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Mitochondria as intracellular signaling platforms in
health and disease
Jay X. Tan1,2 and Toren Finkel1,3

Mitochondria, long viewed solely in the context of bioenergetics, are increasingly emerging as critical hubs for intracellular
signaling. Due to their bacterial origin, mitochondria possess their own genome and carry unique lipid components that endow
these organelles with specialized properties to help orchestrate multiple signaling cascades. Mitochondrial signaling
modulates diverse pathways ranging from metabolism to redox homeostasis to cell fate determination. Here, we review
recent progress in our understanding of how mitochondria serve as intracellular signaling platforms with a particular emphasis
on lipid-mediated signaling, innate immune activation, and retrograde signaling. We further discuss how these signaling
properties might potentially be exploited to develop new therapeutic strategies for a range of age-related conditions.

Introduction
For those of us who survived the emotional trauma known as
junior high school in America, the strategy for adolescent suc-
cess appeared to be the unique ability to both blend in and stand
out. While we will leave it to social scientists to describe the
psychological ramifications of such approaches, we would argue
that there is an important hidden biological lesson here as well.
Mitochondria, present in hundreds to thousands of seemingly
identical copies per cell, certainly can blend in. In doing so, they
provide the cell with its bioenergetics requirements, supplying
the chemical energy required to power essentially all cellular
processes. Yet, to view these structures as indistinguishable and
amorphous, organelles would be shortsighted. Endowed with a
unique evolutionary history, mitochondria have retained a dis-
tinct set of lipid components, as well as their own genome, that
under specific stress conditions, enables these organelles to also
stand out. This singularity makes mitochondria uniquely situ-
ated to act as a signaling platform. Here, we review the evidence
for how mitochondria participate in a wide range of cell fate
decisions that exploit the unique qualities and properties of
this organelle. In particular, we will focus on how specific
unique mitochondrial lipids can modulate signaling events,
how mitochondria participate in innate immune signaling,
and how mitochondria can signal back to the nucleus to alter
both transcription and the epigenome. These topics cover the
multifaceted stress responses used by mitochondria, from
signaling reactions within mitochondria, to the surface of
mitochondria, to those pathways involving the nucleus and

the extracellular environment. Finally, we will describe the
initial foray into leveraging these observations to develop new
classes of therapies that may have the potential to treat a wide
array of diseases, especially age-related diseases that are
closely linked to mitochondrial dysfunction.

Mitochondrial lipid signaling
Involved in all aspects of cell biology and physiology, lipids are
the major components of all cellular membranes, delineating the
boundary between cells and subcellular organelles and sup-
porting intercellular and intracellular communication. The most
abundant lipid in mammalian cells is phosphatidylcholine (PC),
whereas the amounts of other lipids such as phosphatidyletha-
nolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI),
phosphatidic acid (PA), cholesterol, and sphingolipids vary de-
pending on the type of cell and subcellular organelle. As an
α-proteobacteria-derived organelle, mitochondria exhibit distinct
lipid composition in both their inner and outermembranes, which
establishes a biochemical basis for mitochondrial signaling. Mi-
tochondrial lipid synthesis and transport have been the subject of
several excellent recent reviews (Horvath and Daum, 2013;
Tatsuta and Langer, 2017; Tatsuta et al., 2014), and as such, here,
we will focus instead on mitochondrial signaling and metabolism
regulated by two unique lipids, cardiolipin and PE (Fig. 1).

Cardiolipin-mediated signaling
Cardiolipin comprises nearly 20% of the inner mitochondrial
membrane (IMM) and a much smaller fraction (up to 3%) of the
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outer mitochondrial membrane (OMM), but it is not found in
any other subcellular organelle (de Kroon et al., 1997; Gebert
et al., 2009). Structurally, cardiolipin is composed of a dimeric
phosphatidylglycerol lipid, with two PA molecules connected
with a glycerol backbone. This cone-shaped structure makes
cardiolipin ideal for the highly curved IMM, the structure of
which is dramatically disrupted when cardiolipin is depleted
(Dudek, 2017). Cardiolipin is also well known for its integration
into all respiratory chain complexes in the IMM and several
translocase of outer membrane protein complexes (Dudek, 2017;
Schlame and Greenberg, 2017; Xu et al., 2006). In humans, car-
diolipin is synthesized at the IMM by cardiolipin synthase, fol-
lowed by acyl chain remodeling leading to the formation ofmature
cardiolipin with polyunsaturated fatty acyl chains (Schlame and
Greenberg, 2017; Tatsuta et al., 2014). Perturbing cardiolipin
synthesis or remodeling causes mitochondrial dysfunction in-
cluding defective oxidative phosphorylation and severe oxi-
dative stress, as seen in Barth syndrome, a devastating X-linked
pediatric disease (Schlame and Greenberg, 2017). In mice, dele-
tion of cardiolipin synthase is embryonic lethal, whereas neu-
ronal specific depletion causes disrupted mitochondrial crista
structure and respiration, altered mitochondrial calcium han-
dling, and neurodegeneration (Kasahara et al., 2020), indicating
an essential role for cardiolipin in mitochondrial structure and
function.

Cardiolipin functions as a reactive oxygen species (ROS)
scavenger that protects cells from oxidative stress via cardi-
olipin oxidation and degradation (Fig. 1). ROS in animal cells is
largely produced by the respiratory chain complexes which
are assembled in the cardiolipin-rich IMM. The proximity of

cardiolipin to the source of ROS and the presence of polyun-
saturated fatty acyl chains in cardiolipin makes it an ideal
sensor and scavenger of oxygen radicals. Oxidized cardiolipin is
toxic (Paradies et al., 2001, 2002) and needs to be quickly de-
graded by enzymes including phospholipase A2γ (PLA2γ; Liu
et al., 2017; Tyurina et al., 2014) and 17-β-hydroxysteroid de-
hydrogenase 10 (HSD10 [also known as amyloid β-peptide-
binding alcohol dehydrogenase]; Boynton and Shimkets, 2015).
PLA2γ, which can directly hydrolyze cardiolipin, appears to be
the major enzyme for the degradation of oxidized cardiolipin,
since either genetic depletion or pharmacological inhibition of
PLA2γ results in robust accumulation of oxidized cardiolipin
upon mitochondrial stress (Liu et al., 2017; Tyurina et al., 2014).
HSD10 uses a different mechanism by in fact further oxidizing
cardiolipin, causing subsequent spontaneous breakdown of the
oxidized product into diacylglycerol, dihydroxyzcetone, and
orthophosphate (Boynton and Shimkets, 2015). Thus, to ensure
efficient removal of oxidized cardiolipin, the protein levels and
enzymatic activity of PLA2γ and HSD10 must be tightly regu-
lated. Indeed, increased levels of HSD10 have been observed in
patients with neurological conditions, including multiple
sclerosis and Alzheimer’s disease (Krištofiková et al., 2009). In
that regard, amyloid β peptide, which is mechanistically linked
to Alzheimer’s disease, directly binds and inhibits the enzy-
matic activity of HSD10 (Yan et al., 1997; He et al., 1998).
Moreover, in a rotenone-induced rat model of Parkinson’s
disease, inhibiting PLA2γ activity causes increased oxidative
stress, more mitochondrial lipid oxidation, augmented apo-
ptosis, and a subsequent exacerbation of Parkinson’s disease
symptoms (Chao et al., 2018). From a signaling viewpoint,

Figure 1. Lipid signaling in mitochondria.Mitochondrial cardiolipin and PE orchestrate multiple aspects of mitochondrial signaling and bioenergetics. These
are summarized here diagrammatically. (1) Cardiolipin is synthesized from phosphatidylglycerol (PG) and remodeled at the IMM. (2) Cardiolipin acts as a ROS
scavenger via oxidation and redox-mediated degradation. (3) Moderate levels of mitochondrial stress stimulates cardiolipin externalization. (4) Exposed
cardiolipin can be recognized by LC3, stimulating mitophagic clearance. (5) Severe stress triggers cardiolipin-mediated cytochrome c release and apoptosis. (6)
PE on the IMM is directly produced by the enzyme PISD, using PS synthesized on the ER and transported to mitochondria. (7) Stresses that inhibit mTORC1
rewires mitochondrial metabolism via a lipid signaling cascade, reducing PE levels on the IMM, leading to augmented YME1L activity, increased proteolysis and
reduced mitochondrial biogenesis. DAG, diacylglycerol; mtCK, mitochondrial creatine kinase; tBID, truncated BH3-interacting domain death agonist. See text
for additional details.
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metabolism of oxidized cardiolipin by PLA2γ and HSD10
generates a large group of second messengers, including
oxidized fatty acid lipids and diacylglycerol (Boynton and
Shimkets, 2015; Liu et al., 2017; Tyurina et al., 2014), which
may be involved in mediating the cellular response to mi-
tochondrial stress.

Cardiolipin externalization from the IMM to the OMM is
another important lipid reorganization event that often occurs
in response to various conditions involving moderate levels of
mitochondrial damage (Fig. 1). In healthy cells, cardiolipin is
maintained at very low levels on the OMM and almost exclu-
sively accumulates within the inner membrane (∼96.5 mol%;
Kagan et al., 2016). In contrast, with mitochondrial damage or
membrane depolarization, cardiolipinmoves to the OMM. Three
proteins have been reported to transport cardiolipin from the
IMM to the OMM: phospholipid scramblase-3 (Liu et al., 2003),
mitochondrial creatine kinase, and nucleoside diphosphate ki-
nase D (Epand et al., 2007; Kagan et al., 2016; Schlattner et al.,
2013). Although it is not clear whether these proteins work
sequentially or in parallel, individual depletion of either
phospholipid scramblase-3 or nucleoside diphosphate kinase
D substantially reduces cardiolipin relocalization to the OMM
(Chu et al., 2013; Kagan et al., 2016; Liu et al., 2008; Schlattner
et al., 2013). Direct lipid transport through membrane contact
sites between subcellular organelles have been described (Cockcroft
and Raghu, 2018; Scorrano et al., 2019; Wu et al., 2018), but it is not
clear exactly how these three cardiolipin transporters act, and
whether they localize to IMM–OMM contact sites (Horvath
et al., 2015).

Externalized, oxidized cardiolipin at the OMM establishes a
signaling platform to orchestrate cellular response to mito-
chondrial damage that can include apoptosis or mitophagy
(Fig. 1). In mitochondrial-dependent apoptosis, the recruitment
and activation of the apoptotic initiator protease caspase-8, its
substrate BH3-interacting domain death agonist (BID), and the
downstream effector BCL-2–associated X (BAX) are all depen-
dent on the presence of cardiolipin in the OMM (Gonzalvez
et al., 2008; Kuwana et al., 2002; Lutter et al., 2000). The in-
teractions among truncated BID (tBID), BAX, and cardiolipin
drive the formation of supramolecular complexes containing
BAX oligomers on the OMM surface that mediate membrane
permeabilization and cytochrome c release (Kuwana et al., 2002;
Lai et al., 2019; Lutter et al., 2000). The oxidation of cardiolipin
reduces its interaction with cytochrome c, which further accel-
erates cytochrome c release to initiate apoptosis. In mitophagy-
promoting conditions, increased cardiolipin at the OMM functions
as an “eat-me” signal, recognized by the autophagymarker protein
microtubule-associated-protein-1 light chain 3 (LC3) allowing for
autophagic capture of the damaged mitochondria (Chu et al.,
2013). As such, interfering with cardiolipin synthesis or matura-
tion or its IMM-to-OMM transport potently affects mitophagic
and apoptotic signaling (Chu et al., 2013; Garcia Fernandez et al.,
2000; Hsu et al., 2015; Kagan et al., 2016).

Cardiolipin has been shown to interact with a litany of pro-
teins linked to both protein aggregation and neurodegenerative
diseases. Proteins such as α-synuclein, amyloid β, and Tau,
known to form aggregates in neurodegenerative diseases, have

all been reported to bind to cardiolipin-containing membranes
(Ahyayauch et al., 2012; Camilleri et al., 2013, 2020; Nakamura
et al., 2011; Robotta et al., 2014). Such binding is believed to
reduce cardiolipin levels and/or interfere with cardiolipin
function in mitochondrial respiration and/or ROS sensing.
However, cardiolipin may play a role in resolving these protein
aggregates, including amyloid β (Ordóñez-Gutiérrez et al.,
2015) and α-synuclein fibrils (Ryan et al., 2018). Thus, further
work is needed to more precisely define the physiological
relationship between cardiolipin and protein aggregates in
neurodegeneration.

Sphingolipids, usually maintained at very low levels in mi-
tochondria compared with other organelles (the Golgi complex,
endolysosomes, and the plasmamembrane), have been increasingly
implicated in age-dependent mitochondrial dysfunction. Ceramide,
which is at the center of sphingolipid metabolism, accumulates in
response to almost all types of cellular stress, including chemo-
therapeutic stress, ionizing and ultraviolet radiation, serum star-
vation, injury, and infection (Ogretmen, 2018). Like cardiolipin,
ceramide can also induce apoptosis by triggering BAX-dependent
mitochondrial outer membrane permeabilization (Birbes et al.,
2001; Ganesan et al., 2010). Mechanistically, this may involve the
direct targeting of voltage-dependent anion channel 2 (VDAC2) by
ceramide (Dadsena et al., 2019). In addition, during the initial phase
of mitochondrial-mediated apoptosis, ceramide is further processed
into two lipid messengers, sphingosine-1-phosphate and hex-
adecenal, which specifically activate Bcl-2 homologous antagonist
killer (BAK) and BAX, respectively, for mitochondrial membrane
permeabilization (Chipuk et al., 2012). Moreover, ceramide
may also contribute to mitophagy, as the lethal autophagy
induced by a natural bioactive sphingolipid, N-stearoyl-D-
erythro-sphingosine (C18-ceramide), is dependent on the direct
interaction between C18-ceramide and LC3 (Sentelle et al., 2012).
As might be expected, crosstalk between cardiolipin and ceram-
ide exists. For instance, cardiolipin has been shown to inhibit
ceramide synthesis and promote its cleavage by ceramidase (El
Bawab et al., 2001; Kim et al., 2016; Okino et al., 2003). On the
other hand, manipulation of ceramide modulates in vivo cardio-
lipin levels (Babenko and Storozhenko, 2017), which is consistent
with observations of an age-related accumulation of ceramide and
a corresponding decline in cardiolipin (Helmy et al., 2003;
Monette et al., 2011; Petrosillo et al., 2008; Sen et al., 2007). In
addition, alterations in these sphingolipid-dependent pathways
have been increasingly linked to conditions such as Alzheimer’s
disease (Pera et al., 2017).

Mitochondrial PE signaling
The IMM also contains the highest molar ratio of PE compared
with other subcellular membranes, which is consistent with its
bacterial origin, as PE is quite abundant in many bacteria (Kaval
and Garsin, 2018; López-Lara and Geiger, 2017). This is mainly
achieved by direct synthesis of PE from PS at the IMM (Fig. 1).
Most phospholipids, including PC, PS, and PI, are synthesized in
the ER and then transported to other organelles (Tatsuta and
Langer, 2017). PS synthesized in the ER is transported to the
mitochondrial outer membrane at ER–mitochondrial contact
sites. PS is then further transferred from the mitochondrial
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outer to the inner membrane after which it is converted by PS
decarboxylase (PISD) into PE (Schuiki and Daum, 2009). PISD
is an enzyme conserved from bacteria to humans that is critical
for PE synthesis at the IMM, malfunction of which causes mi-
tochondrial fragmentation and embryonic lethality in mice
(Hartmann et al., 2016; Steenbergen et al., 2005), indicating
that direct PE synthesis at the IMM cannot be compensated
by other pathways.

PE synthesis at the IMM is dynamically controlled to balance
cell growth and mitochondrial biogenesis. One key protein
regulated by PISD-produced PE at the IMM is YME1L, a trans-
membrane ATP-dependent protease essential for mitochondrial
proteostasis and dynamics, apoptotic resistance, and cell pro-
liferation (Anand et al., 2014; Stiburek et al., 2012). Normal
levels of PE suppresses the proteolytic activity of YME1L (Fig. 1).
However, stresses such as hypoxia or nutrient deprivation in-
duce a lipid signaling cascade upon inactivation of mechanistic
target of rapamycin complex 1 (mTORC1) to reduce PE levels at
the IMM, leading to activation of YME1L-mediated proteolysis
of mitochondrial proteins and subsequent inhibition of mito-
chondrial biogenesis (MacVicar et al., 2019). This involves ac-
tivation of LIPIN1, a substrate of mTORC1 that is phosphorylated
and hence inhibited under basal conditions (e.g., available
oxygen and nutrients). Inactivation of mTORC1 leads to de-
phosphorylation and activation of LIPIN1 that reduces the level
of PA, resulting in a decline in the subsequent synthesis of PS, a
substate of PE (MacVicar et al., 2019). Consistent with a key role
for PE in suppressing YME1L, blocking PS transfer from the
mitochondrial outer to inner membrane (hence reducing PE
levels) activates YME1L (MacVicar et al., 2019). Thus, signals
that modulate lipid transport and/or synthesis pathways can
rewire mitochondrial metabolism in response to physiological
changes. Interestingly, the proteolytic degradation of YME1L, as
well as another mitochondrial protease, OMA1, is regulated by
various cellular insults that perturb mitochondrial functions
(Baker et al., 2014; Rainbolt et al., 2016). It would therefore be
important to investigate whether this phenomenon is also
modulated by changes in mitochondrial lipids.

While mitochondrial cardiolipin and PE have been extensively
studied, other potential lipid signaling pathways are not yet well
characterized. Although themitochondrial outermembrane is very
weakly charged, dynamic turnover of certain negatively charged
phosphoinositides has been reported. For example, a low level of
phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] can be detected
on mitochondria (Watt et al., 2002). Removal or masking this
mitochondrial pool of PI(4,5)P2 leads to fragmentation and auto-
phagic targeting of mitochondria (Rosivatz and Woscholski, 2011).
However, the downstream effectors for these and related lipid
signals are largely undefined.

In summary, the double-membrane structure of mitochon-
dria and its unique lipid composition establish an unusual
membrane environment that are essential for maintaining mi-
tochondrial activity and homeostasis. In particular, mitochon-
drial lipid signaling, mediated through cardiolipin and PE,
provides an immediate capacity to both sense and respond to
mitochondrial stress. When this stress goes beyond the handling
capacity of local lipid signaling, more mitochondrial damage is

induced. This often leads to the activation of the next level of
response, both on the surface mitochondria and in the cytosol, as
we discuss below.

Mitochondrial innate immune signaling
Mitochondria are linked to various innate immune signaling
pathways, with the best characterized being the cytosolic
RNA-sensing pathway for which mitochondria function as
an essential platform (Fig. 2). While endolysosomal microbial
RNAs are sensed by Toll-like receptors (specifically Toll-like
receptors 3/7/8), those in the cytosol are directly captured by
cytosolic RNA sensors known as retinoic acid–inducible gene I
(RIG-I)-like receptors (RLRs; Tan et al., 2018). These include
RIG-I (Yoneyama et al., 2004), melanoma differentiation-
associated gene 5 (MDA5; Kang et al., 2002), and laboratory
of genetics and physiology 2 (Saito et al., 2007), the last of
which has no known intrinsic signaling capacity. Once bound
to RNA ligands, both RIG-I and MDA5 form oligomers that
directly bind and activate mitochondrial antiviral-signaling
protein (MAVS [also known as IPS-1, VISA, and CARDIF]), a
signaling scaffold with a C-terminal transmembrane domain
anchored on the OMM (Kawai et al., 2005; Meylan et al., 2005;
Seth et al., 2005; Xu et al., 2005). Activated MAVS forms ag-
gregates that recruit signaling molecules (e.g., inhibitor of
nuclear factor-κB kinase [IKK] and TANK-binding kinase
[TBK1]), leading to the activation and nuclear translocation of
NF-kB and IRF3/7, initiating transcriptional up-regulation of
proinflammatory cytokines and type I IFNs (Liu et al., 2013).
One key feature of MAVS signaling are its feedforward prop-
erties, whereby a small amount of MAVS aggregates can in-
duce the formation of large MAVS aggregates by directly
recruiting and activating other MAVS molecules on the mito-
chondria (Cai et al., 2014; Hou et al., 2011; Xu et al., 2015). The
anchorage of MAVS on the mitochondrial surface is critical for
its function, as removal of the MAVS transmembrane domain
by a hepatitis C virus–encoded protease abrogates its signaling
capacity (Li et al., 2005a; Li et al., 2005b; Meylan et al., 2005).
Evidence suggests that MAVS may also localize to peroxisomes
and mitochondrial-associated membranes (Dixit et al., 2010;
Horner et al., 2011).

Cross-talk between MAVS signaling and cellular metabolism
There is extensive communication betweenMAVS signaling and
mitochondrial metabolism (Fig. 2). It is well established that
MAVS is C-terminally anchored on the OMM and that the for-
mation of large MAVS aggregates causes substantial changes to
mitochondrial morphology (Cai et al., 2014; Hou et al., 2011; Xu
et al., 2015). Even endogenous levels of MAVS aggregates are
sufficient to drive apoptosis, which is dependent on the MAVS
transmembrane domain, likely linked to MAVS-driven mito-
chondrial fragmentation (Hwang et al., 2019). Driving such
morphological changes are MAVS-dependent mitochondrial
ROS generation, mitochondrial membrane hyperpolarization,
inhibition of spare respiratory capacity, and modulation of ATP
synthesis (see below; Buskiewicz et al., 2016; Lei et al., 2009).

An interesting link between MAVS signaling and glucose
metabolism has recently been established (Fig. 2). The first step
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of glucose metabolism involves the phosphorylation of glucose
into glucose-6 phosphate by hexokinase. Although glycolysis
occurs in the cytosol, hexokinase 2 (HK2), the major enzyme
that initiates glycolysis, requires mitochondrial localization for
its glycolytic function (DeWaal et al., 2018; Roberts andMiyamoto,
2015; Wolf et al., 2016). The mitochondrial localization and ac-
tivity of HK2 is dependent on the physical interactions of HK2
with both MAVS and VDAC situated on the OMM (Roberts and
Miyamoto, 2015; Wolf et al., 2016; Zhang et al., 2019). Upon RLR
activation, RIG-I binding to MAVS releases HK2 from mito-
chondria and thus inactivates glycolysis at its initial step (Zhang
et al., 2019). On the other hand, up-regulation of glycolysis in
turn suppresses MAVS signaling. Lactate, a key metabolite of
anaerobic glycolysis, is a direct suppressor of RLR signaling,
since it directly binds to the transmembrane domain of MAVS
and prevents the formation of MAVS aggregates on the mito-
chondrial surface (Zhang et al., 2019).

Undesired MAVS signaling in diseases
While mitochondria play protective roles in innate immune
signaling, abnormal activation of this system can nevertheless
cause undesired inflammation and even cell death. For example,

the integrity of the mitochondrial genome and RNAs must be
tightly controlled. In situations where membrane damage leads
to the leakage of mitochondrial nucleic acids, immune re-
sponses and/or cell death can be triggered (Fig. 2). Due to bi-
directional transcription, mitochondrial RNAs form extensive
double-stranded RNAs that are efficiently digested by the
mitochondrial RNA helicase SUV3 and the 39–59 RNA exonu-
clease PNPT1 (Aloni and Attardi, 1971; Dhir et al., 2018; Young
and Attardi, 1975). Hypomorphic mutations of PNPT1 result in
robust accumulation and cytosolic leakage of mitochondrial
double-stranded RNAs that trigger MDA5- and MAVS-dependent
inflammation (Dhir et al., 2018). Additionally, mitochondrial
double-stranded RNA processed by RNase L in p53-deficient
cells might also trigger MAVS signaling and transcription of
proinflammatory factors (Wiatrek et al., 2019). Likewise, leak-
age of mitochondrial DNA (mtDNA) activates the cytosolic DNA
sensor cyclic GMP-AMP synthase (cGAS), leading to the further
activation of stimulator of IFN genes (STING) and type I IFN
production (Kim et al., 2019; West et al., 2015). Such mtDNA-
stimulated innate immune signaling appears to facilitate neu-
rodegeneration in mouse models with mitochondrial stress but
defective mitophagy (Sliter et al., 2018). It would be important

Figure 2. Mitochondria at the crossroads of innate immune signaling and metabolism. Mitochondria are platforms for MAVS innate immune signaling
that modulates mitochondrial function and integrates immunity with cellular metabolism. The various known intersections between MAVS and mitochondrial
function are diagramed. (1) Cytosolic RNAs perceived as foreign activate MAVS aggregation via the RNA sensors MDA5 and RIG-I. (2) Mitochondrial MAVS
aggregates activate signaling cascades, leading to transcriptional induction of type I IFNs and proinflammatory cytokines. (3) MAVS aggregation causes marked
alterations in a range of mitochondrial functions. (4) MAVS signaling inhibits glycolysis by releasing HK2 from mitochondria; lactate, a metabolite of anaerobic
glycolysis, in turn suppresses MAVS aggregation via direct binding. (5) Mitochondrial leakage of RNA and DNA causes inflammation through MAVS and STING
pathways, respectively. (6) Feedforward mechanism exists between MAVS aggregation and mitochondrial ROS. (7) Deregulated sphingolipid metabolism
activates MAVS signaling independently of RNA ligands. cPLA2, cytosolic phospholipase A2; G6P, glucose 6-phosphate; HK2, hexokinase 2.
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to further elucidate the role of inflammation mediated by
mitochondrial-derived nucleic acid in other disease states.

Various RNA-independent mechanisms activating MAVS-
mediated transcriptional up-regulation of proinflammatory cy-
tokines have been described. One such mechanism involves the
communication between oxidative stress and MAVS (Fig. 2).
Oxidative stress is a common condition in infectious and in-
flammatory diseases, which can be sensed by MAVS to trigger
RNA- and RLR-independent MAVS oligomerization and type I
IFN production (Buskiewicz et al., 2016). Moreover, antioxidants
can suppress ROS-induced MAVS oligomerization and IFN
production (Buskiewicz et al., 2016), which may potentially
benefit patients with autoimmune or inflammatory diseases.
The fact that MAVS aggregates are resistant to detergent but
sensitive to reducing agents is consistent with MAVS being an
ROS sensor (Cai et al., 2014; Hou et al., 2011). In agreement with
a possible role for ROS-driven disulfide bond formation in
MAVS oligomerization, the MAVS-C79F variant does not oligo-
merize when exposed to ROS (Buskiewicz et al., 2016). Indeed,
systemic lupus erythematosus patients carrying the MAVS-C79F
variant show reduced plasma levels ofMAVS oligomers, reduced
type I IFN production, andmilder disease symptoms (Buskiewicz
et al., 2016; Pothlichet et al., 2011). Of note, while MAVS senses
both cellular and mitochondrial ROS, MAVS aggregation can in
turn promotes the generation of mitochondrial ROS and appears
to be essential for infection-induced mitochondrial hyperpolar-
ization, decrease in ATP synthesis, and drop in the spare respi-
ratory capacity (Buskiewicz et al., 2016; Lei et al., 2009). It is still
elusive how the prion-like aggregation of MAVS and the feed-
forward cycle between ROS and MAVS aggregation are ulti-
mately terminated and howmitochondrial function is restored in
healthy patients after the clearance of an infection. Further
mechanistic investigation of these critical deactivation steps
could yield novel therapeutic strategies for autoimmune and
inflammatory diseases.

Another unconventional mechanism that activates mito-
chondrial MAVS involves abnormal sphingolipid metabolism
(Fig. 2). Sphingolipids are well known for their roles in pro-
moting inflammation in both physiology and diseases. Expres-
sion changes of sphingolipid metabolizing enzymes have been
documented upon induction of neuronal inflammation (Morita
et al., 2020). In experimental autoimmune encephalomyelitis, a
murine model of multiple sclerosis, the sphingolipid lacto-
sylceramide promotes inflammation and subsequent neuro-
degeneration (Mayo et al., 2014). Recently, lactosylceramide has
been found to trigger an interaction between MAVS and cyto-
solic phospholipase A2 (cPLA2) that activates MAVS aggregation
and type I IFN production in astrocytes independently of RNA
ligands and RLRs (Chao et al., 2019). Lactosylceramide directly
binds to and activates cPLA2, a calcium-dependent phospholi-
pase that cleaves phospholipids, releasing inflammatory lipid
messengers (Chao et al., 2019; Leslie, 2015; Nakamura et al.,
2013). Once activated, cPLA2 is recruited to mitochondria,
where it binds and activates MAVS and changes mitochondrial
metabolism by multiple mechanisms (Chao et al., 2019). First,
cPLA2 binding directly triggers MAVS aggregation, leading to
transcriptional production of pro-inflammatory cytokines and

type I IFN. Second, cPLA2 displaces HK2 from MAVS, which
causes reduced HK2 activity in glycolysis (see above) and a
subsequent decline in lactate production. Third, cPLA2 activa-
tion by lactosylceramide increases the expression of cPLA2 itself
and the generation of ROS, both of which, in turn, further fuel
MAVS aggregation (Chao et al., 2019). Given the reported asso-
ciations of MAVS signaling, cPLA2, and sphingolipids with
various neurodegeneration diseases, interventions targeting the
cPLA2–MAVS signaling axis might prove beneficial.

Thus, MAVS is an integral part of the cellular stress response,
which is supported by the extensive communications between
MAVS signaling and cellular metabolism. While the MAVS
pathway has likely evolved to protect cells from pathogens and
damage, undesired, chronic activation of this RNA-sensing path-
way, together with the cGAS–STING DNA-sensing pathway, is
emerging as underlying contributor fueling inflammation-driven
diseases.

Mitochondrial retrograde signaling
Besides lipid signaling within mitochondrial membrane and
innate immune signaling on the mitochondrial surface and in
the cytosol, mitochondria also send out stress signals via inter-
organelle communication, adding another layer of potential
regulation. Crosstalk between the mitochondria and nucleus is
well defined in the regulation of cellular bioenergetics and stress
responses. This includes anterograde signaling from the nucleus
to themitochondria, as most mitochondrial proteins are encoded
by the nuclear genome, translated in the cytosol, and imported
into mitochondria. On the other hand, metabolic, proteostatic or
oxidative stress within mitochondria can be communicated in a
retrograde fashion back to the nucleus (Fig. 3).

One such retrograde pathway is controlled by the lipid sig-
naling we have already discussed. When mitochondrial function
is compromised, cells activate a transcriptional response known
as the mitochondrial unfolded protein response (UPR; Shpilka
and Haynes, 2018). In yeasts, general cellular membrane stress
caused by global lipid disequilibrium can be resolved by tran-
scriptional activation of the mitochondrial UPR, which in turn
maintains cellular membranemorphology (Thibault et al., 2012).
Likewise, in worms, mitochondrial protein-folding stress can be
decoded into local lipid signaling, which is further transmitted to
the nucleus to transcriptionally turn on both the mitochondrial
UPR and the cytosolic heat shock response. Specifically, dis-
ruption of mitochondrial proteostasis triggers an up-regulation
of cardiolipin and down-regulation of ceramide to initiate a
nuclear transcription program (Kim et al., 2016). Both cardio-
lipin accumulation and ceramide reduction are necessary and
sufficient to trigger this program, which protects worm cells
from cytosolic proteotoxicity whenmitochondrial proteostasis is
impaired (Kim et al., 2016).

An increasing number of proteins encoded by the nuclear
genome have been shown to reside in, or on, mitochondria
under basal conditions, whereas metabolic or other cellular
stresses stimulate their translocation into the nucleus to activate
transcriptional stress responses. For example, a well-conserved
oxidative stress response factor, nuclear factor erythroid-
2–related factor 2 (NRF2, known as SKN-1 in Caenorhabditis
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elegans) is sequestered by interacting with Kelch-like ECH
associated protein 1 (KEAP1) and the mitochondrial serine/
threonine protein phosphatase PGAM5 on the surface of the
OMM (An and Blackwell, 2003; Lo and Hannink, 2008). Oxi-
dative stress disrupts this protein complex and triggers NRF2
translocation to the nucleus, where it activates the transcrip-
tion of a large number of genes, including a set of antioxidant
proteins, to help restore redox homeostasis (Lo and Hannink,
2008; Sekhar et al., 2002). Other nuclear-encoded mitochon-
drial proteins that translocate into the nuclei upon physiolog-
ical or exogenous stresses have been recently reviewed
(Monaghan and Whitmarsh, 2015). Interestingly, a 16-amino-
acid peptide called MOTS-c, encoded by the mitochondrial ge-
nome of mammalian cells, also translocates from cytoplasmic
structures to the nucleus upon metabolic stresses accompanied
by ROS production (Kim et al., 2018). Activation of 59-
AMP–activated protein kinase (AMPK) downstream of ROS is
required for MOTS-c nuclear translocation (Kim et al., 2018). In
the nucleus, MOTS-c in turn initiates the transcription of a set
of stress response genes that may protect against conditions
characterized by metabolic dysfunction (Lee et al., 2015).

In additional to regulating translocation of transcription
factors, mitochondria can also transmit stress signals that result
in epigenetic modifications, such as histone acetylation and
histone and DNA methylation. A mild increase in mitochondrial
ROS, especially at the early stage of life, has been shown to
benefit multiple organisms from yeast to humans. In C. elegans,
early exposure to oxidants results in epigenetic change in the

adult organism that correlates with increased stress resistance
and a longer lifespan (Bazopoulou et al., 2019). Although in
many cases it remains unclear as to how mitochondrial stress is
transmitted to the epigenome, some downstream mitochondrial
ROS effectors have been identified in yeasts and worms with
conserved homologues in mammals. For instance, in murine
cells, the heterogeneous ribonucleoprotein A2 (hnRNPA2) ace-
tylates lysine 8 of histone H4 at mitochondrial stress–responsive
promoters in an acetyl-coenzyme A–dependent manner to ac-
tivate gene transcription (Guha et al., 2016). In yeasts, two
serine/threonine protein kinases, Tel1p and Rad53p, homo-
logues of mammalian ataxia telangiectasia mutated (ATM) and
Chk2 (Schroeder et al., 2013), promote yeast chronological life-
span in response to mitochondrial ROS by inactivating the his-
tone H3K36 demethylase Rph1p, leading to methylation and
transcriptional suppression of subtelomeric regions (Schroeder
et al., 2013). The highly conserved histone lysine demethylases
JMJD-1.2/PHF8 and JMJD-3.1/JMJD3 also play key roles in mito-
chondrial stress–induced lifespan extension in different species
(Merkwirth et al., 2016). Another histone methyl transferase,
MET-2, is involved in this process in worms by regulating
chromatin reorganization as part of mitochondrial stress re-
sponse in the nucleus, which is regulated by a nuclear cofactor
LIN-65 that translocates from cytosol to the nucleus upon mi-
tochondrial stress (Tian et al., 2016). Such chromatin reorgani-
zation causes gene silencing of many loci but often allows for
transcriptional activation of stress response genes at other
chromosome locations (Tian et al., 2016). Mitochondrial stress

Figure 3. Mitochondrial retrograde signaling pathways. Three distinct modes of retrograde signaling that transform mitochondrial stress into nuclear
programs are diagramed. On the left, mitochondrial protein folding stress is decoded into nuclear transcription via a lipid signaling-mediated UPR. In the center,
mitochondrial stress provokes nuclear translocation of mitochondrial-tethered proteins or peptides that, in turn, initiate transcription of stress response genes.
On the right, mitochondrial stresses, such as an increase in ROS levels, are translated into epigenetic modifications that facilitate transcriptional up-regulation
of stress response genes. 6mA, N6-methyldeoxyadenine; AcH4K8, acetylation on histone H4 at lysine 8; H3K9me2, dimethylation at the ninth lysine residue of
the histone H3 protein; MeH3K36, methylation on histone H3 at lysine 36.
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also triggers global elevation of N6-methyldeoxyadenine in
stress responsive genes, which can be inherited to modulate
stress response signaling across generations of worms (Ma
et al., 2019). Thus, in general, mitochondrial stress induces
epigenetic reprograming of gene expression in order to pro-
mote stress adaptation.

It is clear that there are multiple retrograde signaling path-
ways deriving from the mitochondria. However, at present,
these pathways do not always seem to be highly conserved
among species. It is also conceivable that these observed species
differences reflect the role mitochondrial communication plays
in a largely postmitotic organism like C. elegans compared with
more dynamic mammalian species. Whatever the explanation, it
is fair to say that the molecular and biochemical mechanisms
linking mitochondrial stress to the activation or inactivation of
transcription factors and epigenetic enzymes are still, for the
most part, poorly defined.

Therapeutic targeting of mitochondrial signaling
Most human diseases are age related. Aging is a complex process
involving the impairment of mitochondrial respiratory activity,
increase of oxidative stress, compromised stress response, and
accumulation of damaged protein and organelles, leading to
overall decline of cellular functions and induction of various
age-related diseases. Since mitochondrial ROS contribute to
much of the cellular damage in aging and disease, the most
straightforward therapeutic approach would appear to be
modulating mitochondrial ROS levels (Fig. 4). With that said,
the history of broadly acting ROS scavengers is not particu-
larly encouraging (Bjelakovic et al., 2007), although the an-
tioxidant edaravone was recently approved for the treatment
of amyotrophic lateral sclerosis (Jaiswal, 2019). One promis-
ing class of mitochondria-targeted antioxidants are plasto-
quinone derivatives that can accumulate within mitochondria
and, once oxidized, can be reduced by accepting electrons from
the mitochondrial respiratory chain (Feniouk and Skulachev,
2018b). One plastoquinone derivative, SkQ1 (a decyltriphenyl
phosphonium cation conjugated to a quinone moiety), has been
extensively characterized in vitro and in vivo and appears to
have significant antioxidant activity at even nanomolar con-
centrations (Feniouk and Skulachev, 2018a). Long-term
treatment with SkQ1 increased lifespan of a range of spe-
cies, including mammals, and various clinical trials are cur-
rently testing clinical efficacy on various age-related diseases.
An eyedrop form of SkQ1 (Visomitin) is currently in phase 3
trials for dry eye disease, a condition associated with oxida-
tive stress (Feniouk and Skulachev, 2018a).

Another group of mitochondria-targeted antioxidants are
peptides (Fig. 4). In 2004, Szeto and Schiller designed a series of
cell-permeable antioxidant tetrapeptides (SS peptides) that
specifically accumulate at the IMM (Zhao et al., 2004). Among
these peptides, the most promising one, SS-31 (D-Arg-2969-di-
methylTyr-Lys-Phe-NH2 [also known as MTP-131, elamipretide,
or Bendavia]) is believed to directly bind to cardiolipin in the
IMM and protect it from peroxidation, leading to restored mi-
tochondrial bioenergetics (Birk et al., 2013). SS-31 has proven
effective in protecting mitochondrial functions in different

animal models, and clinical trials have also demonstrated
promising effects in humans (Szeto, 2014). In an early small
trial, 5 d of SS-31 treatment substantially increased exercise
performance of patients with primary mitochondrial myopathy
(Karaa et al., 2018). In another clinical trial for human athero-
sclerotic renal artery stenosis that required a revascularization pro-
cedure, SS-31 significantly suppressed procedure-associated ischemic
renal injury and increased renal blood flow and renal function after
the procedure, with overall improved outcome for revascularization
(Saad et al., 2017). However, disappointingly, a recent randomized,
phase 3 trial with this compound failed to demonstrate efficacy in
patients with primary mitochondrial diseases.

When blocking ROS generation may be difficult or prob-
lematic, improving the removal of damaged mitochondria is
an alternative therapeutic approach. Indeed, accumulation of
damaged mitochondria is implicated in various degenerative
diseases, and pharmacologically stimulating mitophagy has
proven an effective way to prevent cell death (Fig. 4). A
chemical screen identified the antibiotic actinonin as a potent
activator of mitophagy (Sun et al., 2015). More recently, ur-
olithin A and actinonin have been found to stimulate mi-
tophagy and reverse memory impairment in various animal
models of Alzheimer’s disease (Fang et al., 2019), suggesting
that mitophagy stimulation may be a promising therapeutic
intervention for neurodegeneration.

Nucleic acid–stimulated innate immune signaling is emerging
as a key mechanism for multiple age-related diseases. Down-
stream of mitochondrial oxidative stress and mitochondrial
damage, RNA- and/or DNA-stimulated inflammation has been
shown to be an essential contributing factor for tissue damage
in various conditions (Dhir et al., 2018; Maekawa et al., 2019;
Sliter et al., 2018). This usually involves genetic mutations or
cellular damage that causes abnormal exposure of nucleic acids
to innate immune sensors or gain-of-functions mutations di-
rectly activating nucleic acid sensors such as MDA5. Given the
age-dependent increase of oxidative stress that could cross-
activate MAVS signaling (Buskiewicz et al., 2016) and the
age-dependent increase in circulating mtDNA (Pinti et al.,
2014), inhibitors specifically targeting the MAVS pathway or
the cGAS–STING pathway (Haag et al., 2018; Hall et al., 2017;
Lama et al., 2019; Vincent et al., 2017) could be considered for
inflammation-driven diseases (Fig. 4). This concept has been
recently expanded on by the demonstration of mtDNA escape
from the mitochondria via oxidative stress–induced macro-
pores formed by VDAC oligomers on the OMM (Kim et al.,
2019). Small molecules that inhibit VDAC oligomerization
(Ben-Hail et al., 2016) appear to provide a mitochondrial-
centric strategy to lessen the inflammatory symptoms seen in
an animal model of lupus (Kim et al., 2019).

The ideal therapeutics for aging and age-related diseases may
be a drug that can function through multiple mechanisms.
Metformin, the most commonly used medication for type 2 dia-
betes, is one such drug that has drawn increasingly more at-
tention due to its antiaging effects in many models (Barzilai
et al., 2016). Metformin reduces insulin levels, mTORC1 signal-
ing, ROS generation, DNA damage, and inflammation, whereas it
appears to activate AMPK, autophagy, and removal of senescent
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cells (Barzilai et al., 2016). These effects may all be a result of the
effects of metformin as a mild mitochondrial inhibitor. The
Metformin in Longevity Study (MILES) was launched in 2014
with 14 patients and demonstrated the potential effects of met-
formin in modulating metabolic and nonmetabolic pathways
linked to aging (Kulkarni et al., 2018). A much larger trial,
Targeting Aging with Metformin (TAME), has been planned in
order to test the effects of metformin on various age-related
diseases (Barzilai et al., 2016). The mitochondrial genome-
encoded retrograde hormone MOTS-c appears to act similarly
to metformin by activating AMPK and increasing methionine
turnover (Lee et al., 2015). Mice injected with this 16-amino-acid
peptide show increased sensitivity to insulin and resistance to diet-
induced obesity (Lee et al., 2015). Interestingly, the levels ofMOTS-
c decrease with age, suggesting that replenishing MOTS-c levels
might have therapeutic potential in certain age-related diseases.

Conclusions and perspectives
Blending in and standing out, mitochondria are uniquely
positioned to function as signaling hubs. Though expressed
in hundreds of copies per cell, their unique composition and

genome make them a complicated mix of the familiar and the
distinct. Here, we have described how these properties can
affect cell fate decisions, such as initiating cell death pathways,
triggering innate immunity, or altering the epigenetic code.
Many questions remain. These include a better understanding
of how various other critical properties of mitochondrial
function (e.g., fusion/fission and membrane potential) impact
signaling. In that regard, it would be important to understand
how age-dependent impairment of mitochondrial quality con-
trol alters, for instance, MAVS aggregation or epigenetic reg-
ulation. While we have focused on retrograde communication,
namely the communication from mitochondria to the nucleus,
other signaling connections are currently less understood. The
tight physical connection between ER and mitochondria likely
means these organelles can cross-regulate their biology, yet
details are currently woefully incomplete. More distant con-
nections might also exist (e.g., mitochondrial–lysosomal inter-
actions). Of note, individual bacteria communicate with each
other through mechanisms such as quorum sensing, and it
would not be surprising if analogous mechanisms allowed the
multiple mitochondria within a given cell to somehow talk to

Figure 4. Therapeutic targeting of mitochondrial signaling. Strategies to target mitochondria include blocking mitochondrial damage by reducing mi-
tochondrial ROS (antioxidants that are either broadly acting or mitochondrial specific), accelerating removal of damaged mitochondria by stimulating mi-
tophagy (actinonin and urolithin A), and suppressing undesired inflammation caused by mitochondrial damage (inhibitors targeting the MAVS or cGAS–STING
pathways). Metformin and the retrograde hormone MOTS-c appear to act through multiple mechanisms. mtROS, mitochondrial ROS.
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each other. Finally, it remains likely that mitochondria can sig-
nal beyond the cell. We have touched briefly on mitochondrial-
derived peptides such as MOTS-c, which circulate and are
readily detectable in human serum. The notion of other circu-
lating “mitokines” is attractive and represents a way to poten-
tially coordinate organismal adaptation to mitochondrial stress.
In simpler organisms, such as C. elegans, there is ample evi-
dence for such pathways (Durieux et al., 2011; Zhang et al.,
2018). In mammals, mitochondrial dysfunction in one tissue
can trigger increased expression of circulating factors, such as
FGF21, which may help to mitigate the initial stress (Kim et al.,
2013). Interestingly, transgenic overexpression of FGF21 in
mice appears to extend lifespan (Zhang et al., 2012). However,
these animals exhibited supraphysiological levels of FGF21
(5–10 times), and in fact, in humans, levels of FGF21 actually
appear to increase aswe age (Conte et al., 2019). As such, questions
remain as to whether FGF21 and related factors (e.g., GDF15) are
sensitive or specific biomarkers of mitochondrial function and
whether they play a protective or detrimental role.

While key questions remain unanswered, evenwith this very
rudimentary understanding and significant knowledge gaps, the
clinical applications of these insights are accelerating. Unlike the
lessons of junior high school, these applications will likely have
enduring consequences, as successful manipulation of mito-
chondrial signaling has the potential to impact a wide range of
inflammatory and age-related conditions.
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