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Abstract: The Intelligent Transport Systems (ITS) has the objective quality of transportation im-
provement through transportation system monitoring and management and makes the trip more
comfortable and safer for drivers and passengers. The mobile clouds can assist the ITS in handling the
resource management problem. However, resource allocation management in an ITS is challenging
due to vehicular network characteristics, such as high mobility and dynamic topology. With that in
mind, we propose the FORESAM, a mechanism for resources management and allocation based on a
set of FOGs which control vehicular cloud resources in the urban environment. The mechanism is
based on a more accurate mathematical model (Multiple Attribute Decision), which aims to assist the
allocation decision of resources set that meets the period requested service. The simulation results
have shown that the proposed solution allows a higher number of services, reducing the number of
locks of services with its accuracy. Furthermore, its resource allocation is more balanced the provided
a smaller amount of discarded services.

Keywords: intelligent transportation systems; mobile cloud; resource allocation; vehicular cloud

1. Introduction

The current tendency is to provide vehicles and roads with resources to make the
transport infrastructure safe, efficient, and helpful for passengers. Respectively, the first
implies giving information about traffic jams, accidents, dangerous conditions in the road,
weather conditions, and restaurants and gas stations nearby [1,2]. The second means to
increase the road network’s capacity, reduce air pollution and traffic congestion, reduce
operating costs of vehicles, and make more efficient the public transport system and road
logistics [3–5]. Finally, the last implies providing internet access for several applications,
such as tourism/advertising information, chat, and download files. These applications
are typical examples of Intelligent Transport Systems (ITS). Its goals are to enhance the
transport system’s efficiency, security, and entertainment through new information and
communication technologies [6,7].

A definition for ITS can be defined as an aggregation of communication technologies
and computational resources to optimize a city’s transportation system [8,9]. To do this, ITS
intercommunication between vehicles with a shoulder infrastructure that can be a mobile
phone network or a wireless network to capture vehicle information and traffic [10,11].
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However, with the increase of vehicles on urban roads, there is also an increase in the
flow of information generated by these vehicles that send and receive not only traffic
information but also information from other categories of services, such as entertainment
and yellow page services [12,13].

Linking vehicle growth to increased information flow, a study by the United States
Transit Department describes an increase of 10 million vehicles from 2010 to 2014 [14].
An IHF Automotive study [15] estimated that in-vehicle devices transferred over 480 data
terabytes through over 26 million connections. That same study predicted that about
30 data terabytes would be transmitted a day through about 152 million connections
by 2020.

These numbers can be higher once we have autonomous cars that are vehicles that
have a maintenance system that changes lanes; a speed controller (with automatic brake,
deceleration, and acceleration promoter), sensors, and radars that detect the surround-
ings; a high-resolution GPS (capable of reading the exact lane the vehicle is in and the
correct exit location on a highway, for example); powerful cameras; and, of course, an ad-
vanced artificial intelligence system that can make decisions on the spot of the human
driver. Therefore, the development of new infrastructure, traffic management mechanisms,
and computational resources are necessary to meet ITS services [11].

One possible solution is sharing computational capacities, such as storage and process-
ing, with nearby vehicles [16]. One possibility is the use of vehicular cloud, which consists
of a set of cooperating vehicles and collaboration among themselves sharing their compu-
tational resources, which can be dynamically scheduled between vehicles or by roadside
units (RSU) [17]. To assist the vehicular cloud in managing available resources and offer
a more extensive range of services without impacting the network and user experience,
the FOG paradigm is used [18]. Furthermore, FOG can aggregate more computational
resources, assisting in the processing of requests, and it also assists in the allocation and
the acquisition of resources to better fit the cloud service request [19,20].

In the global research area, the allocation of resources in the vehicular cloud is already
explored through some works [21–32]. Pereira et al. proposed a resource allocation
policy for vehicular clouds in the highway environment. However, this approach did
not consider aspects of communication in an urban environment. Dai et al. proposed
mathematical models to solve the problems with allocating in-vehicle networks that used
the direct communication between the RSU and the vehicle. Meng et al. [26] solved
the resource allocation problem using the method of the Semi-Markov Decision Process
(SMDP). Yu et al. [29] proposed the use of the game theory to carry out vehicular cloud
resource management. Arkian et al. [27] proposed the use of fuzzy logic to address the
problem of resource allocation. These works do not use all elements of a cloud carrier’s
infrastructure to carry out the allocation and aggregation of resources in the cloud.

To overcome these challenges, we propose a system for managing the resources in
the vehicle cloud context, called FORESAM—FOG paradigm-based Resource Allocation
Mechanism for vehicular clouds. FORESAM considered FOGs to aim in the management
of available resources. Considering that vehicles have embedded resources, such as storage
and processing, added to the FOG-managed vehicle cloud resource pool. Therefore,
vehicles must collaborate with the creation of a resources pool to realize available resources,
which will be serviced by vehicles and the FOG set that will manage the resources and the
attempt of the services. Thus, FORESAM will increase the usability of the features in the
vehicular cloud.

FOGs allow the aggregation of its idle resources with vehicle resources, increasing the
service availability capacity. In addition, the FOG’s approach to vehicles makes FOG an
essential element for the cloud, providing a low communication latency.

FORESAM increases the usability of the computer capacity provided by the vehicle,
besides managing the requested services. To this end, FORESAM uses a mathematical
model and a multi-criteria mathematical method to make the best choice of allocation while
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considering the parameters required for service. This model also aims to perform resource
availability allocation control.

For the FORESAM assessment, we compared it with other resource allocation methods.
FORESAM provided an increase in the number of services offered and reduced the locks
and the number of not attempted services. This occurs because of the load balancing in the
allocation of resources that FORESAM provides.

The main contributions of this paper are as follows:

(i) The development of a FOG-based mechanism for the allocation and aggregation of
vehicular cloud resources;

(ii) The development and evaluation of a decision-making policy for the allocation of
resources based on the resources required for the proper execution of the requested
service; and

(iii) FORESAM validation through real mobility trades, aiming to bring more realistic
results.

This paper’s remainder is structured as follows. We describe the most relevant related
solutions in Section 2. We present our proposed protocol for resource allocation in the
vehicular cloud in Section 3. We describe the validation of the propulsion mechanism and
its results in Section 4. Finally, we summarize our work and provide direction for future
works in Section 5.

2. Related Works

Several papers in the literature propose a solution to the problem of vehicular cloud
resource allocation [21,23–26,33–35].

Da Costa et al. [36] proposed a vehicle cloud allocation mechanism called CRATOS
(CombinatoRial optimization-bAsed Task allOcation mechaniSm for VC). CRATOS uses
the 0/1 Knapsack theory to make the decision to allocate resources to meet the requested
service. CRATOS is centralized in which there is a controller element called controller
located at a higher level in the network in which it processes requests, in which it assumes
that the services to be allocated have a defined weight. Although you can control the
allocated services, this technique does not optimize the use of available resources in the
vehicular cloud.

Hattab et al. [37] proposed a mechanism for allocating computational resources in the
vehicular cloud based on the polynomial-time complexity algorithm. This approach uses
the queuing theory to perform the allocation, which is performed by cooperation between
vehicles. The authors did not consider the mobility of vehicles for the VC formation; VCs
are stationary.

Tang et al. [38] proposed a centralized allocation mechanism called DbHA (Distance
Based Heuristic Algorithm for Utility Optimization). DbHA is a greedy strategy algorithm
that considers a utility function to perform the resource allocation decision in VC. DbHA
considers the parameters, such as the computing and communication resources, required
by the tasks for the decision-making process. The authors calculate the Hessian matrix
of a function with such variables and obtain the optimal values of computation and
communication when the maximum value of the utility function is reached.

Garg et al. [39] proposed a resource allocation method called HLMS. HLMS is an
improvement in the work of Ashok et al. [40]. In this method, the map is also divided into
four areas. Vehicles in the center of each area are ranked as level one leaders. The servers
are selected from the intersection density that the area has and Ashok’s work. In addition
to the server selection process, the HLMS also succumbs to the Ashok service search and
allocation procedure. The vehicle will send the first phase leader first, and if the request
cannot be found, then the vehicle will send it to the second level server. Although it finds
an improvement in the search method and service allocation, HLMS still has the same
problems as Ashok’s work.

Tao et al. [24] have put in place a Gauss–Seidel (GS) based on a cloud resource alloca-
tion mechanism. These mechanisms are intended to reduce the Nash Equilibrium Point
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(NEP) calculation by considering each service process’s inbound and outbound scheduling
and modulating a flow interaction control mechanism. Therefore, this mechanism uses the
game theory to allocate the resource in the vehicular cloud by modeling the vehicle’s packet
transmission. This mechanism also uses the RSU to facilitate communication between the
data center and vehicle to assist in the allocation process. Thus, the vehicles try to minimize
their cost.

Yu et al. [21] have provided a resource allocation mechanism in the vehicular cloud.
This approach uses a central cloud to decide whether or not to allocate the resource. This
decision is made through a game-theoretical mechanism to address the resource problem.
For the vehicle to have access to services available through the cloud, the vehicle must be
connected to the data center through an RSU. As the distance between the data center and
the vehicle increases, the communication between the two can increasingly delay, or the
latency can increase when servicing a particular service.

Meneguette et al. [23] proposed a mechanism for allocating and managing services
based on the communication between vehicles only, using the semi-Markov decision
process as the decision mechanism of whether or not the vehicle should allocate the
resource. To this end, a cluster is established, in which the cluster head checks whether or
not to serve the service. Therefore, this approach does not consider a set of RSUs to assist
in vehicle resource management and communication, which can create higher overhead for
creating and maintaining this vehicle-to-vehicle communication infrastructure. Moreover,
this solution does not consider some critical parameters, such as service time and processing
time. Deciding whether to transfer services between clouds could be more difficult because
of this.

Some of the work described considers using a central cloud, in which they perform
all of the management, which may increase the latency of the service provided due to the
distance between the vehicles and the cloud. Other work uses only the cooperation between
vehicles to create and manage resources. However, such a solution may generate higher
overhead to keep the denial allocation infrastructure active. Table 1 shows a comparison
of the literature work described with the proposed solution. Thus, in this paper, we use
the FOG paradigm to decrease the latency of allocated services and decrease the overhead
due to the support infrastructure in the aggregation and communication of resources made
available by vehicles.

Table 1. Features comparison with related work.

Works
Res. Allocation Service

Mode Elements Allocation Method
Roadside Vehicle Dif. Service

Garg et al. [39] X Decentralized Vehicles Optimization

Meneguette et al. [23] X Decentralized Vehicles SMDP

Hattab et al. [37] X Centralized Vehicles Querry

Da Costa et al. [36] X Centralized Vehicles Heuristic

Tao et al. [24] X Centralized RSU Optimization

Yu et al. [21] X Centralized RSU Optimization

Tang et al. [38] X Centralized RSU Heuristic

FORESAM X X X Hibridy FOGs and Vehicles AHP

3. FORESAM—FOG Paradigm-Based Resource Allocation Mechanism for
Vehicular Clouds

This section describes FORESAM—FOG paradigm-based Resource Allocation Mecha-
nism for vehicular clouds. FORESAM is designed to handle the management and allocation
of vehicle resources to manage the use of vehicle resources quickly due to the dynamic
topology of a vehicle network. A hierarchical analytical method is used because it has a
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lower inference rate since the decision matrix is already built, and it should only be applied
based on its weights. Given this, we consider vehicles with idle computing resources, such
as processing and storage, i.e., storage space and processing time. These resources can be
made available for the formation of a vehicular cloud. Figure 1 describes the vehicular
cloud environment used in this paper. Therefore, vehicles and FOG’s will form an infras-
tructure to provide services for other vehicles. Thus, FORESAM will create a vehicular
cloud in which resources are shared by vehicles and FOGs configured to offer cloud service
to other vehicles.

Figure 1. The vehicular cloud environment.

Therefore, we consider that the vehicular cloud will be composed of a set of FOGs and
vehicles in which computational resources will be available. These idle vehicle resources
will be added to the FOGs resources, where the FOGs will manage them. We can consider
that the FOG would be an adapted RSU with a set of computational resources available
in this work. Thus, we also consider that the FOG has computational resources added to
the pool of resources. Once these resources are available, the vehicles can allocate them to
perform the desired services, such as entertainment services and traffic exchange services,
among others.

Figure 2 describes the FORESAM abstraction in which vehicles are connected to
the FOG mirrored on the city map. The intercommunication between vehicles and FOG
represented in the image by the antennas and the RSUs provides the infrastructure for
aggregating and allocating resources, forming a layer. Therefore, FORESAM provides a
layer through the communication between the FOG and the vehicles. The FOG would
perform the function of the super-peer, in which it performs all the management in the
aggregation of resources in one vehicle network. Vehicles, in turn, provide their available
resources for FOGs to allocate to other requesting vehicles.

This set of FOGs can help manage resources by interconnecting with other FOGs,
further increasing its knowledge of the resources available to vehicles through a wired
connection. However, wireless communication between the set of FOG and vehicles
uses the standard for vehicular networks 802.11p. In addition, this work’s focus is not
the communication in a vehicular cloud but the management of resources inserted in a
vehicular cloud. We will assume that the communication is already being carried out
efficiently, and we will prioritize the mechanism only in the allocation and management of
such resources.

Each service has a range of computation resources, for example, storage, processing,
and run-time, to run efficiently. Thus, the decision on which FOG will allocate resources
and whether or not to allocate resources is taken by the FOG.
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Figure 2. FORESAM abstraction.

FOG allocates the idle computational capacity existing in the vehicles and its idle
computational resources to provide the resources that are filled by the required services.

To solve the allocation problem, we assumed that V vehicles might be communicating
with the FOGs. Therefore, these vehicles are sharing their available resources rvehs with the
FOGs. Furthermore, to attempt the services requested s, the mentioned resources need to
be allocated. Therefore, the requested services use rserv resources.

Thus, the vehicle vi traveling in the route requests a service to FOG that, in your
turn, allocates computational resources to provide the requested service. In order to meet
requests more efficiently, the vehicle could migrate from one FOG to another if the resource
is not allocated when it is going through that FOG.

The following sections will describe the communication protocol between FOG and
vehicles and the allocation decision mechanism.

3.1. Communication Protocol

To communicate between all the elements consisting of the vehicular cloud is necessary
to develop an intercommunication protocol between the FOGs and between the FOG and
the vehicle, allowing the vehicle to disseminate which computational resources are available
for FOG.

The communication protocol is based on the SERVitES protocol [16], which creates a
communication infrastructure only between vehicles, not considering the RSUs connec-
tion. Thus, we consider the FOG as the cluster head, reducing the number of messages
transmitted on the network since all requests initially go to the FOG. In addition to adding
communication with the RSU, a minor change to the map split policy was made.

In SERVitES, the city was previously divided into a set of cells. These cells were
divided equally according to the size of the urban area, and the cluster head would be the
longest-running vehicle within the cell, as we can see in Figure 3. However, in FORESAM,
this cell phone division is by the coverage area of the FOGs, i.e., by the communication
radius that the RSU has. Thus, we assume that a set of RSU covers the urban area.

For instance, consider a map 16 km2, 4 km wide, and 4 km long. Assuming that the
communication coverage area is RSU is 1Km, we will have 16 RSU and, consequently, 16
FOGs, which each FOG has on its communication area in a set of ways. This knowledge
of the roads will allow us to choose a better FOG. In order to make this choice, the ve-
hicle sends a control message from time to time to the beacon containing the vehicle id,
the number of available resources, and its trajectory (line 1 of Algorithm 1). FOG receives
the message and calculates the time this vehicle will remain and its area based on the
vehicle’s trajectory and the streets covered by the FOG communication area (lines 2–3).
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Thus, FOG knows how long the resource provided by the vehicle will manage. If the time
to remain in the FOG is shorter than time to pass through a street segment, the FOG will
check the next FOG considering the vehicle’s trajectory and will forward the vehicle control
message to approach FOG (lines 4–6). Therefore, speeding up the allocation of resources in
a FOG that the vehicle will stay for longer, in addition to reducing the amount of control
messages and the FOG change time, since the vehicle’s time would be connected in the
first FOG would be minimal. This procedure also occurs when the vehicle is in the overlap
between two or more FOG, in which it will chose the FOG that the vehicle will spend by
the connected time.

Algorithm 1: Communication FOG and Vehicles
1: Vehicle_send(Beacon)
2: FOG_received(Beacon)
3: myFOG = ComputeTime(Veh_Traj)
4: if (myfog less than streetSegmentTime) then
5: otherFog = FindNexT(Veh_Traj)
6: FOG_sendtozotherFog(Beacon)
7: end if
8: ManagerResource

Figure 3. Cells in the map in SERVitES [16].

Communication between the FOGs takes place through a wired connection. Thus,
when initialized, the FOGs sends a message containing its storage and processing ca-
pacity and which streets are within its communication area to the other FOG (line 1
of Algorithm 2). A given FOG service or resource allocation to service a FOG service
(lines 2–4). Propagation also occurs with the connection of a new vehicle and by changing
a vehicle from one FOG to another (lines 5–7). This change is the one managed by the FOG
to which the vehicle is currently connected. Thus, FOG checks for what is the next FOG
that the vehicle will connect to. Moreover, allowing a unique knowledge of the number of
resources each FOG has allows a better set of resources to serve a given service.
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Algorithm 2: Communication Among FOGs
1: send(Capacity, Streets)
2: if (Service finalized) then
3: send(Update_Capacity)
4: end if
5: if (Vehicle leave or enter) then
6: send(Update_Capacity)
7: end if

3.2. Resource Allocation and Management

Since the resources are being made available by the vehicles and managed by the set of
FOGs, once a vehicle cloud infrastructure was developed, it aims to offer services through
the resources made available by the vehicles. Therefore, FORESAM needs to approach
the problem of the allocation of resources to serve the requested services better. We can
consider that there are vs. moving vehicles in the streets in an urban scenario and has
several idle rv resources to understand the problem. These vehicles are connected to a
set of FOGs F in which it has many idle resources R, which is composed of the sum of
resources of clan FOG f . Therefore, each FOG f will have a set of Vf vehicles connected to
it, which share a total of r f resources.

A vs. vehicle needs to process information at a given moment, but its computational
resources do not support processing such a task. To do so, it sends a request message to the
formed infrastructure to find a set of resources available through the set of FOGs that could
lend it their resources to perform its task. Therefore, the great challenge of FORESAM is to
allocate the most considerable number of resources, meeting the demands of each service
efficiently. For this, FORESAM uses multi-criteria mathematical methods, more precisely
the elitist selection strategy [41], which takes a short time to decide due to the simplicity of
decision calculations, consequently lowering the processing and energy consensus.

FORESAM aims to balance the load among services between the various FOGs,
making the resources in vehicular clouds available while getting together the requirements
of the resource of every service requested.

The proposed allocation mechanisms are implemented within the FOGs, which will
select the best set of resources that meets the requested service. It will select the FOG,
which can meet the minimum requirements of the requested service. For this, FORESAM
uses the communication between the FOGs and vehicles to build its pool of resources.
Furthermore, the communication between FOGs allows the exchange of information and
resources between them.

The set of FOGs monitors the flow of information between the vehicles and the RSUs
and updates the resource allocation and aggregation information available between all the
FOGs in the set so that they all have the same information. The admission and departure of
resources in the FOG are established by the connection between the vehicle and the FOG.
Therefore, it is crucial to consider the time of execution of the service allocated and the
service demand of each FOG to determine how processing and storage resources will be
required to meet all demands.

As a result, the proposed mechanism uses as a decision parameter the memory used
for the service, called storage; the total occupation time of processing to perform the
service, called processing, and finally, the total execution time of the requested service, that
is, the total time of use of the allocated resources, called service time. To exemplify, we
can suppose that a vehicle requests a monitoring and route switching service, in which
such service will be performed throughout its route, which will require a time of 30 min.
Therefore, the service time to provide this service will be 30 min, assuming that this service
needs approximately 300 MB of memory to store traffic information and processing time
slots of approximately 5 min for the route change calculation.

Similar to these parameters, the decision mechanism implemented at FOGs can decide
in which pool of resources only the requested service will be allocated. For this, all FOGs
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create a decision matrix to which FOG the service will be allocated. This matrix contains
the storage, processing, and service time of each FOG. As FOGs exchange resource update
information, the allocation of this matrix is the same for all FOGs.

A mechanism is used to fill in the matrix parameters that computes a priority value that
a given parameter has over the other through the Analytic Hierarchy Process (AHP) [42]
method. To obtain the AHP values, we consider that the service time has a higher pri-
ority over the other parameters. This is because such services will be performed over a
vehicular network in which it has high mobility. Regarding the memory and the processor,
we consider that the memory has a higher priority over processing because the vehicle
has a smaller memory capacity than processing on its onboard computer. The decision
mechanism builds a decision matrix in which the columns and lines indicate the metrics
considered for decision making, i.e., service time, processing, and storing, to represent all
pairwise comparisons, as shown in Table 2.

Table 2. Influence Factor.

Factor Service Time Storage Processing

Service Time 1 2 3
Storage 1/2 1 3

Processing 1/3 1/3 1

With the parameter that the FOG is monitoring, for example, the total processing time
of its services, allocated with the multiplication of the processing priority weight calculated
by AHP will result in the value assigned in the decision matrix. Therefore, the values
obtained by AHP indicate which parameters have higher priority over others and serves
as weights for each parameter in the decision matrix, as we can see in Equation (1).

I fi = f ati · sti (1)

The influence factor I fi (Equation (1)) is obtained by the multiplication of f ati. This
value is taken from Table 2, with the value of the computational resources that FOG is
monitoring sti.

Services performed by a vehicular cloud may have different requirements and priori-
ties in their execution. For example, a service aimed at the safety of drivers must have a
higher priority in allocation and execution than other services aimed at yellow pages or
entertainment, as shown in Equation (2). Thus, we assign new weights for each type of
service, safety, comfort, and entertainment, in this work. Where security service has weight
1 (Serv1), comfort service weight 2 (Serv2), and entertainment service has weight 3 (Serv3).
The weights of each service are multiplied with I fi, which results in the values placed in
the decision matrix (Equation (4)). These values will be used to select the more appropriate
FOG in the set of n FOGs.

Serv = {Serv1, Serv2, Serv3} (2)

where Serv1 = 1, Serv2 = 2, Serv3 = 3 (3)

M =

Serv1 · In fi Serv2 · In fi Serv3 · In fi
...

...
...

Serv1 · In fn Serv2 · In fn Serv3 · In fn

 (4)

As the values of the decision matrix are very irregular because they are different
parameters, it is necessary to normalize these values so that a more precise decision can be
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made as to which FOG will be allocated to the service. Therefore, for standardization, we
define the following:

Mi,j = (di,j − dJ)/n (5)

where di,j is the matrix value, and dJ is the arithmetic average contained in column j of
the matrix.

Once the matrix parameters are normalized, we need to decide which will be the
best FOG to allocate the service. To this end, we used the Euclidean distance between the
attributes of the FOG node chosen d to the current conditions of the other FOG nodes f ,
based on Equation (6).

e =

√√√√ n

∑
j=1

(
dij − fij

)2 (6)

Based on the higher value of e, the decision mechanism acknowledges the potential of
a FOG node to allocate the resource to the service, meeting parameters requirements and
considering the cost.

4. Performance Analysis

This section describes the validation of FORESAM and discusses the results obtained.
For this, we divided the evaluation into two steps: (i) the Evaluation of the Allocation
Mechanism of Resource Allocation in the Vehicular Cloud; which aims to assess the
performance of the proposed allocation mechanism; (ii) the Evaluation of Communication
among the Elements of FORESAM; aiming to evaluate the entire FORESAM communication
and resource aggregation protocol.

FORESAM was implemented in the network simulator (NS3) [43], which all network
traffic is carried out, that is, it carries out the communications of the FORESAM elements.
Furthermore, we used the Simulator for Urban MOBIL (SUMO) [44]. It allows extracting
vehicle mobility from a real trace.

The mobility of vehicles used the map of the city of Cologne, Germany (Figure 4).
In this trace, we chose to use vehicle mobility between 6:00 a.m. and 8:00 a.m. on a weekday,
covering an area of 400 km2 of the city. Thus, 120,000 vehicles were obtained. We chose
this trace because it has both streets, avenues, and highways, which is very similar to a
real environment.

In the simulation environment, we consider that FOG refers to an HP ProLiant ML110
G5 machine, in which it has the following configurations: Intel Xeon 3075, dual-Processor
clocked at 2660 MHz, and 4 GB of RAM. Moreover, FOG used the 5G network to carry
out its communication; the 5G used is the availability standard by NS-3. These settings
allowed the entire map to be covered by 6400 FOGs. Due to the vehicle’s proximity to the
FOG, the sending and response of requests tend to be fast. We assume that the cloud will
be providing video streaming services, amber page services, and monitoring traffic.

Having several idle resources as a basis, the set of FOGs can provide a couple of
services. In this paper, we consider that the FOG provides three services. A service will
only be executed if it can count on a specific amount of allocated services. For example, we
consider the offer of storage and processing by a cloud; services that require the allocation
of between two and five resources.

Each vehicle has zero or two idle resources to share. Furthermore, we consider
processing and storage as available resources. Therefore, the vehicle can be available for
two, one, or zero resources. Moreover, the selection is made randomly, thus diversifying
the number of resources in each FOG. For communication between vehicles, we consider
a bit rate of 18 Mbit/s in the MAC layer and 2.2 mW as transmission power, allowing a
coverage area of approximately 300 m when employing a two-ray ground propagation
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model [45]. For communication that comes with the FOGs, it uses the standard 5G. Table 3
shows the configuration and parameters that were used to perform the simulations.

Figure 4. Cologne map.

Table 3. Simulation parameters.

Parameter Value

Communication RSU 5G
Transmission power 2.2 mW
Transmission range 300 m

Bit rate 18 Mbit/s
Beacons time 0. 5 s

Runs 35
Confidence Interval 95%

The simulation scenarios were performed 35 times each, which made it possible to
compute a 95% confidence interval.

4.1. Evaluation of Allocation Mechanism of Resource Allocation in the Vehicular Cloud

This section describes the assessment focusing on the allocation mechanism of resource
allocation in the vehicular cloud. For this evaluation, we used four other mechanisms:
(i) Best—ends up choosing the FOG where the resource allocation delivers the smallest
number of idle resources; (ii) Worst—elects the FOG that resource allocation delivers the
idlest resources; (iii) Random—chooses a FOG randomly among the FOG set; finally, (iv)
Greedy—chooses the first with all the resources that the services have required.

Furthermore, we have used three metrics: (i) Services Attempt—signifies the service
attempt amount in FOGs; (ii) Services blocked—represents the amount of services that
was blocked until finding a FOG or was Denied; and (iii) Services Denied—represents
the number of occurrences of non-allocation of services across the set of FOGs due to
unavailability of resources.

Figure 5a illustrates the number of times that a FOG has provided a service. As can
be seen, when the comparison with other solutions was made, FORESAM achieved a
considerable increase in the number of services attempted. When we perform a FORESAM
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comparison with the Best, Worst, and Greedy methods, we can see the number of services
provided increased by approximately 49% when considering 50% of vehicles. In com-
parison to the Random method, we can realize the growth of 7%. This happens because
the random algorithm selects, with no majority, the FOGs with the required number of
terminations for the service every time.
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Figure 5. Performance analysis.

Figure 5b illustrates the number of times a service starts to wait until the policy finds a
FOG that meets the resources required by the service. Therefore, we can observe FORESAM
obtaining a reduction of approximately 50% when compared to Greedy, Worst, and Best
and decreasing about 8% compared to Random, and this happens due to the FORESAM
placing among the first options the FOGs that can meet the number of resources requested
by the service.

It can be seen in Figure 5c a certain number of required services being denied due to a
low number of resources in the set of FOGs that attempt the service requested. FORESAM
reduced approximately 42% in comparison with Best, Greedy, and Worst and also a reduc-
tion of 5% in comparison with Random, and this is possible because FORESAM allows a
better balance of the load of resources within the FOG, i.e., Best, Worst and Greedy permits
a disorderly allocation of resources.

Summarizing, FORESAM allows attempting a tremendous amount of service, pro-
vides a decrease in the amount of services blocked, as well as a reduced number of discarded
services due to its decision mechanism in the allocation of resources.
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4.2. Evaluation of Communication among Elements of FORESAM

In this section, we describe the assessment focusing on the impact that communication
and resource aggregation and allocation could have on the network.

We used three metrics for this evaluation: (i) the amount of control messages; (ii) the
delay in delivering messages; and (iii) the network packet loss percentage. As a comparison,
we used the work of Refaat et al. [33] and the communication protocol, A-STAR [46].

Figure 6 presents the network control message percentage. FORESAM had a smaller
overhead because the proposed protocol reduced the message number to perform the aggre-
gation of resources, and the connection with the vehicle is active. FORESAM achieved an
approximated reduction of 15% compared to the Refaat et al.’s protocol and approximately
10% compared to A-STAR when we observe a growth in the amount of vehicles (50% of
vehicles participating). However, a smaller reduction happens with a smaller amount of
vehicles participating (10% of the vehicles participating) because the number of resources
to serve the services is smaller, reducing the number of control messages as a consequence.
This reduction had a significant impact when we analyzed the packet loss percentage and
the average delay in messages delivering.
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Figure 6. The percentage of control messages.

Figure 7 presents the average delays in the messages delivered. We can see that
FORESAM achieved an approximately 20% reduction. This happens because the allocation
decision policy in which most resources were managed by the same FOG started the
connection. With a greater amount of vehicles (50% of vehicles), FORESAM can reduce
approximately 30% compared to Refaat et al. protocol and 25% compared to the A-STAR.
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Figure 7. The average delay in delivering messages.
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Figure 8 shows the packet loss percentage on the network. FORESAM has a lesser
amount of packet loss as there is less packet flow over the network. When analyzed at
the point with the largest number of participating vehicles (50% vehicles), we can realize
a 13% reduction. However, the reduction is only 10% if analyzed with a fewer number
of vehicles.
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Figure 8. The percentage of packet loss.

To summarize, the architecture proved to be efficient because FORESAM reduced the
number of control messages by 10% on the network, the average time of delivering infor-
mation reduced by 20%, as well as the loss of information reduced by approximately 10%.

5. Conclusion and Future Work

During this research, the importance of ITS for the improvement of traffic management
systems is investigated. The goal is to improve the quality of transport and make the trip
more comfortable and safer for drivers and passengers. In this context, it is worth noting
that mobile clouds can assist the ITS in handling the computer resource management
problem. However, resource allocation management in an ITS is not trivial due to vehicular
network characteristics, such as high mobility and dynamic topology.

We proposed FORESAM, which addresses the vehicular cloud problem with resource
allocation. For this, we consider that clouds are composed of a FOG set with vehicles that
have resources. Such resources can be shared, thus allowing the growth of the number
of services presented by the cloud. FORESAM was modeled with mathematical methods
to enable optimal decision making related to resource allocation in order to maximize
resource utilization in the cloud. In other words, a mechanism for resources management
and allocation was modeled based on a set of FOGs that control the vehicle’s cloud resources
in the urban environment. The simulation results indicate that the FORESAM enables a
higher quantity of services, offering a reduced number of service locks due to its precision
and a reduced quantity of discarded services due to its mechanism of allocating resources.
Furthermore, its resource allocation is more balanced and provided a smaller amount of
discarded services.

In future work, we will improve the proposed mechanism by considering other
parameters and scenarios and investigating its effects on resource allocation. Still, we
intend to propose new resource allocation mechanisms in a FOG computing environment
in the context of ITS.
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