involved inmediating EMT, thus contributing

to invasion and metastasis (Jiang et al., 2006). We also predicted TGFBR2 and associated TGF signaling to

be specifically modulated in the basal B subclass, and indeed TGF-b pathway is well documented in medi-

ating oncogenesis in the mesenchymal-like and claudin-low subgroups of TNBC (Wahdan-Alaswad et al.,

2016). Besides triggering EMT mechanisms, TGF-b pathway also enhances cell proliferation and reduces

apoptosis (Massagué, 2008; Xu et al., 2018). Although both TGFBR1 and TGFBR2 heterodimerize during

transcriptional activation via SMAD signaling (Principe et al., 2014), only TGFBR1 inhibitors are predomi-

nant in clinical trials for effectively blocking the pathway. Given the pro-proliferative role of TGFBR2 to acti-

vate MAPK and PI3K/AKT pathways independently of TGFBR1 (Bakin et al., 2000; Janda et al., 2002), and

the fact that we predict TGFBR2 perturbation within basal B subclass, it is prudent to inhibit TGFBR2 for

effective abolishment of downstream oncogenic effects pertaining to this pathway within aggressive tu-

mors belonging to basal B subclass. Indeed, several of the kinases that we observed to vary in abundance

within the basal B subclass also have been reported to engage in signaling crosstalk with TGFBR2 and their

associated signaling. For instance, PEAK1 has been reported as a molecular switch altering TGFBR2 re-

sponses from canonical tumor suppressing to non-canonical tumor promoting, thus driving EMT and inva-

sion (Agajanian et al., 2015a, 2015b). For protease FAP, which was both overexpressed and predicted to be

dysregulated within basal B, we observed perturbed associations with several EMT-associated proteins

such as BGN, CDH2, TAGLN, COL6A3, and VCAN (Chen et al., 2019; Hu et al., 2014; Huang et al., 2018;

Mrozik et al., 2018; Sheng et al., 2006). Such dysregulated associations of FAP strongly argue for an impor-

tant functional role specific to basal B cells; however, little is known about its actual in vivo targets and

tumorigenic mechanisms (Hamson et al., 2014). All these assert that protein associations and co-regula-

tions are critical determinants in defining cellular mechanisms and functional alterations. Although some

of the dysregulated kinases and proteases including AXL, EPHA2, MMP2/14, and FAP have previously

been shown to be possible targets for TNBC, they have not been studied in a subclass-specific manner.

While some of these are currently being explored for TNBC therapy, our analyses suggest that targeting

these proteins could prove more effective in a particular subclass rather than in TNBC in a broader context.

In addition to these, we also unraveled several other novel kinases and proteases that have the potential to

be exploited as TNBC subclass-specific druggable targets.

Although the molecular heterogeneity of TNBC is well documented, success with regard to clinical inter-

vention has been disappointing. Despite several studies reporting varied expression patterns of genes and

proteins within TNBC, a thorough investigation from a therapeutic perspective to unravel the complexity

has been lacking. Our systemic and systematic workflow, with emphasis on protein association dysregula-

tions, opens up new avenues for understanding molecular perturbations at the subtype level and also ex-

tracts subclass-specific therapeutic targets for strategized clinical applications. The candidates identified

in our study are now at secondary validation stage, where tumor screening for target verification and in vivo

biological studies should be performed. At the same time, establishment of robust subclass-specific bio-

markers is mandatory for patient stratification for successful targeted treatments. Here, our analysis has

been carried out focusing only on two major TNBC subclasses. Nevertheless, we postulate that

there could be more than two subclasses within TNBC with different functional signatures. For this,

deep proteome profiling of all available TNBC cells as well as tumors, followed by systematic analysis here-

in reported is required. Altogether, our study uncovers molecular mechanisms within TNBC subclasses and

thus holds potential to enhance applications of personalized medicine for TNBC.

Limitations of the Study

This study revealed distinct proteome-based subclasses within TNBC that are functionally discrete

and highlighted mechanisms and potential targets unique to the subclasses opening new avenues

for further functional explorations. However, certain limitations and challenges remain to be addressed. First,
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the repertoire of TNBC cell lines profiled by this study is limited and may not represent the complex

heterogeneity underlying TNBC. Extensive proteomic screening of a wide array of breast cancer cell lines

that represents the entirety of TNBC complexity is likely to identify additional subclasses or better resolve ex-

isting subclasses with distinctive functional signatures. These subclasses may refine our current understanding

of transcriptome-derived TNBC clusters and offer functional insights on inherent molecular specificities within

TNBC. An additional drawback of this study is the use of cell lines for proteomic profiling and validation. Ex-

isting cell line models are homogeneous and lack components of the tumor such as infiltrating cells, macro-

phages, blood vessels, and ECM that represent the tumor microenvironment and hence are not perfect in

mimicking actual tumor conditions. Functional interplay between tumors and its environment is crucial in

defining oncogenic progression, and such complexities are not considered in the current cell-line-based pro-

teome profiling. Yet, our study shows feasibility of unraveling TNBC complexity using proteomic approaches

and extension of such investigations to profile tumors derived from large patient cohorts will benefit from pa-

tient stratification based on functional subclasses that hold potential for improved TNBC-targeted therapies.

With emphasis laid on subclass-specific roles of kinases and proteases based on our proteomic characteriza-

tion, more efforts are needed in investigating their oncogenic roles within TNBC subclasses to explore their

clinical utility for personalizedmedicine. This is especially important for targets that are currently under clinical

trial where knowledge on subclass specificity will favor successful clinical outcomes.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via

the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD017025.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100868.
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Figure S1. Proteome profiles of breast cancer cell line panel. Related to Figures 1 & 2, and Table S1. (A) 

Pearson correlation of log2 fold-change plotted as heat map for all biological replicates and between the two 

different peptide fractionation methods, IEF and bRP-LC. (B) Unsupervised whole proteome-based clustering 

of the breast cancer cell line panel. Normalized median log2 fold-change of proteins is represented as heat map. 

(C) Principal component analysis for phosphatases or transcription factors showed no distinct distribution pattern 

compared to kinases (Figure 2C) and proteases (Figure 2D). ER/PR+ and HER2+ represent luminal subtype, 

basal A and basal B represent TNBC subtype. 
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Figure S2. Differentially expressed kinase and protease profiles. Related to Figure 3. (A) Key targets of 

approved drugs from www.drugbank.co (Dec 2019) mapped onto the human kinome tree. Illustration was 

created using CORAL online tool (Metz et al., 2018) based on the human kinome tree courtesy Cell Signaling 

Technology, Inc. (www.cellsignaling.com). (B) Differentially expressed kinases for the luminal breast cancer 

subtype as compared to both basal A and basal B subclasses mapped onto the human kinome tree. The node 

size and shade represents the median log2 fold-change of the kinases in the luminal subclass. Red represents 

upregulated kinases and blue denotes downregulated kinases in luminal as against the other two TNBC groups. 

Those kinases indicated with asterisk are differentially expressed by at least two-fold in luminal as against the 

other two TNBC subclasses. Illustration was created using CORAL online tool (Metz et al., 2018) based on the 

human kinome tree courtesy Cell Signaling Technology, Inc. (www.cellsignaling.com). (C) Differentially 

expressed proteases for the luminal breast cancer subtype as compared to both basal A and basal B subclasses 

mapped according to their protease families. The node size and shade represents the median log2 fold-change 

of the protease within the luminal subclass. Red represents upregulated and blue denotes downregulated 

proteases in luminal as against the other two TNBC groups. Nodes are scaled to the sizes represented in the 

scale bar in Figure S2B. Those proteases indicated with asterisk are differentially expressed by at least two-fold 

in luminal group as against the other two TNBC subclasses. The protease families include S – serine, C – 

cysteine, M – metallo, A – aspartate, T – threonine proteases, and P – peptidases.  
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Figure S3. Kinase-protease-centric interaction network. Related to Figure 4. (A) Proximity network of 

differentially expressed kinases and proteases in the luminal subtype. The kinases are depicted as green nodes 

and proteases as blue nodes, and the size of the nodes represents the median log2 fold-change against the 

other two TNBC subclasses, with larger nodes representing increased fold-change and vice versa. The edges 

represent physical and functional interactions between proteins. (B) The top densely connected clusters in the 

basal B kinase-protease proximity network identified through MCODE graph clustering algorithm is shown. The 

sizes of the colored nodes correspond to the median log2 fold-change of the basal B subclass against both the 

luminal and the basal A subclass. The kinases and proteases are depicted as green and blue nodes, 

respectively, and the edges represent physical and functional interactions between proteins. 
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Figure S4. Functional enrichment among breast cancer subgroups. Related to Figure 4 and Table S2. (A) 

Distribution of protein ratio within each breast cancer subgroups for the indicated cancer hallmark gene sets 

(*, p value ≤0.05; **, p value ≤0.01; n.s., not significant – using KS test). (B) Distribution of protein ratio within 

each breast cancer subtype for the indicated KEGG signaling pathways (*, p value ≤0.05; **, p value ≤0.01; n.s., 

not significant – using KS test). 
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Figure S5. Protein association dysregulations in different breast cancer subgroups. Related to Figure 5, 
and Tables S3, S4 and S5. (A) Proteins with dysregulated associations in each breast cancer subgroup shown 
as colored nodes mapped onto the background protein-protein association network derived from co-regulation 
analysis of protein abundances from all breast cancer cell lines. The network includes only negative correlations. 
(B) Pairs of proteins that are consistently dysregulated among the different breast cancer groups are shown. 
The red and blue edges indicate positive and negative protein co-regulations, respectively. The size of the edges 
corresponds to the number of cell lines within a particular group displaying dysregulations in the indicated 
protein-protein association. 
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Figure S6. Subtype-specific kinase and protease dysregulations. Related to Figure 5, and Table S5. (A) 

Dysregulated kinases and proteases specifically enriched in the luminal subtype are depicted as a heat map 

based on negative log10 transformed p values derived from hypergeometric testing. Kinases or proteases 

derived from dysregulations of positive associations and negative associations are indicated in red and blue, 

respectively. K denotes kinases and P denotes proteases. (B) Perturbed association network of kinases and 

proteases in the luminal subtype. Red edges denote perturbations inferred from positive associations and blue 

edges represent perturbations inferred from negative associations. (C) Perturbed association network of kinases 

and proteases in the basal A subclass. Red edges denote perturbations inferred from positive associations and 

blue edges represent perturbations inferred from negative associations.  
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Figure S7. Western-blot validation and migration assay. Related to Figure 6. (A) Expression differences of 

selected kinases and proteases in representative cell lines for the luminal, basal A and basal B subclass. Bar-

chart represents quantified fold-change by MS. (B) Migratory potential represented as relative gap-closure rate 

between R428 and DMSO treated cell lines. Data are represented as mean ± SEM, n=3. (*, p value ≤0.05; 

**, p value ≤0.01; n.s., not significant – using t-test). 



Transparent Methods 

Key Resource Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

AXL R and D systems Cat# AF154, RRID:AB_354852 

Phospho-AXL (pAXL-Tyr779) R and D systems Cat# AF2228, RRID:AB_2062560 

GAPDH Santa Cruz  Cat# sc-32233, RRID: AB_627679 

TGFBR1 Abcam Cat# ab31013, RRID:AB_778352 

CASP14 Abcam Cat# ab174847 

UCHL1 Cell Signaling  Cat# 13179, RRID:AB_2798141 

HTRA1 Abcam Cat# ab38611, RRID:AB_733053 

β-actin Santa Cruz Cat# sc-47778, RRID:AB_626632 

Chemicals, Peptides, and Recombinant Proteins 

R428, AXL kinase inhibitor, 10mM in 1ml DMSO MedChem Express Cat# HY-15150 

Collagen-I, Rat Tail gibco Cat# A10483-01 

Sequencing Grade Modified Trypsin Promega Cat# V5111 

LysC (Lysyl Endopeptidase) Wako Cat# 125-05061 

TMT10plex Label Reagent Set Thermo Scientific Cat# 90110, LOT# SC239886 

Immobiline® Drystrip pH 3-10 NL, 24 cm GE Healthcare Cat# 17-6002-45 

Critical Commercial Assays 

Pierce 660nm Protein Assay Reagent Thermo Scientific Cat# 22660 

Culture-Inserts 3 Well for self-insertion ibidi Cat# 80369 

EZ-PCR Mycoplasma Detection Kit Biological Industries Cat# 20-700-20 

Deposited Data 

The mass spectrometry proteomics data have been 

deposited to the ProteomeXchange Consortium via the 

PRIDE (Perez-Riverol et al., 2019) partner repository. 

This Study 
http://www.ebi.ac.uk/pride 

Project Accession: PXD017025 

Experimental Models: Cell Lines 

AU565 ATCC Cat# CRL-2351, RRID:CVCL_1074 

BT20 ATCC Cat# HTB-19, RRID:CVCL_0178 

BT474 ATCC Cat# CRL-7913, RRID:CVCL_0179 

BT-549 ATCC Cat# HTB-122, RRID:CVCL_1092 

HCC1143 ATCC Cat# CRL-2321, RRID:CVCL_1245 

HCC1395 ATCC Cat# CRL-2324, RRID:CVCL_1249 

HCC1806 ATCC Cat# CRL-2335, RRID:CVCL_1258 

HCC1937 ATCC Cat# CRL-2336, RRID:CVCL_0290 

HCC70 ATCC Cat# CRL-2315, RRID:CVCL_1270 

Hs578t ATCC Cat# HTB-126, RRID:CVCL_0332 

MB-157 (MDA-MB-157) ATCC Cat# HTB-24, RRID:CVCL_0618 

MB-231 (MDA-MB-231) ATCC Cat# HTB-26, RRID:CVCL_0062 

MB-436 (MDA-MB-436) ATCC Cat# HTB-130, RRID:CVCL_0623 

MB-468 (MDA-MB-468) ATCC Cat# HTB-132, RRID:CVCL_0419 

MCF-7 ATCC Cat# HTB-22, RRID:CVCL_0031 



Sk-Br-3 ATCC Cat# HTB-30, RRID:CVCL_0033 

T-47D ATCC Cat# T-47D, RRID:CVCL_0553 

ZR-75-1 ATCC Cat# CRL-1500, RRID:CVCL_0588 

Software and Algorithms 

Proteome Discover 2.2 Thermo Scientific RRID:SCR_014477 

Perseus Version 1.6.6.0 
(Cox and Mann, 2012; 

Tyanova et al., 2016) 

https://maxquant.net/perseus, 

RRID:SCR_015753 

Image Lab Version 5.2 build 14 Bio Rad 

http://www.bio-rad.com/en-

sg/sku/1709690-image-lab-

software?ID=1709690, Cat# 

1709690, RRID:SCR_014210 

iBright Analysis Software Thermo Scientific RRID:SCR_017632 

ImageJ 1.51w 

Wayne Rasband 

National Institute of 

Health, USA 

http://imagej.nih.gov/ij, 

RRID:SCR_003070 

Scratch wound assay (ImageJ Macro) 

John Lim (IMB 

Microscopy Unit, 

A*STAR)  

(Bigliardi et al., 2015) 

https://www.a-

star.edu.sg/imb/Tech-

Platforms/AMP-Light-

Microscopy/Image-

analysis/Scratch-wound-assay  

MEGA X Version 10.0.2 (Kumar et al., 2018) www.megasoftware.net 

R statistical environment Version x64 3.4.0 (R Core Team, 2014) 
http://www.r-project.org, 

RRID:SCR_001905 

Gene set enrichment analysis (GSEA) Version 3.0 
(Subramanian et al., 

2005) 

http://www.broadinstitute.org/gsea, 

RRID:SCR_003199 

Cytoscape Version 3.6.0 (Shannon et al., 2003) https://cytoscape.org 

Enrichr (Kuleshov et al., 2016) 
http://amp.pharm.mssm.edu/Enrich

r, RRID:SCR_001575 

DAVID Version 6.8 
(Huang da et al., 

2009) 

http://david.abcc.ncifcrf.gov, 

RRID:SCR_001881 

Others 

UniProtKB Human (2019-06) UniProt Consortium 
http://www.uniprot.org/help/uniprotk

b, RRID:SCR_004426 

Kincat Hsap 08.02; Update Dec 07 (Manning et al., 2002) www.kinase.com 

HuPho: human phosphatase portal (2018-03-19_07-16) (Liberti et al., 2012) http://hupho.uniroma2.it/index.php  

MEROPS DB release 12.0 (2018-03-19) (Rawlings et al., 2018) 
http://merops.sanger.ac.uk, 

RRID:SCR_007777 

The FANTOM consortium and RIKEN Omics Science 

Center 
(Ravasi et al., 2010) 

http://fantom.gsc.riken.jp, 

RRID:SCR_002678 

Pathway Commons release 12 (2019-09-18) (Cerami et al., 2011) https://www.pathwaycommons.org/ 

Cancer Gene Census release v90 (2019-09-05)  (Sondka et al., 2018) http://cancer.sanger.ac.uk/census 

 

 



Contact for reagent and resource sharing 

Further information and requests for resources and reagents should be directed to the Lead Contact, Jayantha 

Gunaratne (jayanthag@ imcb.a-star.edu.sg). 

Cell line models 

AU565, BT20, BT474, BT-549, SK-BR-3, HCC1143, HCC1395, HCC1806, HCC1937, HCC70, Hs578t, MCF-7, 

MDA-MB-157 (MB-157), MDA-MB-231 (MB-231), MDA-MB436 (MB-436), MDA-MB-468 (MB-468), T-47D and 

ZR-75-1, were derived from female breast tumors. Cell lines were either freshly obtained from ATCC (pre-

authenticated) or authentication confirmed by ATCC using STR Profiling prior to proteome profiling. All cell lines 

were regularly tested for mycoplasma contaminations using EZ-PCR Mycoplasma Detection Kit. BT474, Hs578t, 

MCF-7, MB-157, MB-231, and MB-468 were cultured in DMEM supplemented with 10% fetal bovine serum 

(FBS), 1%PenStrep and 1% L-glutamine. BT20 was cultured in MEM supplemented with 10% FBS, 1% 

PenStrep, 2% Sodium Bicarbonate, 1% Non-Essential Amino Acids and 1% Sodium Pyruvate. Sk-Br-3 was 

cultured in McCoy’s 5a Medium supplemented with 10% FBS and 1%PenStrep. The remaining cell lines were 

cultured in RPMI1640 supplemented with 10% FBS and 1% PenStrep. All cell lines were cultured at 37 °C with 

5% CO2. 

Cell lysis and sample preparation for mass spectrometry 

For harvesting, cell lines were grown to 90-100% confluency and rinsed with cold PBS before removal from cell 

culture dish by trypsinizing. Cells were pelleted by centrifugation at 1500 rpm for 7 minutes at 4 °C followed by 

washing with cold PBS and re-pelleting. Subsequently cell pellets were snap-frozen on dry-ice and stored at -

80 °C. 

Cells were lysed by addition of approximately 3x pellet volume lysis buffer (6 M urea, 2 M thiourea and 100 mM 

ammonium bicarbonate) and repeated passing of the suspension through a 1 ml pipette tip. Undissolved debris 

was pelleted by centrifugation at 15000 rpm for 20 minutes, and the supernatant was transferred to a new low-

bind tube followed by addition of 1 µl benzonase and incubated for 15 minutes at room temperature, before 

protein concentration was determined using Pierce 660 nm Protein Assay Reagent as per manufacturer’s 

instructions. For pooled sample control, equal protein amounts from each cell lysate were combined and used 

for all replicates. 150 µg of proteins per sample were subsequently reduced by addition of 100 mM dithiothreitol 

to a final concentration of 5 mM and incubated for 30 minutes. The reduced samples were subjected to alkylation 

by addition of 100 mM iodacetamide to a final concentration of 10 mM and incubated further for 30 minutes in 

the dark. Proteins were then digested by addition of LysC (Lysyl Endopeptidase, Wako) in a protein:enzyme 

ratio of 1:100 and overnight incubation at 37 °C. Subsequently, urea concentration in the samples was reduced 

to 1 M by addition of 50 mM ammonium bicarbonate before protein digestion using Sequencing Grade Modified 

Trypsin (Promega) at a 1:50 enzyme:protein ratio for 8 hours at 37 °C. After digestion, the samples were 

desalted by C18 solid-phase extraction and peptide concentration was determined using Nanodrop (Thermo 

Scientific) followed by drying under vacuum. 

TMT10plex labeling 

The TMT10plex Label reagents (Thermo Scientific) were first equilibrated to room temperature and suspended 

using 41 µl anhydrous acetonitrile. 100 µg of digested dried peptides were re-suspended in 40 µl of 100 mM 

triethyl ammonium bicarbonate (TEAB) before being added to the appropriate TMT label reagent in random 



order. After gentle mixing of the TMT label and sample, the labeling reaction was incubated for 1 hour at room 

temperature, followed by addition of 8 µl quenching reagent (5% Hydroxylamine in 100 mM TEAB) for 15 minutes 

to quench the reaction. Subsequently, labeled samples were combined, briefly vortexed, and split into two equal 

parts for fractionation using IEF and bRP-LC. Samples were stored at -80 °C until further use. 

Sample fractionation by basic pH reversed-phase liquid chromatography (bRP-LC) 

Peptide sample volume was reduced to 20 µl under vacuum followed by resuspension in 20 mM ammonium 

formate pH 10 to final volume of 110 µl. The sample was then fractionated using a 3.0x150mm XBridge C18 3.5 

µm column on a Shimadzu Nexera XR HPLC system with fraction collector. Fractionation was accomplished by 

applying a 45 minute gradient from 4 to 72% acetonitrile in 20 mM ammonium formate pH 10 with a flowrate of 

0.5 ml/min. A total of 48 fractions were consecutively combined into 15, followed by freeze-drying under vacuum 

prior to MS analysis. 

Sample fractionation by off-gel isoelectric focussing (IEF) 

Peptide samples were fractionated using Immobiline Drystrip pH 3-10 NL, 24 cm on an Agilent 3100 OFFGEL 

Fractionator (Agilent, G3100AA) according to manufacturer’s protocol. 24 fractions were collected and desalted 

using self-packed C18 stage tips, followed by freeze-drying under vacuum prior to MS analysis. 

Liquid Chromatography – Mass Spectrometry (LC-MS) 

Dried samples were reconstituted in 0.1% formic acid, followed by loading of 2 µg total peptides per fraction onto 

a trap column of C18 Acclaim PepMap 100 of 5µm, 100 Å, 100 µm I.D. x 2 cm and an analytical column of 

PepMap RSLC C18, 2um, 100 Å, 75µm I.D. x 50 cm using Easy nLC 1000 (Thermo Scientific). The LC solvent 

A comprised of 0.1 M formic acid in 2% acetonitrile and LC solvent B comprised of 0.1 M formic acid in 95% 

acetonitrile. Tryptic peptides were separated using a 3 hour gradient from 8–38% solvent B with a flowrate of 

200 nl/min and subsequently analyzed using Orbitrap Fusion Tribrid Mass Spectrometer (Thermo Scientific) 

operating in positive ion mode. MS data was recorded in data-dependent acquisition mode, for acquiring full 

scan MS spectra (m/z 310 – 1510) with a resolution of R=120,000 at an AGC target of 4e5, and a maximum 

injection time of 50 ms. Data dependent mode was set to cycle time for 3 seconds. Each MS2 scan was 

sequentially isolated to an AGC target value of 1e5 with resolution of 60,000 and maximum injection time of 105 

ms and fragmented using HCD collision energy of 34% at MS2 level with fixed first mass at 120 and isolation 

window of 1.2 m/z.  

Protein/peptide identification and quantification 

Mass spectrometry raw data was analyzed using Proteome Discoverer 2.2 (Thermo Scientific) and proteins were 

identified using the integrated Sequest HT search engine. Search was performed against human database 

(2019-06) for fully tryptic peptides with a maximum of two missed cleavage sites. Methionine oxidation and N-

terminal acetylation were stated as dynamic modifications, and carbamidomethylation at cysteine and TMT-

modifications at any peptide N-terminus and lysine were included as static modifications in the search 

parameters. Threshold for peptide and protein validation was set to 0.01 false discovery rate (FDR). 

Quantification was based on MS2 TMT reporter ion abundance with a co-isolation threshold of 50 and an 

average reporter S/N threshold of 10. Protein abundance was normalized to equal total protein for each TMT-

channel. 

 



Proteome expression data analysis 

A pooled sample from all cell lysates was labeled with the 126 TMT-reporter within each TMT10plex set. To 

normalize for batch variation between TMT sets, median protein abundance of all 126-channels was calculated 

and subsequently protein abundance of each TMT set was multiplied by a corresponding correction factor, 

followed by log2-ratio calculation to median pooled protein abundance.  

Pearson’s correlation was calculated for the protein expression ratios of all replicates. Following good 

correlation, median log2-ratios were calculated for all replicates and finally, all protein expression ratios were 

median-normalized across all cell lines. 

The cell lines were categorized into three defined groups as ‘luminal’, ‘basal A’ and ‘basal B’ following PCA and 

clustering analysis. Only those proteins with more than 50% values in each of the defined groups were 

considered for subsequent statistical testing using one-way ANOVA. Significant differentially expressed (DE) 

proteins with p value ≤ 0.05 were filtered and subjected to pairwise comparisons using two-sample Student’s 

t-tests. Significant proteins in each group were identified as those with p value ≤ 0.05 in all the pairwise t-tests.  

Correlation analysis, ANOVA and Student’s t-test analysis, unsupervised clustering and PCA were performed 

using Perseus 1.6.6.0 (Tyanova et al., 2016) 

Functional protein class mapping 

Kinase information of human non-pseudogenes was extracted from www.kinase.com (Kincat Hsap 08.02; 

Update Dec 07) (Manning et al., 2002) and the corresponding Uniprot accessions were obtained by Uniprot ID 

mapping tool. Missing values and duplicates were cross-checked and validated at www.kinasenet.ca using 

Entrez gene name. This resulted in 506 kinases with distinct Uniprot accessions. DE kinases were subsequently 

mapped onto the human kinome tree (Manning et al., 2002) using the web-based Coral tool (Metz et al., 2018). 

Uniprot accessions for 197 human non-pseudogene phosphatases were extracted from the human phosphatase 

portal (2018-03-19_07-16) (Liberti et al., 2012).  

Protease information for human non-pseudogenes was extracted from MEROPS DB release 12.0 (2018-03-19) 

(Rawlings et al., 2018) and the MEROPS IDs were mapped to their corresponding Uniprot accessions using 

Uniprot ID mapping tool, resulting in a total of 529 unique proteases. Similar to the human kinome tree, a 

phylogenetic tree was created for protease families. Amino acid sequences of proteases families were aligned 

using ClustalW algorithm in MEGA-X (Kumar et al., 2018) followed by creation of maximum likelihood tree using 

Poisson model. Subsequently DE proteases were mapped onto the constructed tree. 

Information for human non-pseudogene transcription factors was extracted from the supplementary data curated 

by The FANTOM consortium and RIKEN Omics Science Center (Ravasi et al., 2010). Gene IDs were mapped 

to Uniprot accession numbers using the Uniprot ID mapping tool, resulting in 1961 transcription factor IDs. 

  



Expression based protein-protein network analysis 

Kinase- and protease-centric networks were explored using interactions curated in the Pathway Commons 

database release 12 (2019-09-18) that integrates biological interaction and pathway information from multiple 

databases (Cerami et al., 2011). Neighborhood interactions for all the kinases and proteases that were 

significantly altered in each of the breast cancer subtype as against the other groups were first derived by 

searching against the interaction database. Apart from physical interactions, functional interactions such as 

those that control phosphorylation, regulate protein expression and influence complex formation were also 

included. In this manner, for all the DE kinases and proteases, a proximity network encompassing signaling, 

regulatory and metabolic networks were derived. The network neighborhood for each kinase and protease was 

then filtered to retain those proteins that overlapped with the DE proteins in that particular subtype. The proximity 

networks for all the kinases and proteases were merged and any possible interactions among the retained DE 

proteins were also considered. The kinase- and protease-proximity networks for each subtype were then 

integrated and visualized in Cytoscape (Shannon et al., 2003). The topological parameters of the network were 

analyzed for centrality and degree distribution. Finally, cluster assessment was performed using graph clustering 

algorithm MCODE to identify densely connected regions based on network topology (Bader and Hogue, 2003). 

Enrichment analysis 

The DE proteins including the kinases and proteases for each breast cancer subtype were analyzed for 

enrichment of cancer hallmark gene sets from the Molecular Signature Database (MSigDB) collections (Liberzon 

et al., 2015). The enrichment was performed as implemented in gene set enrichment analysis (GSEA) at FDR 

≤ 25% (Subramanian et al., 2005). For comparison of gene set distributions across different breast cancer 

subtypes, only those proteins within the enriched gene sets that were also part of the kinase-protease 

neighborhood network were considered. The significance of protein abundance distribution of each gene set 

across the different breast cancer groups was assessed using Kolmogorov–Smirnov (KS) test, and those with p 

value ≤ 0.05 were considered significant. In addition, gene ontology and pathway enrichment by KEGG pathways 

was assessed using DAVID (Huang da et al., 2009), and significantly enriched ontology terms and signaling 

pathways (p value ≤ 0.05) were derived. Statistical testing of distributions of protein abundances within each 

signaling pathway across the subtypes were assessed using KS test as described above.  

Correlation-based dysregulated association analysis 

The quantification profiles of proteome from all cell lines were correlated using Spearman’s rank correlation. For 

this analysis, only those proteins that were quantified across all cell lines (10,400 proteins) were considered. 

The correlation coefficients and p values for all correlating pairs were calculated and adjusted for multiple testing 

using Benjamini-Hochberg correction. The correlating pairs were filtered for adjusted p value ≤ 0.1, which 

retained those with an absolute correlation coefficient of ~0.76 from both positively and negatively correlated 

associations. Unweighted correlation networks were constructed using these highly correlated protein-protein 

associations and specific deviations of individual cell lines from such correlations were assessed by calculating 

the Mahalanobis distance followed by Grubbs’s test for outliers (p value ≤ 0.05). The above analysis that 

revealed dysregulated protein associations was adapted from the ‘interactome mapping by high-throughput 

quantitative proteome analysis’ (IMAHP) method (Lapek et al., 2017). Following the observation that the 

dysregulated proteins from each cell line displayed discrete patterns according to their subtype on mapping to 

the background positive correlation network, hypergeometric test was performed to assess the enrichment of 



dysregulated proteins within each breast cancer subtype (p value ≤ 0.1). Known cancer drivers among the 

dysregulated proteins were identified by mapping against genes curated in COSMIC Cancer Gene Census 

(CGC) (Sondka et al., 2018). All the above analyses were done in R statistical environment (R Core Team, 

2014). In addition, enrichment analysis was also carried out to identify protein associations/ pairs of proteins that 

were consistently dysregulated in each subtype. Ontology and pathway assessment of the dysregulated proteins 

for KEGG and Reactome pathways were carried out using DAVID (Huang da et al., 2009) and Enrichr (Kuleshov 

et al., 2016). Only those terms with at least 5 proteins and p value ≤ 0.05 were considered significant and are 

shown in Table S6. Dysregulated kinases and proteases that were enriched within each subclass based on 

assessment of the positive or negative correlation networks were visualized as heat maps, and their 

corresponding co-regulated associations were assembled into a network for visualization in Cytoscape. 

Western Blotting 

Primary antibodies against human AXL and human phospho AXL (pAXL-Tyr779) were purchased from R and D 

systems. Antibody against human GAPDH was purchased from Santa Cruz biotechnology. Equal amount of 

protein lysate from selected cell lines were separated on a 4-12% Bis-Tris gel, followed by transfer onto a PVDF 

membrane. Membranes were subsequently blocked using 5% skim milk in tris-buffered saline and tween20 

(TBST), followed by incubation with primary and HRP-conjugated secondary antibody. Bands were visualized 

using HRP Substrate and medical X-ray film or iBright Western Blot Imaging System (Thermo Scientific, USA). 

Invasion/migration wound-healing assay 

AXL kinase inhibitor R428 was purchased from MedChem Express. 24 well plates were pre-treated with 50µg/ml 

rat-tail collagen-I (gibco) in 20 mM acetic acid for invasion assays or 20 mM acetic acid for migration assays. 

After pre-treatment, Culture-Inserts 3 Well for self-insertion (ibidi) was inserted in each of the 24 wells. 70 µl cell 

suspension at 3 x 105 cells/ml in growth media was added to each well of the cell culture insert, followed by 

incubation at 37 °C and 5% CO2. After 24 hours of primary incubation, growth media was replaced with FBS-

free growth media for approximately 16 hours. After serum starvation, media was replaced by full growth media 

with addition of 0.75 µM AXL inhibitor R428 or DMSO and further incubated for another 2 hours. After pre-

incubation with R428 or DMSO, cell culture inserts were removed and attached cells were washed twice with 

cold PBS. For invasion assay, cells were covered with 200 µl of 1 mg/ml cold rat tail collagen-I in growth media 

(+0.75 µM R428 or +DMSO). For migration assays, cells were covered with 200 µl cold growth media (+0.75 

µM R428 or +DMSO). After 20 minutes incubation at 37 °C and 5% CO2 for collagen polymerization, additional 

800 µl growth media (+0.75 µM R428 or +DMSO) was added to each well. Time-lapse images of the created 

gap by cell culture inserts were acquired every 30 minutes for an average of 24 hours using a Zeiss LSM800 

Inverted Confocal with environmental chamber (37°C, 5% CO2). 

Experimental validation analysis 

Western blot images were either analyzed using iBright Analysis Software or scanned images of blotted protein 

bands on X-ray film were analyzed using Image Lab TM software (Bio Rad) to calculate relative abundance of 

proteins between different samples. 

For wound healing assays, the area of the gap for each time-lapse image was determined using ‘Scratch wound 

assay’ ImageJ macro (Bigliardi et al., 2015). Gap closure rate of wound healing assays was calculated by 

regression for linear part of the gap closure. 
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