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a b s t r a c t

The involvement of a viral infection in the physiopathology of multiple sclerosis has been

said to cause certain viruses to target the central nervous system and induce neuroin-

flammation leading to cell dysfunction, as seen, for example, by demyelination or neuronal

death. The most recent results of the literature have focused on the Herpes family viruses

(HHV-6 and HHV-4/Epstein-Barr virus) and their possible role in the development of multiple

sclerosis. Even if no virus has been identified so far as the multiple sclerosis etiological

agent, our aim here is to show that some viruses may be responsible for triggering or

sustaining neurological diseases. This is particularly the case for Paramyxoviruses, in the

late appearance of functional alterations, Picornaviruses, in inducing a breakdown of

immune tolerance, epitope spreading and demyelination, and Herpes viruses in inducing

T and B lymphocyte activation, T lymphocytes dysregulation and autoimmunity after their

reactivation. Therefore, ‘‘common’’ viruses can play a role as potential modulators of the

immune and nervous systems which, in the specific context of dysimmunity and genetic

susceptibility, stimulate a favorable background to the development of multiple sclerosis.

Tracing and studying viruses in multiple sclerosis patients may improve our understanding

of their actual involvement in multiple sclerosis physiopathology.

# 2009 Elsevier Masson SAS. All rights reserved.

r é s u m é

L’implication d’une infection virale dans la physiopathologie de la sclérose en plaques a été

proposée depuis plusieurs décennies, sans doute en raison de la capacité de certains virus à

cibler le système nerveux central et induire une neuro-inflammation propice aux dys-

fonctions cellulaires, révélées notamment par une démyélinisation ou une mort neuro-

nale. Les données récentes de la littérature suscitent un regain d’intérêt pour des virus de la

famille Herpès (HHV-6, HHV-4/virus d’Epstein-Barr) et leur implication potentielle dans le
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développement de la maladie. Bien qu’aucun virus n’ait, à ce jour, été identifié comme

l’agent étiologique de la sclérose en plaques, cet article vise à montrer le potentiel de

certains d’entre eux à promouvoir des processus nécessaires à l’établissement ou au

maintien de la maladie. Nous rappelons notamment le rôle des infections virales per-

sistantes du système nerveux central par : les Paramyxovirus dans l’apparition tardive

d’altérations fonctionnelles ; les Picornavirus dans l’induction d’une rupture de la tolérance

immune, d’une extension épitopique et d’une démyélinisation ; les virus Herpès dans

l’induction d’une activation lymphocytaire T et B, d’une déficience des lymphocytes T

régulateurs et d’une auto-immunité après leur réactivation. Ainsi, ne pourrait-on pas

considérer les virus « communs » comme autant de modulateurs potentiels des systèmes

immuns et nerveux qui, dans le contexte particulier de dysimmunité ou de susceptibilité

génétique, stimulent un environnement favorable à la sclérose en plaques. C’est en

recherchant et en étudiant les virus chez ces patients que l’on pourra comprendre leur

véritable rôle dans la physiopathologie.

# 2009 Elsevier Masson SAS. Tous droits réservés.
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More than 140 years have elapsed since multiple sclerosis (MS)

was first diagnosed by JM Charcot. Whereas the clinical and

histological characteristics of this chronic neuroinflammatory

and degenerative disease of the central nervous system (CNS)

are now clearly defined, its etiology still remains uncertain.

Recent biological data give renewed support to a possible viral

implication, as already suggested for several decades. After a

short review of virus–CNS relationships and the various

changes associated with viral infection, we will focus on the

viruses recently associated with the physiopathology of MS,

notably human herpesvirus-6 (HHV-6) and Epstein-Barr virus

(EBV).

1. Viruses and the central nervous system

Viruses have always been hosted by human beings, influenc-

ing their dynamics and human activities. One group of viruses,

the neurotropic viruses, are especially associated with the

nervous system. Indeed, they can penetrate it (neuroinvasion)

through vascular and ependymous interfaces and peripheral

nerves. In addition, infected immune cells can act as ‘‘Trojan

horses’’ by crossing blood-brain barriers. Thereafter, infection

of neurons and glial cells by viruses (neurotropism) rests in

part on their individual permissiveness. This involves not only

the expression of specific receptors, allowing the viral particle

to penetrate the nerve cell, but also the ability to replicate the

virus. Several scenarios are thus possible. For example, polio

viruses (Picornavirus) cause an acute viral infection of motor

neurons, producing virions and cellular lysis, leading to

clinical paralysis (Nathanson, 2008). In contrast, neuronal

infection by certain Paramyxoviruses causes a rapidly per-

sistent infection, producing antigens but not virions, which

leads to major functional changes in neurons and glial cells.

The clinical consequence is delayed-onset clinical episodes

(Garg, 2008). Lastly, the reactivation of a latent infection in

ganglionic neurons by some viruses of the Herpes family leads

to the intermittent production of virions which are toxic to

neurons (Grubor-Bauk et al., 2008). Neurological consequences

of a viral infection (neurovirulence) are therefore determined

both by the nature of the targeted cell or nervous structure, as

well as the mode of infection per se. Thus, a virus may be the

cause of brain damage even if no infection has been suspected
first. Moreover, the activity of neurotropic viruses is not

restricted to nerve cells: some of them can target cells in the

immune system and disturb the immune response (McCoy

et al., 2006). Such viruses therefore are harmful to the CNS

through various mechanism either, inducing a destructive

antiviral response by cytolysis of infected nerve cells,

triggering an autoimmune response due to structural homo-

logy of some viral antigens with constitutive proteins of the

CNS, inhibiting the control of ‘‘naturally’’ autoimmune T and

B lymphocytes, or promoting the penetration of immune cells

into the CNS. In short, viruses are able to induce and maintain

inflammation and neurodegeneration in many ways.

The hypothesis of a viral infection as a MS co-factor

emerged in the 1970s (Cathala and Brown, 1972), in parallel

with the concept of ‘‘slow viral diseases’’ of the CNS (Fuccillo

et al., 1978). CNS infections, like subacute sclerosing panen-

cephalitis (SSPE), progressive multifocal leucoencephalopathy

(PML) or Kuru, share an infection by conventional or

unconventional agents, sometimes a long incubation period,

leading to a pathology limited to a single organ with a slow but

relentless progression (Gajdusek and Zigas, 1957; Zurhein and

Chou, 1965; Payne et al., 1969). A study of these attacks has led

to the general acceptance that viruses can persist in the CNS,

sometimes at undetectable levels, and progressively provoke

functional changes in the host cell (de la Torre and Oldstone,

1996; Fujinami et al., 2006).

2. Heterogeneity of multiple sclerosis attacks:
multi-factorial etiology involving several viruses?

MS is an autoimmune disease related to the penetration and

the proliferation of autoreactive cells in the CNS (Merrill et al.,

1984; Kornek and Lassmann, 1999; Lucchinetti et al., 2000;

Prineas et al., 2001). It is characterized by the multifocal

presence of demyelinated plaques and axonal and tissue

destruction. An infiltrate, composed of macrophages, B and

CD4/CD8 T lymphocytes, plays a major role in acute, then

chronic inflammation. Astrocyte and microglial stimulation

maintains and amplifies the chronic inflammation (Hafler and

Weiner, 1987; Link et al., 1989; Bruck et al., 1996). Recent

analyses of tissue lesions, of the clinical regression and genetic

susceptibility of patients have emphasized the heterogeneous
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nature of MS (Roxburgh et al., 2005; Confavreux and Vukusic,

2006a, Confavreux and Vukusic, 2006b). Thus, anatomopa-

thology distinguishes four groups of patients, whose lesions

are characterized either by:

� infiltrated macrophages and Th1 lymphocytes secreting

pro-inflammatory cytokines;

� autoimmune antibodies and molecules of the complement

system;

� primary degeneration of the myelinating cell, the oligoden-

drocyte or;

� oligodendrocyte apoptosis resulting from progressive cell

change (Lucchinetti et al., 2000).

The fact that these changes have also been observed in viral

infections of the CNS suggests a viral involvement in the

pathophysiology of MS.

To refine this hypothesis, traces of a viral infection linked

to MS have been actively investigated during the past

30 years. Viral genome detection in the central nervous

tissue and cerebrospinal fluid of patients (Nordal et al., 1978),

as well as the preferential expression of antibodies against

viral antigens, has led to believe that several viruses, from

different families, may cause or contribute to MS (Pette, 1968;

Cook, 2004; Sotelo et al., 2007; Krone et al., 2008; Lincoln et al.,

2008). Some of them are listed in Table 1 (Adams and

Imagawa, 1962; Fuccillo et al., 1978; Appel et al., 1981; Martin,

1981; Salmi et al., 1982; Bray et al., 1983; Haahr et al., 1983;

Liedtke et al., 1995; Yao et al., 2008; Zivadinov et al., 2006;

Brudek et al., 2007; Pender et al., 2009; Shindler et al., 2008;

Sotelo et al., 2008; Tucker and Andrew Paskauskas, 2008;

Iacobaeus et al., 2009). Presumably, in the next few years,

many emergent neurotropic viruses will be added to this list

(Johnson, 2003). One question is still unanswered however.

Do these viruses cause the disease? Alternately, are they only

re-expressed as a consequence of the immune alterations?

Their potential involvement in disrupting brain function,
Table 1 – Virus that have been linked to multiple
sclerosis physiopathology.
Virus suspectés dans la physiopathologie de la sclérose en
plaques.

Paramyxovirus

MV Adams and Imagawa, 1962; Tucker and

Andrew Paskauskas, 2008a

CDV Appel et al., 1981

Coronavirus

MHV Salmi et al., 1982; Shindler et al., 2008

Herpes virus

HSV-1/HHV-1 Martin, 1981; Brudek et al., 2007

VZV HHV-3 Haahr et al., 1983; Sotelo et al., 2008

EBV HHV-4 Bray et al., 1983; Pender et al., 2009

CMV HHV-5 Fuccillo et al., 1978; Zivadinov et al., 2006

HHV-6 Liedtke et al., 1995; Yao et al., 2008

Polyomavirus

Papova/JC Kirk and Hutchinson, 1978; Iacobaeus

et al., 2009

aFirst and last paper to date – PubMed research. Premier et dernier

article publié à ce jour – recherche PubMed.
establishing neuroinflammation and dysregulating the

immune response supports the hypothesis that they are,

at least, partly responsible for triggering and maintaining the

disease, even though none of them appears to be the unique

MS etiological agent. Their study in humans, or animal

models as well, has contributed greatly to deciphering the

mechanisms at the background of MS. Human infections by

the Paramyxovirus MV and by Herpes virus HHV-6 and EBV,

as well as the murine demyelination model using the Theiler

virus have been chosen to illustrate this proposal.

3. Persistent viral infection of the central
nervous system by Paramyxovirus: late-onset
virus-induced functional alterations

Measles virus (MV) was one of the first viruses suspected in the

etiology of MS due to the significantly high levels of anti-MV

antibodies in the serum and cerebrospinal fluid (CSF) of

patients (Adams and Imagawa, 1962) and the presence of virus

in the brain of MS patients (Geeraedts et al., 2004). This

Paramyxovirus (Morbillivirus), both neurotropic and immune-

suppressive (Schneider-Schaulies and Schneider-Schaulies,

2008), is sometimes responsible for SSPE, a fatal demyelinating

disease, which develops late (8 years on average) after a

primary benign infection (Tucker and Andrew Paskauskas,

2008; #21). The virus infects neurons and oligodendrocytes, in

which it accumulates mutations, leading to functional

changes in the viral proteins (Cattaneo et al., 1988; Patterson

et al., 2001). This is notably the case for the M protein, essential

to viral budding. Protected from a cytotoxic immune response,

inactivated by the virus itself and without the possibility of

budding progeny virions, the viral infection becomes pro-

gressively persistent. Although ‘‘silent’’, the virus neverthe-

less alters so-called luxury cell functions (as opposed to vital

ones) and leads to dysfunctions in brain homeostasis. It ends

with neurons and oligodendrocytes dying, the appearance of

demyelinated areas and a cortical atrophy (Morgan and Rapp,

1977; Kato et al., 2002).

A murine model of infection by the Paramyxovirus CDV

(Bernard et al., 1983) has allowed us to clarify the different

steps leading to these changes. In mice susceptible to the

virus, the selective infection of monoaminergic brain struc-

tures, the cortex, the hippocampus and the hypothalamus

leads to progressive and persistent inflammation, even

though the virus is no longer detectable (Bencsik et al.,

1996). The inflammation is characterized by an infiltration of

CD4 and CD8 T lymphocytes, and macrophages and by the

production of cytokines and metalloproteases by glial cells

and neurons (Khuth et al., 2001). The alterations in the

synthesis of neuromediators and neuropeptides leads to

neuronal death (Bencsik et al., 1997; Griffond et al., 2004),

showing the major role played by virus-induced inflamma-

tion in neurodegeneration. Infection of the CNS by Para-

myxoviruses illustrates the ‘‘hit-and-run’’ concept typical of

persistent viral infections of the CNS suggested by Oldstone:

an acute, then persistent viral infection of the CNS could be

responsible for progressive cell damage expressed clinically

when the virus is not detectable or quiescent (Oldstone, 1998).

This scenario is pertinent to MS.
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4. Brain infection by Theiler’s murine
encephalomyelitis virus: a model of breakdown of
tolerance and epitope spreading

Brain infection by the Theiler’s murine encephalomyelitis

virus (TMEV, Picornavirus) was undoubtedly one of the first

indicators linking viruses with MS. Right from 1937,

Max Theiler demonstrated the demyelinating role of TMEV.

In genetically susceptible mice, infection by this virus leads to

progressively chronic demyelination of the spinal cord and

encephalon associated with an infiltration of immune cells

(Lipton, 1975). The recent identification of human viruses

related to TMEV has renewed interest in this virus family (Chiu

et al., 2008). In mice, demyelination results from the infection

of oligodendrocytes and an autoimmune response directed

against myelin proteins. Epitope spreading takes place at the

same time as clinical signs appear (Yu et al., 1996). Thus, a CD4

T-cell-type immune response directed against a viral epitope

to control the acute phase of the infection (aa74–86 of antigen

VP2) first recognizes a single epitope and thereafter several

epitopes of the myelin proteolipid protein (PLP) (PLP aa139-151;

aa178-191; and aa56-70) and includes, progressively, myelin

basic protein (MBP) and myelin oligodendrocyte glycoprotein

(MOG) (Miller et al., 1997). This leads to an expansion in the T-

cell repertoire associated with a breakdown of immune

tolerance towards the subject’s own proteins, although no

structural homology between TMEV and the myelin proteins

has been detected. Viruses other than TMEV (the human

viruses MV, hepatitis B, influenza, Papillomavirus) are also

able to provoke an anti-myelin autoimmune response with

epitope spreading due, in these cases, to a sequence homology

between their epitopes and those of MBP (molecular mimicry)

(Fujinami et al., 1983). Theiler’s demyelination model there-

fore covers several aspects of MS, especially autoimmunity,

since anti-MOG, anti-PLP and anti-MBP T lymphocytes accu-

mulate in the CNS of patients. This model of virus-induced

demyelination has also demonstrated the major role of

T CD8 lymphocytes in tissue damage other than demyelina-

tion, and that of dendritic cells in individual susceptibility to

the establishment of a persistent viral infection, and thus to

the development of demyelination (Murray et al., 1998; Hou

et al., 2007).

5. Brain reactivation of HHV-6 in multiple
sclerosis, CD46 activation and T regulator
deficiencies

Viruses of the Herpes family (HHV-1–8) have been suspected

in MS for long because of their ability to target neurons and

remain quiescent while modifying their genome (Danaher

et al., 2008). Of the two HHV-6 variants described, HHV-6A is

the neurotropic variant. This virus can establish a latent

infection in nerve cells, which is reactivated in an immune-

suppressive context (viral infection by MV, HIV, transplant [de

Pagter et al., 2008]). HHV-6 also infects immune cells

(Blumberg et al., 2000). A possible connection between HHV-

6 and MS has emerged with the detection of anti-HHV-6 IgM

antibodies, markers of a recent viral infection or reactivation,

preferentially in patients as compared to controls (Soldan
et al., 1997). New data have confirmed this association.

Compared to other neurological patients, all MS patients have

anti-HHV-6 serum antibodies (Virtanen et al., 2007). The

presence of antibodies in the CSF, which indicates a primary

brain infection, is more frequent in clinically probable MS

patients (CPMS) than in clinically definite MS patients (CDMS).

The preferential presence of the HHV-6 genome in the serum

of patients in a clinically active phase is suggestive of a virus-

producing viral replication and, therefore, of a correlation

between virion production and MS exacerbation (Berti et al.,

2002). Furthermore, the detection of viral DNA in the CNS of

patients, at high levels in demyelinated plaques (Cermelli

et al., 2003), is also favouring the concept of a HHV-6 brain

infection/reactivation during the course of MS. It should be

noted, however, that this virus is also detected, though at

lower levels, in subjects not suffering from MS (Theodore et al.,

2008). There are many potential mechanisms of brain damage

related to HHV-6 infections involving both immune and neural

cells. One of the key pathways is the ubiquitous transmem-

branous molecule CD46, a regulator of complement action,

also known as a ‘‘pathogen magnet’’ due to its ability to bind

viruses, such as HHV-6 (Cattaneo, 2004). CD46 activation

causes T lymphocytes to proliferate by acting as a co-

stimulator of the T-cell receptor (TcR). Thus, after reactivation

of the virus in nerve cells, ligation of HHV6 to CD46 is likely to

stimulate the proliferation of T lymphocytes infiltrated into

the CNS of patients. CD46 also participates in the induction of

the type 1 regulatory T lymphocyte phenotype (Treg1) (Astier,

2008). These lymphocytes are interleukin-10 (IL-10) producers

and Th1 lymphocyte regulators. A reduction in Treg1 function

and IL-10 secretion after CD46 activation has been observed in

relapsing-remitting MS patients (RR-MS) and suggests an

important role of this membrane protein in MS physiopa-

thology (Astier and Hafler, 2007). Therefore, HHV-6 might

control the function of T lymphocytes after its reactivation in

neural cells, thus contributing to neuroinflammation. In

addition, excessive activation of the complement system

after HHV-6 binding to CD46 is suspected. Although the HHV-6

virus is a serious candidate in MS physiopathology, the

conditions required for its reactivation in patients still need to

be elucidated.

6. B lymphocyte infection by the Epstein-Barr
virus and autoimmunity

New attention is brought on B lymphocytes as being

pathophysiological actors in MS. Follicular aggregates of

B lymphocytes (ectopic B-cell follicles) have been detected in

the cerebral meninges of patients (Serafini et al., 2004). The

benefits of a therapeutic trial targeted against B lymphocytes

(rituximab) have confirmed their involvement in the develop-

ment of thedisease (Hauser et al., 2008). The detection in these B

lymphocytes of a virus known to induce their proliferation, the

EBV (EBV/HHV-4), interest in this virus (Franciotta et al., 2008).

Belonging to the Herpes family, EBV targets and establishes a

latent infection in memory B lymphocytes. This infection

provides lymphocytes with protection against apoptosis and

maintains their survival by mimicking both intracellular signals

downstream from the B receptor and T lymphocyte helper
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action (Babcock et al., 2000). The virus persists throughout life,

yet most of the infected subjects (90% of the population) remain

asymptomatic due to an effective immune response, which

limits virus production. Several wide-scale sero-epidemiologi-

cal studies support the argument that EBV infection is involved

in the development of MS (DeLorenze et al., 2006; Lunemann

et al., 2007). Increased levels of anti-EBV antibody titers detected

longbefore thefirstclinicalsigns appear (20 years) showthat the

anti-EBV immune response is an early indicator of MS rather

than a consequence of the disease. An association between

antibody titers directed at EBNA and EBV proteins and a risk of

developing MS has been reported (Ascherio et al., 2001).

Although the immune response seems effective at controlling

EBV infection, it is however disturbed: patients do indeed

present with greater numbers of anti-EBV CD4 T lymphocyte

clones in the blood and cerebrospinal fluid, whereas their viral

charge, which is expected to be high, is similar to that of healthy

donors. In addition, the immune T response is characterized by

epitope spreading, reflecting perhaps a T-B-cell interaction

modified by the viral infection (Lunemann et al., 2008). Probably

as a result of these disturbances, a considerable number of

B lymphocytes and plasmocytes infected by EBV have been

observed in the brain of MS patients (Franciotta et al., 2008). The

role of these cells in MS physiopathology is the subject of a key

study. Several hypotheses are under investigation (Haahr and

Hollsberg, 2006). A sequence homology between epitopes of

myelin proteins, notably of MBP, and viral epitopes recognized

by anti-EBV T lymphocytes, suggests myelin and oligodendro-

cyte destruction via an anti-viral immune response. Persistent

EBV infection implies molecular signals favorable to

B lymphocytes survival. EBV could thus control the pool of

natural autoreactive B lymphocytes or those reactivated by

another viral infection (MV, TMEV), even in the absence of

autoimmune T lymphocytes (Thorley-Lawson, 2001). Finally,

several Herpes viruses, including EBV, have the ability to

transactivate the expression of endogenous retroviruses

(HERV). The presence of HERV in brain lesions and their ability

to induce a toxic lytic infection of oligodendrocytes suggests

that this deleterious viral cooperation is possible in MS patients

(Tai et al., 2008).

To conclude, all these data show that a single virus is

unable to cause MS. However, from their ability to trigger T-

and B-cell autoimmune responses against myelin and oligo-

dendrocytes and to maintain a chronic inflammation poten-

tially deleterious to neurons, persistent or reactivated viruses

within neural tissue seem to be potential co-factors in the

appearance and development of MS. This new overview

should help modify our conceptual approach to the physiopa-

thology and treatment of this disease.
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