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Abstract

Use of multivariate data analysis for the manufacturing of biologics has been increas-

ing due to more widespread use of data-generating process analytical technologies

(PAT) promoted by the US FDA. To generate a large dataset on which to apply these

principles, we used an in-house model CHO DG44 cell line cultured in automated

micro bioreactors alongside PAT with four commercial growth media focusing on anti-

body quality through N-glycosylation profiles. Using univariate analyses, we deter-

mined that different media resulted in diverse amounts of terminal galactosylation,

high mannose glycoforms, and aglycosylation. Due to the amount of in-process data

generated by PAT instrumentation, multivariate data analysis was necessary to ascer-

tain which variables best modeled our glycan profile findings. Our principal component

analysis revealed components that represent the development of glycoforms into ter-

minally galacotosylated forms (G1F and G2F), and another that encompasses matura-

tion out of high mannose glycoforms. The partial least squares model additionally

incorporated metabolic values to link these processes to glycan outcomes, especially

involving the consumption of glutamine. Overall, these approaches indicated a tra-

deoff between cellular productivity and product quality in terms of the glycosylation.

This work illustrates the use of multivariate analytical approaches that can be applied

to complex bioprocessing problems for identifying potential solutions.
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1 | INTRODUCTION

Generation of biological drug products from bioreactors is a complex

procedure due to using living cells as the site of manufacturing. Much

is still unknown about the relevant cellular processes, so understand-

ing how different variables in bioprocessing affect critical quality attri-

butes (CQA) such as glycosylation and monoclonal antibody (mAb)

product titer is of great interest to the biopharmaceutical industry.1,2

To study how these variables could potentially contribute to changes

in cellular productivity and the CQAs of the product molecule, multi-

variate approaches are needed to analyze the large amount of data

required.3 This use of multivariate data analysis (MVDA) in associating

cell culture process and material variables to CQAs is sometimes

referred to as “fermentanomics.”4 MVDA is necessary due to the diffi-

culty in detecting the subtle, yet important, relationships through uni-

variate means in addition to the problems inherent to large datasetsCurrently at: Nicholas Trunfio, Sartorius Stedim Data Analytics, Bohemia, NY 11716.
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such as varying degrees of experimental error, multicollinearity, and

missing data.5

N-glycosylation is an example of one CQA present in therapeutic

mAbs that has large consequences on the efficacy and stability of the

protein.6 In the mAb immunoglobulin G (IgG), N-glycosylation is found

at Asn297 in the crystallizable fragment (Fc) of the heavy chain.7 This

modification takes place in the endoplasmic reticulum (ER) and Golgi

apparatus, where a 14-sugar precursor Glc3Man9GlcNAc2- is

attached and modified as the protein traverses the Golgi.8 The modifi-

cation process typically involves the loss of the mannose saccharides

and replacement with N-acetylglucosamine (GlcNAc) and galactose.

Cellular stresses, such as nutrient depletion, can interrupt these enzy-

matic processes since it affects the available pool of substrate mole-

cules such as nucleotide sugars.9,10 The altered rates at which the

enzymes modify the polysaccharide chains can result in the different

glycoforms, which collectively form the glycan profile of the protein.

These alterations of the cellular environment that impact the mAb

glycan profile can have a profound impact on the resulting drug's qual-

ity. As the activity of a mAb drug is commonly mediated through

antibody-dependent cellular cytotoxicity (ADCC) or complement-

dependent cytotoxicity, the antibody glycoform can affect these pro-

cesses by either facilitating or hindering recruitment of necessary

interactors. For example, glycans that feature a core fucose will

reduce ADCC activity due to the moiety interfering with Fcγ receptor

interaction.11 The glycosylation state of the protein can additionally

affect stability, immunogenicity, and clearance rate.12,13 Due to the

importance of N-glycosylation in drug quality, further understanding

of the variables and processes that affect its outcome is warranted. In

this vein, supplementation strategies where the additions were com-

prised of sugars, metals and amino acids have been shown to directly

affect the produced glycan profile.14,15 Aglycosylation, where the pro-

tein lacks a glycan residue at the Asn297 site, is another possible out-

come. Nutrient depletion, such as glucose, has been shown to result

in this change.16 Due to the role of the glycan modification in protein

binding, its absence has a marked effect on the protein properties:

protein aggregation, reduced stability, and altered pharmacokinetic

properties.17-19 A wide variety of glycan outcomes are possible and

there are many bioprocessing and culture medium variables that can

affect this process, necessitating the need for multivariate analysis.

To generate a dataset with an adequate number of replicates given

the large number of potential inputs involved, we used the ambr®15

automated micro bioreactor system (Sartorius, Hartfordshire, UK). This

automated, parallel cell culture platform allows a suitable dataset for

multivariate analysis to be generated because many cell culture exper-

iments can be simultaneously run with minimal spurious batch-to-

batch variability caused by differences in seeding density, cell culture

operation, environmental conditions, and media preparation. An in-

house model IgG1 producing CHO DG44 cell line was used for these

cultures, with the system run in batch mode to accommodate for the

vessels' small sizes which could not sustain a reasonable sampling fre-

quency over a longer fed-batch culture while maintaining the mini-

mum reactor volume necessary for operation. Earlier studies were

used to determine our selection of media: Ex-Cell Advanced (SAFC),

CD OptiCHO (Thermo Fisher), PowerCHO2 (Lonza), ProCHO5

(Lonza).20 Due to the small size of the micro bioreactors (15 ml, with a

minimum volume of 10 ml), the breadth of in-process analytics that

could be performed, such as technical replicates of in-process mea-

surements, was limited. As such, glycosylation was the only product

quality attribute evaluated on the final harvested product.

Due to the quantity of data collected and the difficulty of identify-

ing relationships in complex datasets with only univariate analyses, we

used two multivariate analysis techniques to uncover these interactions:

principal component analysis (PCA) and partial least squares regressions

(PLS). This is possible because the measured variables, collectively

referred to as the feature space, vary collinearly with one another; for

example, an increase in the abundance (percentage) of one glycoform

must result in an equal cumulative decrease in the abundance of the

remaining glycoforms. PCA exploits this collinearity by projecting the

feature space onto a set of latent variables, called principal components,

that describe the orthogonal variations in the original feature space.21

Collectively, latent variable data is referred to as the score space, as

observations on these new principal components are called scores. Each

observation will have a score value associated with it for each of the

principal components. Observations that are similar across many of the

original variables will appear clustered together in the projection. There-

fore, any observations that deviate from the others can be seen. PLS

was used to find the functional relationship between bioreactor process

parameters and glycan outcomes, such as high mannose (HM)

glycoforms and altered proportions of terminal galactosylation.

2 | RESULTS

We sought to generate a complex dataset from a model IgG1 antibody

producing bioprocess for use in MVDA using the following commer-

cially available media: Ex-Cell Advanced, OptiCHO, PowerCHO2, and

ProCHO5. We used our in-house CHO DG44 cell line at an inoculation

density of ~1 × 106 cells/ml. Nine micro bioreactors were prepared

with each of the four media. One of the bioreactors containing Ex-Cell

Advanced was lost, resulting in a total of 35 bioreactors successfully

run. The bioreactors were operated within normal ranges found in bio-

processing with minor differences in the levels of nutrients sup-

plemented. The micro bioreactors were run for 8 days, after which the

mAb was collected and purified. Figure 1 displays technical dot plots

with the final integrated viable cell density (IVCD) and specific produc-

tivity profiles categorized by culture medium, where each dot repre-

sents an individual micro bioreactor culture. The IVCD is a calculated

variable that represents the cumulative viable cell density over the

course of the whole bioreactor run, measured in cell-days/ml (further

details for this variable, as well as the following metabolite values, can

be found in Section 4.9). Cultures grown in Ex-Cell Advanced and

PowerCHO2 have comparable IVCD, while this value is lowest in

ProCHO5 and highest in OptiCHO. OptiCHO also featured the lowest

specific productivity, which was roughly the same in the other media.

In-process measurements for the concentrations of glutamine

(Gln), glucose (Glc), and lactate (Lac) were performed using a
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Bioprofile Flex Analyzer. We used the measured values to calculate

the total specific amounts consumed/produced per cell within the

micro bioreactors over the total culture life, the resultant technical

dot plots of which are shown in Figure 2. Overall, OptiCHO featured

the lowest consumption of glutamine and glucose while also produc-

ing the lowest amounts of lactate. Likewise, Ex-Cell Advanced had

cultures that consumed/produced in the middle, while the highest

consumers/producers were PowerCHO2 and ProCHO5 containing

micro bioreactors.

Our next step was to assess if any of the differences we observed

in the cell growth and nutrient profiles affected the glycosylation state

of the IgG1 antibody that was produced. Due to the limited bioreactor

volume size, the product mAb was only harvested at the end of the

run; because the mAb accumulates in the vessel over time, the final

harvest material is representative of the average mAb produced

throughout the varied process conditions of the cell culture. Addition-

ally, the average mAb will more closely resemble protein produced at

the end of the cell culture due to more protein being produced at the

higher cell densities that are reached in the latter stages of the pro-

cess, and due to the cells' increased productivity as they enter the

stationary phase during this time. The purified antibody was analyzed

for its glycan profile and heavy chain size variants using mass spec-

trometry and capillary electrophoresis, respectively. The combined

results for these analyses are shown in Table 1. The data in Table 1 is

categorized by culture medium and analytical technique, as fluores-

cence mass spectrometry was used to quantify the numerical percent-

ages of all the glycoforms, while reduced capillary electrophoresis

(rCE-SDS) was used to compute the amount of aglycosylation anti-

body heavy chains. The results of all biological and three technical

replicates each were mean averaged to obtain the values shown in

Table 1; the values that are highest for each glycan type are bolded

and underlined. Based on the glycan species we observed in our anal-

ysis, we used the following groupings: G0F, G1F, G2F, HM (this cate-

gory contains Mannose 4 to Mannose 9 which consist of mannose

oligosaccharide clusters bound to the 2 GlcNAc core), and Other (this

category consists of the uncommon glycoforms such as G0F-N and

nonfucosylated glycoforms like G0, G1, and G2). The “Other” category

contained less than 5% of the overall glycans present. These groups

of glycan species, HM and other, were created to help in data visuali-

zation and to simplify the data used to detect significant trends. The

F IGURE 1 Representative bioreactor growth profiles sorted by media Technical dot plots depict the final integrated viable cell density (IVCD)
and specific productivity across all culture conditions for Ex-Cell Advanced, OptiCHO, PowerCHO2, and ProCHO5 media

F IGURE 2 Representative consumption and production within the micro bioreactors sorted by media. Total specific consumption of
glutamine (Gln) and glucose (Glu) and lactate (Lac) production across all culture conditions for Ex-Cell Advanced, OptiCHO, PowerCHO2, and
ProCHO5 in terms of total mass per cell (mg/cell)
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sum of terminal galactosylated species (G1F and G2F as opposed to

G0F which features no galactosylation) varied greatly based on media:

ProCHO5 cultures produced the most G1F and G2F of all the media

tested, while OptiCHO produced the most G0F (more than G1F and

G2F combined, 53.189% vs. 32.423%). These values could indicate

that ProCHO5 medium promotes trafficking through the Golgi appa-

ratus and/or galactosyltransferase enzymatic activity responsible for

galactosylation more efficiently than in other media.22

Culture medium is also associated with the abundance of HM

glycoforms which can be characteristic of cellular stress and causes

incomplete processing during N-glycan biosynthesis.6,23,24 This cellular

stress can manifest differently, either as a reduction in galactosylation,

or increases in either HM glycoforms or aglycosylation. For example,

Ex-Cell Advanced cultures displayed the largest amounts of HM

glycoforms, while PowerCHO2 had the most aglycosylation.

Table 1 shows that culture medium significantly affects the total

product glycan profile. Nutrient related cellular stress can cause both

an increase of immature glycoforms such as HM and an increase in

antibody aglycosylation, but the conditions that result in production

of aglycosylated mAbs are not well characterized and do not appear

to overlap with those that result in immature glycoforms.16,22 As men-

tioned earlier, glucose depletion has been shown to be responsible for

aglycosylation outcomes, though we did not find any evidence of glu-

cose deficiency in the PowerCHO2 vessels (Figure 2). We note that

the conditions which result in aglycosylation do not appear to be cor-

related with those that result in low terminal galacosylation or

increased HM species. Our work illustrates the need for fully charac-

terizing the in-process parameters that result in altered glycosylation

states that will modify the therapeutic properties of the antibody,

especially when the drug mechanism requires Fc-binding ligands.

Due to the complex interplay between the different cellular func-

tions affecting growth, metabolism, and glycan outcomes, we rea-

soned that data driven multivariate analysis would be required to

understand the correlation structure that relates the harvested mAbs'

quality and the in-process variables. Accordingly, the exact relation-

ship between media selection and product quality is obscured for mul-

tiple reasons. First, the identities of the chemicals contained within

commercial growth media are proprietary and unknown. Second, the

relationship between the growth measurements, metabolite measure-

ments and final product quality is governed by metabolic pathways

containing complex reaction networks that have not been fully charac-

terized. Due to this, we used MVDA techniques, such as PCA and PLS,

to find a set of latent variables that describe the variability seen in the

measured data and calculated variables when the exact biological rela-

tionship between model features is unknown. We only used the mass

spectrometry data for the MVDA since mass spectrometry and rCE-

SDS are vastly different techniques that measure attributes on differ-

ent analytes.

PCA was performed to assess the suitability of using MVDA to

characterize the impact of media selection on antibody glycosylation

and productivity. The model's features, X, are comprised of only the

titer and glycosylation profiles from each of the 35 micro bioreactors;

the culture medium and other in-process variables were not included

in this initial model, which is summarized in Table 2. Sevenfold cross-

validation was used to determine Q2 from predicted values of the

excluded data. In order to prevent overfitting, the number of

TABLE 1 Glycosylation profiles by growth medium

Note: Glycosylation profiles by medium. The numbers represent the percentage of the total glycan profile for all labeled glycan data obtained by mass

spectrometry which sum to 100%. The rCE-SDS aglycosylation values represent the percentage of antibody heavy chains are not glycosylated versus

those that are. The error values indicated are standard deviation values for all biological replicates and technical replicates measured. The bold values are

the highest values for each glycan type.
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extracted principal components was selected to maximize Q2; thus,

the predictive power of the model was also maximized. More than

90% of the variabilities in the titer and glycosylation profiles are char-

acterized by the two extracted principal components, while the high

Q2 value signifies that the results of the model have high predictive

power and are not based on spurious correlations.

The PCA model extracted two principal components suggesting

that there are two latent variables which characterize the impact of

media selection on titer and product quality; the model's loadings,

shown in Figure 3a, can provide insight into how the media selection

has such an impact. The first principal component's loadings, p1, show

that the first principal component is inversely correlated with the

immature HM and intermediary G0F glycoforms, as depicted by their

location in the left side of the loadings plot. p1 also indicates that the

first principal component is positively correlated with the terminally

galactosylated G1F and G2F glycoforms, as evidenced by their loca-

tion in the right side of the loadings plot. Taken together, this suggests

that the first principal component is characterizing the correlation

structure that relates the impact of media selection on the cells' ability

to achieve terminal galactosylation. This is also evident in the model's

F IGURE 3 Principal component analysis model to characterize impact of media selection on the glycosylation profile and titer. A and B show
the PCA model's loadings and score space. Part C shows a principal component regression (PCR) demonstrating that the first principal component
describes the degree to which the cells were able to achieve terminal galactosylation. D and E show that the second principal component
characterizes the degree to which the cells can convert high mannose glycoforms to G0F and that the metabolic processes associated elevated
conversion are inversely correlated with the metabolic process associated with protein production

TABLE 2 Summary statistics for the profile models

Model A R2(X) R2(Y) Q2

PCA 2 0.903 - 0.605

PLS 3 0.810 0.729 0.586

Note: Model summary statistics for the PCA model characterizing the

impact of media selection on antibody glycosylation and for the PLS

model used to predict the glycan distributions.
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score space, shown in Figure 3b when considering the first principal

component's scores, t1. Cell cultures grown in OptiCHO are the least

efficient at achieving terminal galactosylation, having the lowest sum

of G1F and G2F species, and their projections appear furthest to the

left in the score space. Moving to the right, it can be observed that

Ex-Cell Advanced and PowerCHO2, which are moderately efficient at

creating the terminally galactosylated species, appear next along t1

near the central axis. Furthermore, it can be seen that cells grown in

ProCHO5, which are the most efficient at achieving terminal

galactosylation, appear furthest to the right by a significant margin;

this is in good agreement with the univariate analysis derived from

Table 1. Further evidence that the first principal component is corre-

lated with the cells ability to achieve terminal galactosylation is pro-

vided in Figure 3C where the principal component regression (PCR)

expressing the sum of terminally galactosylated species, [G1F + G2F]

(%), as a linear function of the first principal component's scores, t1, is

able to capture almost all of the variability present in the amount of

terminally galactosylated species (R2 = 0.996). Interestingly, the prox-

imity of the loading for titer to the origin suggests that the cells' ability

to achieve terminally galactosylated glycoforms is independent of

how productive the cells are.

The second principal component's loadings, p2, show that the sec-

ond principal component is inversely correlated with the intermediary

G0F glycoform, as illustrated by its location in the bottom half of the

loadings plot. p2 also indicates that the second principal component is

positively correlated with the immature HM glycoforms and titer, as

portrayed by their location in the top half of the loadings plot. Taken

together, this suggests that the second principal component is charac-

terizing the correlation structure that relates the impact of media

selection on the cells' ability to convert the immature HM glycoforms

into the intermediary G0F glycoform. Cell cultures with lower projec-

ted scores on the second principal component, t2, will be character-

ized by their small proportion of the HM glycoforms and relatively

high proportion of the other glycosylation species; the inverse would

be true of cell cultures whose projected scores, t2, are large. This is

consistent with the pattern observed in the score space: the cells

grown in ProCHO5 and OptiCHO have the smallest amount of HM

glycoforms and their projections appear in the bottom half of the

score space in Figure 3b; cells grown in PowerCHO2 and Ex-Cell

Advanced have the largest amount of HM glycoforms and their pro-

jects appear, largely, in the top half of the score space. This is also

consistent with the univariate data in Table 1. Further evidence that

the second principal component is correlated with the cells ability to

convert HM glycoforms into the G0F glycoform is provided in

Figure 3D where the PCR expressing the total amount of all G0F,

G1F, and G2F glycoforms, [G0F + G1F + G2F] (%), as a linear function

of the second principal component's scores, t2, is able to describe a

majority of the variability in the amount of intermediate and mature

glycoforms (R2 = 0.708).

In addition, the second principal component's loadings, p2, sug-

gest that the underlying metabolic phenomena responsible for con-

verting the HM glycoforms into the G0F glycoform are inversely

correlated with the metabolic phenomena responsible for increased

protein production and that optimizing for titer could have deleteri-

ous effects on product quality, and vice versa. Further evidence for

this can be seen in Figure 3e; it shows that the PCR that expresses

titer as a linear function of t2 is also able to describe a majority of

the variability in titer (R2 = 0.739). The fact that the slope of the

regression in 3D is negative and the slope of the regression in 3E is

positive is further evidence of the inverse relationship between cell

productivity and efficiency in converting HM glycoforms to the G0F

glycoform.

Having established a set of latent variables that can be used to

discriminate between the productivity and glycosylation profiles

resulting from cells grown in different media formulations, our next

step was to determine if there were metabolic differences in the vari-

ous cell cultures that were correlated with the observed titers and gly-

cosylation profiles. To accomplish this, a PLS model was created

where the response features, Y, were comprised of the titer and gly-

cosylation profiles and the regressor features, X, contained 32 vari-

ables related to growth, metabolite uptake, and metabolite secretion.

Specifically, the regressor features were: growth rate (Day 5), IVCD24

(Days 6 and 7), specific glutamine uptake rate (Days 0, 1, 2, 3, 4, and

5), specific glucose uptake rate (Days 1, 2, 3, and 6), specific lactate

secretion rates (Days 5 and 6), specific glutamine uptake24 (Days 1, 2,

3, 4, 5, and 6), cumulative specific glutamine uptake (Days 1, 2, and 3),

specific glucose uptake24 (Days 3, 4, and 6), cumulative specific glu-

cose uptake (Days 3, 4, 5, and 6) and specific lactate production24

(Day 6). Table 2 contains the model summary statistics: the R2(X) and

R2(Y) values indicate that over 80% of the process measurement vari-

abilities and over 70% of the titer and glycosylation profiles variabil-

ities, respectively, are embodied by the three principal components

extracted by the model. It can be seen that despite extracting more

principal components the PLS model is able to describe less of the

titer and glycosylation variabilities than is described by the PCA

model, as evidenced by the PLS model's R2(Y) value being lower than

the PCA model's R2 value. This is a necessary consequence of trying

to find the correlation structure in the process measurements that are

related to the changes in titer and glycosylation. Not all process mea-

surements that affect titer and glyocsylation have been measured;

therefore, only the titer and glycosylation variabilities that are corre-

lated with the process measurements should be characterized by the

PLS model. The high Q2 value, relative to the R2 values, indicates that

the PLS model has good predictive power and is not based on spuri-

ous correlations.

Figure 4a,c shows the score space and loading weights plots,

respectively, for the PLS model. The Y block features' loading weights,

shown as blue circles in Figure 4c, have a very similar pattern to the

one observed in the PCA model's loadings depicted in Figure 3a. This

indicates that the first two principal components extracted by the PLS

model can be interpreted as characterizing the same phenomena as

those extracted by the PCA model: the first principal component is

positively correlated with the cells' ability to achieve terminally gal-

actosylated glycoforms and the second principal component is posi-

tively correlated with titer and inversely correlated with the cells'

ability to convert the immature HM glycoforms into the intermediary
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G0F glycoform. However, even though the pattern of the Y block fea-

tures' loading weights in Figure 4c is similar to the pattern of the load-

ings in Figure 3a, there are some small differences that could affect

the relevance of the PCA model's interpretation for the PLS model.

This is most evident by comparing the PLS model's score space,

Figure 4a, with the PCA model's score space Figure 3b. There are still

clusters for each of the four media types, and the clusters are located

in similar regions of the score space for both models; however, the

distributions of these clusters are substantially different, especially

along the second principal component.

The PCA model's interpretation is most relevant for the PLS model

when considering only the PLS model's first principal component. Mov-

ing across the score space in Figure 4a from left-to-right, OptiCHO has

the lowest amount of terminal galactosylation, followed by Ex-Cell

Advanced and PowerCHO2 having an intermediate amount of terminal

galactosylation and ProCHO5 having the most terminal galactosylation

by a large margin. Further evidence that the latent variables from both

models are correlated with the same underlying biological phenomena

can be seen by performing a PCR that expresses [G1F + G2F] (%) as a

linear function of the PLS model's first principal component's scores, t1,

shown in Figure 4b, and comparing it with the PCR for the PCA model,

shown in Figure 3c. The PLS model captured less of the terminal

galactosylation variability than the PCA model, R2 = 0.684 versus

R2 = 0.966, respectively. This implies that up to two-thirds of the termi-

nal galactosylation variabilities observed are correlated with the growth

and metabolite measurements used as regressors in the X block. It also

implies that at least one-third of the differences in terminal

galactosylation observed cannot be attributed to factors considered in

this work. The distribution of the observations on the PCR in Figure 4b

suggests that the measured process parameters are correlated with the

large changes in terminal galactosylation seen between media but that

they are not correlated with the subtler terminal galactosylation vari-

abilities seen within each media. Therefore, the model is well-suited for

establishing the correlation structure between terminal galactosylation

F IGURE 4 Partial least squares (PLS) regression model to predict the glycosylation profile and titer––Principal Components 1 and 2. A shows
PLS model's score space. B shows a principal component regression demonstrating the extent to which the first principal component describes
the degree cells were able to achieve terminal galactosylation. Part C shows the PLS model's loading weights
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and the growth/metabolite utilization that occurs in cells grown in the

different media conditions.

The relationship between the overall glycosylation enzymatic

pathway efficiency and cellular metabolism can be interpreted from

the loadings weights for the first principal component (w*c1) in

Figure 4c. In order to make the loading weights more interpretable all

parameters related to glucose are plotted with a single type of marker

(upside down triangle), and the same was done for the parameters

related to growth, glutamine (triangle) and lactate (star) as well. Darker

marker coloration indicates earlier in batch age, while light coloration

signifies the end of the batch. The binary relationship between each

response and regressor can be found in the model's coefficients given

in Figure S1. As the overall terminal galactosylation efficiency is posi-

tively correlated with the first principal component, the in-process

variables whose loading weights fall in the left-half of Figure 4c are

inversely correlated with the cells ability to achieve terminal

galactosylation and those variables whose loading weights fall in the

right-half of Figure 4c are positively correlated with the cells ability to

achieve terminal galactosylation. Thus, it can be seen that terminal

galactosylation efficiency has a strong positive correlation with glu-

cose consumption throughout the batch, a moderate inverse correla-

tion with cell growth at the end of the batch, a moderate positive

correlation with lactate production at the end of the batch and an

ambiguous relationship with glutamine consumption. In this context,

the strength of the correlation is determined by the loading weights

proximity to the origin and is only meant to imply strength relative to

one another for this principal component.

These results imply that cells whose metabolic processes utilize

more glucose should be more likely to create protein that has

achieved terminal galactosylation. It is important to note that because

a design of experiments (DoE) was not performed to independently

set X block measurements, a causal relationship between glucose utili-

zation and glycosylation efficiency was not established; we are

claiming that differences in media composition impact aspects of cel-

lular metabolism responsible for glucose utilization and aspects of cel-

lular metabolism responsible for achieving terminal galactosylation

and that there appears to be a positive correlation between these two

processes. The loading weights at the end of the culture, Days 5, 6,

and 7, provide more detail to the interpretation; they imply that lac-

tate production is positively correlated with terminal galactosylation

efficiency and growth is inversely correlated with terminal

galactosylation efficiency. Together, we interpret this as suggesting that

cells achieving a high degree of terminal galactosylation are utilizing the

increased amount of glucose as an energy source at the end of the cul-

ture, as evidenced by the positive correlation with lactate production,

but this energy is being used by metabolic processes unrelated to

growth, as evidenced by the inverse correlation with cell growth.

Examining the score values for the second principal component,

t2, in Figure 3b for the PCA model and in Figure 4a for the PLS model

it is clear that the second principal component does not describe the

same phenomena in the PLS model as in the PCA model––at least not

in the same way. It will be shown here that the tradeoff between pro-

ductivity and the conversion of HM species to G0F captured by the

PCA model in a single latent variable may be described more

completely by two latent variables with one of them being correlated

with this tradeoff and the second one that is correlated with the

aspects of productivity that are independent of the conversion of HM

to G0F. These two phenomena are captured by principal Components

2 and 3 in the PLS model whose score space can be seen in Figure 5a.

It can be seen from Figure 5b that the second principal component

is positively correlated with titer from the PCR that expresses titer as

a function of t2. However, the fraction of variability in the titer mea-

surements described by t2 in the PLS model is roughly half of that

described by t2 in the PCA model (R2 = 0.377 vs. R2 = 0.739, respec-

tively). The remaining fraction of variability in the titer measurement

is described by the third principal component, as shown by the PCR in

Figure 5d that expresses titer as a linear function of t3 (R2 = 0.389).

Furthermore, a multiple linear regression that expresses titer as a

function of t2 and t3 captures the majority of the variability seen in

the titer measurements (R2 = 0.766), as seen in Figure 5e; this is com-

parable to the fraction of variability captured by a single component

in the original PCA model (R2 = 0.739).

It can be seen from Figure 5c that the second principal component

is also inversely correlated with the cells ability to convert HM

glycoforms to G0F from PCR that expresses [G0F + G1F + G2F] (%)

as a function of t2 (R2 = 0.531). Unlike titer, a second PCR (Figure 5f)

that expresses [G0F + G1F + G2F] (%) as a function of t3 indicates

that the cells ability to convert HM glycoforms to G0F is not corre-

lated with the latent variable extracted into the third principal compo-

nent (R2 = 0.003). Together, this implies that only the second principal

component represents the tradeoff between productivity and conver-

ting HM to G0F. The high R2 value for the PLS model relative to the

PCA model, R2 = 0.531 versus R2 = 0.708, respectively, indicates that

15% or more of the variability in the cells ability to convert HM

glycoforms to G0F that was captured by the PCA model is not related

to the growth and metabolite factors considered here.

Similar to the analysis of loadings from the PCA model, the loading

weights from the PLS model, shown in Figure 5g, can provide insight

into how the growth and metabolite measurements relate to the pro-

ductivity and product quality outcomes. The second principal compo-

nents' loading weights, w*c2, can be analyzed by considering those

loading weights that fall in the right-half of Figure 5g as being posi-

tively correlated with titer and inversely correlated with the cells' abil-

ity to convert immature HM glycoforms to G0F; the opposite is also

true for those loading weights that fall in the left-half of the plot.

Therefore, it can be seen that cell cultures with elevated glutamine

consumption during the lag and early exponential growth phases

(Days 0–4), but lowered glutamine consumption during the stationary

phase (Days 5 and 6) tended to result in both more protein, and pro-

tein that contained a higher proportion of immature HM glycoforms.

For analogous reasons, the loading weights suggest that cultures con-

suming lowered levels of glucose and producing lowered levels of lac-

tate during the stationary phase (Days 5 and 6) tended to result in

more protein which contained a higher proportion of immature

glycoforms. Similarly, an analysis of the loading weights for principal

Component 3, w*c3, suggest that cultures with elevated glutamine
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F IGURE 5 Partial least squares (PLS) regression model to predict the glycosylation profile and titer––Principal Components 2 and 3. A shows
the PLS model's score space. B and C show principal component regressions (PCR) demonstrating that the second principal component describes
the tradeoff between productivity and the cells ability to convert immature high mannose glycoforms to the G0F. B, D, and E show PCR
demonstrating that both the second and third principal components are needed to characterize a majority of the variability seen in the titer
measurements. B, D, and F show PCR demonstrating that roughly half of the variability seen in the titer measurements is independent of the
variability seen in the cells ability to convert high mannose glycoforms to G0F. G shows the PLS model's loading weights
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consumption during the exponential growth phase (Days 2–5) tend to

produce more protein and cultures with lowered levels of glucose

consumption and lactate production during the stationary phase

(Days 5 and 6) tended to result in more protein as well.

Taken together, these results suggest that cells that utilize more

glucose for energy during the stationary phase of the culture will also

result in cells with lower productivity. It should be noted again that

we are not suggesting the aspects of metabolism related to consuming

glucose for energy have a causal relationship with the aspects of

metabolism related to protein production; rather we are suggesting

that media selection has an impact on both of these aspects of cellular

metabolism and that there appears to be an inverse correlation

between these two processes. In addition, the results indicate that

cells that consume more glutamine during the lag and exponential

phases tend to produce more protein. The elevated consumption of

glutamine during the lag phase appears to come at a cost: the cells

that consume elevated levels of glutamine during the lag phase also

tend to consume less glutamine during the stationary phase and pro-

duce protein that has a lower degree of G0F, G1F, and G2F glycoforms.

However, elevated levels of glutamine consumption during the expo-

nential growth phase does not appear to suffer from this drawback, as

cells with elevated glutamine consumption during the exponential

growth phase tended to produce more protein without having an effect

on the cells' ability to convert HM glycoforms to G0F.

3 | DISCUSSION

Multivariate analysis of our complex bioprocessing dataset allowed us

to identify biologically relevant relationships that would not be found

using only univariate analyses on the individual factors. Initially, we

were able to show that the cells grown in different media produced

protein with different glycan profiles, as each medium appeared to

promote a separate type of glycan species. For example, Ex-Cell

Advanced had the highest amount of HM glycoforms and

PowerCHO2 featured the most aglycosylation, while ProCHO5

resulted in the largest degree of terminal galactosylation. MVDA was

needed to identify the in-process variables that were correlated with

the glycan observations. We established that factors linked to cell

growth and glucose consumption were correlated with overall termi-

nal galactosylation efficiency. Specifically, cell cultures that consumed

more glucose throughout the batch and grew more slowly during the

stationary phase tended to have lower amounts of HM outcomes and

increased terminal galactosylation. Additionally, glutamine consump-

tion was found to be related to the location of enzymatic bottlenecks

in the glycosylation reaction network and overall productivity. Specifi-

cally, cell cultures that consumed an abundance of glutamine during

the lag phase tended to produce more protein, but that protein

tended to have more immature HM glycoforms. Furthermore, cell cul-

tures that consumed elevated levels of glutamine during the exponen-

tial growth phase tended to produce more protein without any

change in the glycosylation profile. Lastly, cell cultures that consumed

elevated levels of glutamine during the stationary phase tended to

produce less protein, but this product contained less of the immature

HM glycoforms. It is important to note that because the in-process

variables could not be set independently of one another that we are

not concluding that the relationships found are causal; rather, the data

indicates that the same underlying metabolic conditions responsible

for productivity and glycosylation outcomes are also responsible for

the differences seen in cell growth and metabolite utilization.

Glutamine is a commonly measured nutrient in bioreactors since it

supports cells with high energy demands (as an alternative energy

source) and that synthesize large amounts of proteins. However, glu-

tamine is unstable when not in a dipeptide form and breaks down into

ammonia and pyroglutamate.25 The resulting increase in ammonia that

results from excess glutamine can cause an elevation in pH which

decreases the functionality of the glycosyltransferases, such as those

responsible for galactosylation. While the pH in the bioreactors is

carefully controlled, there might still be small increases in the intracellu-

lar pH that can result in the decrease of galatosylated glycoforms.26

Alternatively, as glutamine supplementation causes increases in glucos-

amine levels it is likely that loss of galactosylation results from this

effect as well.27 Here, we report that we also find that elevated gluta-

mine consumption during the lag phase can result in a greater abun-

dance of HM glycoforms as well. Collectively, these results show the

importance of PAT to measure levels of nutrients such as glutamine to

maintain concentrations that will not adversely affect product quality.

MVDA allowed us to validate experimental findings already

established through different experimental approaches while also discov-

ering new growth, medium, and productivity related trends. The increas-

ing complexity of bioprocessing and costs associated with running

bioreactors necessitates better understanding on how different input

variables affect product quality. Future bioreactor studies to verify that

metabolite and growth profile factors can cause changes in the HM

glycoform rates will be used to validate our current findings. In this

study, we uncovered growth medium parameters that were significantly

linked to changes in the final antibody product glycan profile, which will

be studied further with the overarching goal of tailored CQA control.

4 | MATERIALS AND METHODS

4.1 | Cell culture reagents

Four media were used for this study: CD Ex-Cell Advanced (SAFC, Lenexa,

KS), CD OptiCHO (Thermo Fisher Scientific, Waltham, MA), PowerCHO2

(Lonza, Walkersville, MD), and ProCHO5 (Lonza, Walkersville, MD). 8 mM

glutamine (Corning, Manassas, VA) and 1X Penicillin/Streptomycin

(Corning, Oneonta, NY) were added during seed train. Additional supple-

ments added during inoculation included: Glutamine (200 mM), Essential

Amino Acids (50X; EAA; Thermo Fisher Scientific, Grand Island, NY), and

Vitamins (100X; Thermo Fisher Scientific, Grand Island, NY).

4.2 | Cell culture instrumentation and process

This procedure is demonstrated in Journal of Visualized Experiments.28

Briefly, the ambr®15 system (Sartorius, Hertfordshire, UK) was run in
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batch mode while using four culture stations to support running

36 micro bioreactors (only sparged). An in-house CHO DG44 cell line

was inoculated at a density of 1 × 106 cells/ml. The same process

parameter set points were used for all reactor vessels: agitation

rate = 1,000 rpm, dissolved oxygen (DO) = 50%, pH = 7.1 ± 0.05, tem-

perature = 37�C. Due to the small micro bioreactor volume average of

15 ml, only ~2 ml of medium per day were pulled from each micro bio-

reactor. Because of this, the product antibodies could only be charac-

terized after harvesting on the 8th day. The micro bioreactors were

inoculated using standard seed train protocol.20 The reactor vessels

were charged with medium, inoculated and sampled, with the liquid

handler used for additions. The viable cell density (VCD) and viability

growth measurements were measured daily using the Vi-Cell XR cell

viability analyzer (Beckman Coulter, Brea, CA). Metabolite measure-

ments for glucose, glutamine and lactate, were measured daily for the

first 6 days of the cell culture using a BioProfile Flex Analyzer (Nova

Biomedical, Waltham, MA). In-house CO2 and 1 M NaOH (Thermo

Fisher Scientific, Fair Lawn, NJ) were used to maintain the pH, where

the amount of CO2 input is managed by the system. The antibody

product was harvested after 8 days of growth. Use of the Octet Red

96 (Pall Life Sciences, Port Washington, NY) for the calculation of spe-

cific productivity (Qp) has been described previously.20

4.3 | Monoclonal antibody purification

A 0.22 μm PVDF membrane was used to sterile filter harvest cell cul-

ture fluid. The purification procedure is demonstrated in Journal of

Visualized Experiments.29

4.4 | Concentration of purified antibody

This procedure is shown in Journal of Visualized Experiments.29 After

purification, a Thermo Scientific NanoDrop One microvolume UV-Vis

spectrophotometer was used to determine the sample concentration

while the protein extinction coefficient of 13.7 at 280 nm for a 1%

IgG solution was used in the calculation of the antibody concentra-

tion. A solution of 0.1 M acetic acid neutralized to pH 5.5 with Tris

Base (Sample Buffer) was used to blank the instrument.

4.5 | Aglycosylation of antibody heavy chain

Reduced capillary electrophoresis-sodium dodecyl sulfate method was

used to determine the percentage of aglycosylated (nonglycosylated)

heavy chain of purified antibody. The size of the aglycosylated heavy

chain was tested using PNGase F (Promega, cat#V4483A) and moni-

toring peak shift from glycosylated to aglycosylated heavy chain with

and without PNGase F treatment (data not shown). The GXII HT

Touch micro capillary electrophoresis system (Perkin Elmer) was used

with a Protein Express Assay LabChip (PerkinElmer, cat#760499) and

associated Protein Clear HR Reagent Kit. The LabChip and sample

preparation were performed as written in the official protocol. Briefly,

Protein A purified samples were diluted to 1 mg/ml in storage buffer

by mixing 2.5 μl of sample with 35 mM dithiothreitol (DTT) containing

sample buffer. The samples were denatured at 70�C for 10 min and

then 35 μl of water were added. VeriMAb Standard was used for sys-

tem calibration and samples were analyzed in triplicate (technical rep-

licates). Peak integration for exported electropherograms were

exported to Empower 3 FR2 where the Gaussian skim and shoulder

detect features were utilized.

4.6 | Glycan characterization

RapiFlour-MS Dextran Calibration Ladder was used to determine gly-

can identities with the mass information used to validate identifica-

tions. Labeled glycan samples were run in three technical replicates.

For more information refer to the Journal of Visualized Experiments.29

4.7 | Software

MATLAB R2017 (Mathworks, Natick, MA) was used for data

preprocessing, all calculations necessary to estimate the cell culture

and cell state parameters, and to generate plots to visualize results. All

multivariate data analyses were conducted in SIMCA 14.1 (Umetrics,

Sweden).

4.8 | Cell culture data preprocessing

To overcome time lag effects due to the measurement times, it was

necessary to fit a smooth function to each batches' set of observed

metabolite and growth measurements. This was accomplished using

the Shape Language Modeling toolbox to fit a smooth function to

each of the measured time-series using a cubic interpolating spline

with six knots.30 In addition to finding the best profile, as defined by

least squares, over-fitting was prevented by using growth, nutrient

and metabolic byproduct heuristics as linear constraints in the objec-

tive function that minimizes the sum of square error––these con-

straints are shown in Table 3. The exact locations of the maxima and

inflection points were found using an iterative approach with a

0.25-day grid for each time-series individually. Sevenfold cross-

validation was used to determine the locations that resulted in the

best fitting spline.31

After determining our smoothing functions, they can be applied to

obtain an estimate of what the measured value would have been if

the sample had been drawn at a given time. In order to ensure that

the measurement estimates were generated at the same times across

all measurements and all batches, the reactor vessel inoculation time

was used as the starting time, t = 0, for each batch. Then, the mea-

surement estimates were generated by evaluating the smooth func-

tions at t = 0, 1, 2,…,8 days after the inoculation time. In total, 39 new

estimates of the measured parameters were generated for each batch.

A set of nine estimated measurements were generated for each of the

two growth measurements from inoculation to harvest on the 8th

day. A set of seven estimated measurements were generated for each

of the three metabolites during the first 6 days of the cell culture; the

average of the resulting estimated glucose, glutamine and lactate pro-

files are shown in Figure 2.
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4.9 | Cell parameter estimation

There is additional information about the cell culture that can be cal-

culated from the measured data to describe variations seen in product

quality between batches. This generates an additional 30 calculated

variables, per batch, to be investigated as potential model features

that describe the observed product quality variations.

The IVCD describes the summed amount of time that cells spent

alive, and by extension growing and producing protein, over an arbi-

trary time interval; the final values of this variable are shown in

Figure 1. This generates an additional 18 calculated variables, per

batch. One set of nine variables, denoted as IVCD, corresponds to the

total cumulative amount of time from inoculation up to that point in

time. The remaining set of nine variables corresponds to the total

amount of time that all cells spent alive over the past 24 hr; this

receives the notation IVCD24.

The average cellular rate at which glucose, glutamine, and lactate

are being consumed/produced can be determined by taking the first

derivative of the three metabolite profiles with respect to IVCD. The

average total amount of each metabolite consumed or produced by

the cells can then be obtained by integrating the Cell Derivative pro-

files with respect to time. The resulting 21 calculated variables rep-

resenting the cumulative total change per cell can be seen in Figure 2.

An additional 21 calculated variables were generated in this step

corresponding to the change in metabolite per cell over the previous

24-hr interval in an analogous manner as was done for IVCD24.

For all integral calculations, we used the Newton–Cotes integra-

tion formula for 5 points, as shown in Equation 1.

TABLE 3 Constraints on interpolating spline for each time-series

Parameter Constraints (description) Constraints (formula)

Glucose (Glc) • Glucose is always positive • 8t, 0 ≤ Glc

• Glucose always decreases monotonically • 8t, dGlc
dt ≤0

• Glucose decelerates to an inflection

point where it begins to decrease slower

and slower
• 9tinf 2 0,8ð Þ :

dGlc2

dt2
≤0, 8t≤ tinf

dGlc2

dt2
≥0, 8t≥ tinf

Glutamine (Gln) • Glutamine is always positive • 8t, 0 ≤ Gln

• Glutamine always decreases

monotonically
• 8t, dGln

dt ≤0

• Glutamine decelerates to an inflection

point where it begins to decrease slower

and slower
• 9tinf 2 0,8ð Þ :

dGln2

dt2
≤0, 8t≤ tinf

dGln2

dt2
≥0, 8t≥ tinf

Lactate (Lac) • Lactate is always positive • 8t, 0 ≤ Lac

• Lactate increases monotonically to a

maximum and then decreases

monotonically
• 9tmax 2 0,8ð Þ :

dLac
dt

≥0, 8t≤ tmax

dLac
dt

≤0, 8t≥ tmax

• Lactate accelerates to an inflection point

before the maximum where it begins to

decelerate
• 9tinf 2 0,tmaxð Þ :

dLac2

dt2
≥0, 8t≤ tinf

dLac2

dt2
≤0, 8t≥ tinf

Viability (Via) • Viability is always between 0 and 100% • 8t, 0 ≤ Via ≤ 100

• Viability always decreases monotonically • 8t, d Via
dt ≤0

• Viability decreases linearly until an

inflection point where it begins to

decelerate
• 9tinf 2 0,8ð Þ :

dVia2

dt2
= 0, 8t≤ tinf

dVia2

dt2
≤0, 8t≥ tinf

Viable cell density (VCD) • Viable cell density is always positive • 8t, 0 ≤ VCD

• Viable cell density increases

monotonically to a maximum and then

decreases monotonically
• 9tmax 2 0,8ð Þ :

dVCD
dt

≥0, 8t≤ tmax

dVCD
dt

≤0, 8t≥ tmax

• Viable cell density accelerates until an

inflection point before the maximum

where it begins to decelerate • 9tinf 2 0,tmaxð Þ :
dVCD2

dt2
≥0, 8t≤ tinf

dVCD2

dt2
≤0, 8t≥ tinf
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ðb
a
f xð Þdx= b−að Þ
7 f xð Þjx= a + 32 f xð Þjx= a+ h +12 f xð Þjx= a+2h +32 f xð Þjx= a+3h +7 f xð Þjx= b

90
ð1Þ

The integration boundaries are a and b, f(x)|x = a is the parameter

estimate when the spline is evaluated at x = a and the step size is

defined by h= b−a
5 .32

All derivatives were calculated using a second order Lagrange

polynomial that was fit to the data because some independent vari-

ables (i.e., IVCD in the cell derivative calculations) exhibit uneven

spacing. This is shown in Equation 2:

d f xð Þ
dx

= f x0ð Þ 2x−x1−x2
x0−x1ð Þ x0−x2ð Þ + f x1ð Þ 2x−x0−x2

x1−x0ð Þ x1−x2ð Þ
+ f x2ð Þ 2x−x0−x1

x2−x0ð Þ x2−x1ð Þ
ð2Þ

To evaluate the derivative at time point x ϵ (x0, x2), three consecu-

tive measurement pairs (x0, f(x0)), (x1, f(x1)), (x2, f(x2)) are used.32 The

first time point is designated x = x0, the internal data points x = x1 and

the final time point x = x2.

4.10 | Multivariate data analysis

PCA was used to uncover variations in glycan profiles for the anti-

bodies produced by cells cultured in different media that are over-

looked in univariate analysis. For each principal component there will

be a loading, p, for each of the original features; formally, it is defined

as the cosine of the angle between the original feature and the new

principal component. Collectively, the loading, p, describe the relative

orientation of the score space with respect to the feature space. This

orientation is selected so that the variance of the data's projection

into the score space is maximized. The exact relationship between

the feature space, X, and the score space, t, is described by Equa-

tion 3. The residual matrix E represents the feature space variability

not characterized by the number of extracted principal components,

A. A is determined by sevenfold cross-validation to prevent over-

fitting.31 The number of principal components was selected to maxi-

mize the model's predictive power, where the fraction of variability

in the data excluded from model training that can be predicted by

the model, Q,2 is used as the metric for assessing predictive

power.23

X =
XA
i =1

tipi + E =TP+ E ð3Þ

In quantitative regression a set of features, known as regressors,

are used to predict another set of features known as responses. Tradi-

tional linear least squares regressions are not appropriate for bio-

processing due to the features in each block of data varying

collinearly with one another and thus violating the independence

assumption in linear least squares regression. Therefore, another mul-

tivariate analysis tool, PLS, was used to establish the functional

dependence of various glycoforms on in-process measurements

obtained during cell culture and to establish correlations between

parameters and glycoforms.

In PLS regression, the response features are projected into the

score space according to Equation 4: u are the score values of the

responses after they have been projected into the score space, c are

the loadings that relate the responses score space back to the original

feature space and G is the residual matrix containing the variability in

the responses that is not described by the first A principal

components.

Y =
XA
i = 1

uici +G=UC+G ð4Þ

The regressors are projected into the score space according to

Equation 3. Unlike in PCA, the loadings, p, are not selected to maxi-

mize the variance of the scores, t. In PLS, the loadings are selected

such that the covariance between u and t is maximized; the latent

structures onto which X and Y are projected are the most relevant for

describing the functional relationship between X and Y. In doing this

the X scores, t, become suitable regressors of Y and Equation 4 can

be rewritten as seen in Equation 5 where F is the model prediction

error.

Y =
XA
i = 1

tici + F =TC+F ð5Þ

Due to the PLS model selecting the loadings in order to maximize

the covariance between u and t, the loadings are not orthogonal and

do not describe the independent contribution of each of the X block

features to the scores. Therefore, the appropriate relationship

between the regressor feature space and score space is to use the

relationship in Equation 6 where W* is the set of loading weights that

estimate the score space T from linear combinations of the regressor

features, X. This can be substituted into Equation 5 to get the final

relationship shown in Equation 7; B = W*C is the matrix of PLS model

coefficients that defines the overall relationship between the regres-

sors, X, and responses, Y.

T =XW* ð6Þ

Y=XW*C+F=XB+F ð7Þ

Similar to PCA, kfold cross-validation28 was used to select the

optimal number of principal components; A was selected to maximize

the model's predictive power, as measured by Q2.

4.11 | Feature selection

In total, there were 150 potential model features: 39 cell culture

measurement estimates and 111 additional calculated variables

generated from the measurement estimates. Of these potential
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model features, 9 trivial features were eliminated as they did not

vary between batches. For example, the Day 0 lactate measure-

ment is trivial as it is below the limit-of-detection. Similarly, the

Day 0 value can be excluded for all variables derived by integra-

tion because nothing has accumulated when the cell culture is

starting.

In order to focus the PLS model's analysis on features relevant for

cellular metabolism, only the cell specific metabolite features were

used for the analysis and all metabolite concentration data were not

used. After this, 79 features remained: they were the time-series for

growth rate, IVCD24, IVCD, specific glutamine consumption rate, spe-

cific glucose consumption rate, specific lactate production rate, spe-

cific glutamine consumed24, specific glucose consumed24, specific

lactate produced24, cumulative specific glutamine consumed, cumula-

tive specific glucose consumed, and cumulative specific lactate

produced.

A second feature selection step was implemented to keep only

those features with the most consistent impact on glycosylation

and titer. First, a PLS model was constructed to relate the X block,

consisting of the 79 variables remaining after the first feature

selection step, to the Y block comprised of the glycosylation pro-

files and titer. Then, variable importance in projection (VIP) was

used to select only those X block features whose variations were

correlated with the variations in the Y block. The VIP is calculated

for each feature, x, by summing the squares of PLS loading weights,

wa for a = 1, 2,…,A, weighted by the amount of sum of squares

explained in each model component, a.30 VIP values larger than

1 indicate that the feature is significant for explaining the variations

in the glycosylation profile and titer, VIP values below 0.5 indicate

that the feature is not significant and VIP values between 0.5 and

1 have no immediate classification as good or bad. Consequently,

any feature whose VIP value exceeds 1, or whose confidence inter-

val falls entirely above 0.5, was retained for further model building.

In doing so 47 additional features were eliminated. This left 32 fea-

tures that were most suitable for explaining the glycosylation pro-

file variations: growth rate (Day 5), IVCD24 (Days 6 and 7), specific

glutamine uptake rate (Days 0–5), specific glucose uptake rate

(Days 1–3 and 6), specific lactate secretion rates (Days 5 and 6),

specific glutamine uptake24 (Days 1–6), cumulative specific gluta-

mine uptake (Days 1–3), specific glucose uptake24 (Days 3–6),

cumulative specific glucose uptake (Days 3–6), and specific lactate

production24 (Day 6).
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