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Bacterial enteric pathogens individually and collectively represent a serious global

health burden. Humoral immune responses following natural or experimentally-induced

infections are broadly appreciated to contribute to pathogen clearance and prevention

of disease recurrence. Herein, we have compared observations on humoral

immune mechanisms following infection with Citrobacter rodentium, the model for

enteropathogenic Escherichia coli, Vibrio cholerae, Shigella species, Salmonella enterica

species, and Clostridioides difficile. A comparison of what is known about the humoral

immune responses to these pathogens reveals considerable variance in specific features

of humoral immunity including establishment of high affinity, IgG class-switched memory

B cell and long-lived plasma cell compartments. This article suggests that such variance

could be contributory to persistent and recurrent disease.
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INTRODUCTION

Enteric pathogens rapidly activate host innate and adaptive defense mechanisms upon infection.
These mechanisms include activation of innate immune cells, their production of cytokines and
chemokines, and antigen presentation necessary for the recruitment of inflammatory cells (1), and
initiation of the adaptive immune response (2).

Bacteria such as Vibrio cholerae and Clostridioides difficile secrete enterotoxins that mediate
the pathogenesis and the inflammatory responses which often leads to tissue injury and loss of
intestinal barrier integrity. Other bacteria such as Salmonella and Shigella overcome the intestinal
barrier through invasion via the microfold cells (M cells) which are specialized epithelial cells
that overlie Peyer’s Patches of the intestine (3–5). Transcytosis of the bacteria by M cells facilitate
their colonization of the gut mucosa and promote the induction immune responses in the
Peyer’s patches (6) (Figure 1). Depending of the efficiency of the immune response and the
pathogenicity of the bacteria, the infection can be cleared after an inflammatory response and
with limited intestinal tissue damage. A localized inflammatory response may include recruitment
and activation of dendritic cells (DCs). The activated DCs migrate within the Peyer’s patches and
to the draining mesenteric lymph nodes to initiate T and B cell responses. These responses lead
to the production of significant amounts of mucosal IgA and some systemic IgG that can traffic
back to the gut (7, 8). However, with certain bacteria, a loss of intestinal barrier integrity may
be needed to facilitate bacterial dissemination through the bloodstream resulting in a systemic
infection. The damagemay allow the secreted virulence factors and other bacterial antigens to reach
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FIGURE 1 | Enteric pathogens promote an inflammatory response and can induce gut-associated mucosal humoral immunity. After infection by enteric pathogens,

bacteria and bacterial antigens may be uptaken by M cells. This causes an inflammatory response that promotes recruitment and maturation of DCs. The primed DCs

activate T-helper cells in the lymphoid follicles of the Peyer’s Patches. T cells interact with B cells to induce development of IgA+ memory B cells (Bmem) and plasma

cells (PCs), and production of antigen-specific IgA. The bacterial antigens may reach the mesenteric and distal lymphoid organs via the lymphatic system. This leads

to the production IgG antibodies encoded by Bmem cells and PCs. This figure was prepared by modifying Servier Medical Art, licensed under a Creative Common

Attribution 3.0 Generic License. http://smart.servier.com/.

distal lymphoid organs via the lymphatic system (Figure 1).

These actions may result in systemic B cell and T cell responses.

This extra-intestinal adaptive response summarized in Figure 2,

is necessary for the production of high affinity, antigen-specific
IgG antibodies in the germinal center (GC) (9).

In this article, we present an overview of what is known

about the host immune responses to five enteric pathogens:
C. rodentium, V. cholerae, Shigella spp., Salmonella spp., and
C. Difficile, with an emphasis on humoral immunity and B

cell memory. We discuss the humoral immune responses to
those pathogens and the extent to which infection may induce a

protective response, as well as gaps in our understanding of these
processes. This information may be beneficial for understanding
the course of disease.

CITROBACTER RODENTIUM

Citrobacter rodentium is a murine-specific Gram-negative
extracellular bacterial pathogen that is related to the human
enteropathogenic and enterohemorrhagic Escherichia coli (EPEC
and EHEC, respectively). C. rodentium infection is a well
characterized murine model of infectious colitis (10, 11).
The disease induced by C. rodentium is dependent on the
strain and the age of mice. In most strains, including Swiss
Webster and C57BL/6, adult mice develop a mild self-limiting
enteric disease. However, younger mice and strains such as
C3H/HeOu, FVB, and C3H/HeN have a more severe disease
characterized by diarrhea and severe colitis associated with
weight loss, rectal prolapse, and death due to dehydration
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FIGURE 2 | Long-lasting humoral immunity is mediated by long-lived plasma cells and memory B cells. Image depicts key steps in the generation of sustained

humoral immunity: (1) APC-activated antigen-specific T cells migrate near the B cell follicle. (2) Naïve B cells encounter antigen through interaction with DCs and move

by the T cell border. (3) B cells interact with the T cells differentiate into Tfh cells and migrate into the B cell follicle where activated B cells undergo proliferation. (4)

Some extra-follicular B cells differentiate into antibody-secreting short lived plasma cells or GC-independent memory B cells. (5) Some B cells also enter the germinal

center (GC). (6) The reaction in the GC starts with a rapid proliferation of the B cell leading to isotype-switch and BCR affinity maturation. (7) The B cells then undergo

survival selection based on their affinity for antigen. Some post-GC B cells emerge as memory B cells or long-lived plasma cells that encode high affinity antibodies.

This figure was prepared by modifying Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.

(12–14). Colonization and disease severity are also dependent on
the intestinal microbial population. The variation in production
of short-chain fatty acids (SCFA) determines the susceptibility
to infection. A microbiome rich in butyrate-producing bacteria
impairs growth of C. rodentium and protect against infection and
disease (15, 16).

C. rodentium is transmitted through the fecal-oral route. After
inoculation of mice, the bacteria first establish themselves in
the caecal lymphoid patch and disrupt the commensal flora.
Then the bacteria expand throughout the gastrointestinal tract to
colonize the distal colon and the rectum (17–19). C. rodentium
colonizes the gastrointestinal tract of mice via the mechanism
of attaching and effacing (A/E) similarly to EPEC and EHEC
(20). The pathogens adhere and bind intimately to epithelial cells
through the adhesin intimin and induce pedestal-like protrusions
at the site of attachment. The type III secretion system (TTSS) of
the bacteria injects several virulence effectors into the host cells to
interfere with signal transduction, modify actin cytoskeleton, and
inhibit microtubule function. A/E bacteria also secrete virulence
factors that promote junctional disruption of the epithelial cells
and loss of intestinal barrier (21). These actions lead to damage
of the brush border microvilli, intestinal inflammation and

formation of plaques of cytoskeletal filaments underneath the
adhering bacteria (19, 20).

Upon infection, C. rodentium activates host innate receptor
TLR4 which then promotes recruitment of inflammatory cells
including neutrophils. Neutrophil infiltration in the infected gut
significantly contributes to the formation of crypt abscesses.
TLR4-deficient mice have decreased bacterial colonization and
tissue damage (22, 23). In contrast, infection with the EPEC
and EHEC in humans is associated with a weaker inflammatory
response despite the ability of the bacteria to cause disruption of
epithelial barrier integrity. This can be explained by the bacteria
ability to inhibit various MAP kinase pathways associated with
NF-κB and induction of innate immune responses (24, 25).
Although the initial host response to the infection contributes
to C. rodentium pathology, this immune response also plays a
protective role. The myeloid differentiation primary response
protein (MyD88) is necessary for limiting bacterial colonization
and promoting clearance. MyD88-dependent Toll-like receptor
2 and 4 (TLR2 and TLR4) signaling mediates production of
pro-inflammatory cytokines such as Tumor necrosis factors
(TNF), and recruitment of neutrophils, macrophage and innate
lymphoid cells (ILCs) dependent on Interleukin 6 and 23 (IL-6
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and IL-23) (26–28). At the early stage of the infection, Type 3
ILCs (ILC3) produce IL-22 which promotes maintenance of the
epithelial barrier and control of bacterial burden by inducing
production of antimicrobial peptides (29–31). This rapid
production of cytokines and chemokines, and the recruitment
of leukocytes required for the induction of a protective immune
response is mediated through the activation of the intestinal
G-protein couple receptors by the SCFAs.

The protective adaptive immune response against
C. rodentium is mediated by CD4+ T cell and B cell responses
(32, 33). Infection with C. rodentium induces a strong mucosal
IgA response but also systemic IgM and IgG responses specific
to several antigens such as the adhesin intimin, a TTSS effector
protein (34, 35). However while serum IgG antibodies are
required for protection against disease and bacterial clearance,
IgA and IgM are dispensable (36). Patients with EHEC have also
been shown to mount a strong IgA, IgG and IgM responses to E.
coli O157:H7 intimin (37).

The neonatal Fc Receptor (FcRn) has been shown to mediate
transport of IgG from the blood to the intestinal lumen
to mediate defense against C. rodentium. Infection induced
IgG antibodies, mostly IgG1, mediates control of the bacteria
by activating complement and inducing engulfment of the
bacteria by neutrophils (38). The FcRn is also involved in the
transport of antigen out of the lumen to the local lymphoid
organs where it initiates a systemic immune response (39–41).
This protective antibody-mediated immune response against
C. rodentium is predominantly regulated by T follicular helper
(Tfh) cells. Following C. rodentium infection, Tfh cells expand
in the mesenteric lymph nodes and spleen, and secrete IL-21
and IL-4 (41). Infection also promotes rapid germinal center
responses (42). Other CD4+ T cells such as Th1 and Th17
cells are also involved in the host response against the bacteria
through production of IL-17, IL-22, and IFN-γ. T cell activation
promotes protective intestinal IgA and serum IgG responses
(41, 43–46). The activation and recruitment of effector T cells
also requires production of SCFAs. These metabolites promote
intestinal antibody responses in mice infected with C. rodentium
(47, 48). CD4+ T cells are also involved in the cellular response
to EHEC in cattle. Following experimental colonization of cattle
with EHEC 0157:H7, bacteria-specific T cells infiltrate the calves’
rectal mucosa, secrete IFN-γ and demonstrate antigen-specific
proliferation to TTSS effectors (49).

VIBRIO CHOLERAE

Cholera is an acute, severe diarrheal disease that remains an
important global public health problemwith up to 4million cases
and 143,000 associated deaths annually. The disease is caused
by Vibrio cholerae, a highly motile Gram-negative facultative
bacteria (50, 51).

V. cholerae is transmitted via the fecal-oral route following
ingestion of contaminated water or food. After ingestion, most
bacteria die because of the acidic environment of the stomach.
The surviving bacteria adhere to and colonize the small intestine.
The diarrhea is due the secretion of a very potent enterotoxin

(cholera toxin- CT) which consists of two different subunits
(A and B). Cholera toxin B binds to intestinal brush border
cells leading to the endocytosis of subunit A which targets
adenylyl cyclase and increases cyclic adenosine monophosphate
(cAMP) levels. The increase in cAMP causes excessive secretion
of chloride ions which results in the accumulation of water
in the gut (52). Beside the toxin, the toxin co-regulated pilus
(TCP) is also an important virulence factor. TCP is required
for bacteria colonization. It provides a matrix that allows
the bacteria to aggregate protecting them from host immune
response (53).

V. cholerae is a non-invasive pathogen and doesn’t induce
a strong inflammatory response. Nonetheless, the bacteria
penetrate the mucosa of the small intestine and attach to its
surface to the small intestinal epithelial cells. Colonization of the
intestine leads to structural changes to the epithelium including
the widening of the intracellular spaces and alterations of the
apical junctions (54). Those changes trigger rapid infiltration
of inflammatory cells mainly neutrophils, macrophages, and
dendritic cells. V. cholerae upregulates mucosal innate defense
factors including TLR8, NLRP3 inflammasomes, NF-κB and
MAPK signaling pathways (55–59). However, cholera toxin
dampens innate immune response by inhibiting macrophage
production of pro-inflammatory effectors such TNF, nitric
oxide (NO) and IL-12 and by increasing secretion of the
anti-inflammatory cytokine IL-10 (60). Also, V. cholerae has
developed resistance against antimicrobial peptides by reducing
their levels using its outer membrane vesicles (OMVs) and efflux
pumps, and by inhibiting their binding (61–63).

Natural V. cholerae infection induces a protective adaptive
immune response that is initiated by the activation of both B
and T cells in the Peyer’s patches of the intestinal mucosa and
their subsequentmigration into themesenteric lymph nodes (64).
Shortly after infection, bacterial antigen-specific lymphocytes
are detected in the circulation. The lymphocytes express gut
homing chemokine-receptors that allow homing in the intestinal
mucosa where they lead mucosal immune responses. Infection
induces mainly an IL-13 secreting Th2-mediated response, and
some IFN-γ - secreting CD4+ and CD8+ T cell responses
(65). V. cholerae infection also induces the development of
circulating Tfh cells. These Tfh cells provide help to activated B
cell leading to secretion class-switched antibodies by plasma cells
and development of antigen-specific memory B cells (66).

The infection induced plasma cell response is characterized by
the development of both systemic and gut derived V. cholerae-
specific antibody secreting cells (67–69). Consequently, patients
have high levels of anti-cholera toxin as well as anti-LPS IgG
and sIgA antibodies. Anti-LPS sIgA in the fecal samples of
patients correlates with protection against disease. However,
the plasma cell response is short-lived and both systemic and
mucosal antibodies significantly decrease within a few months
post infection (70, 71). Natural infection by V. cholerae also
induces memory B cell responses specific to various antigens
including the cholera toxin, the subunit A of TCP, LPS, and
the O-specific polysaccharides (OSP). These memory B cells
induce a robust and rapid recall response upon reinfection and
play a significant role in a longer-lasting protection against
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cholera (72–74). This long-lasting immune response is mediated
specifically by LPS and OSP-specific IgG memory B cells.
Anti-toxin IgG or anti-toxin and anti-LPS IgA memory B
cells do not correlate with the long-term immunity against
V. cholerae (75, 76).

The microbiome also plays an important role in protection
and recovery against the infection. In children with cholera,
clinical recovery correlate with a diverse and rich microbial
community and a high concentration of SCFAs (77). SCFAs
included acetate, propionate and butyrate inhibit the action of
CT on the colon and prevent loss of fluid and electrolytes (78).
The metabolites also facilitate anti-CT antibody responses by
promoting dendritic cell functions and expression of plasma cell
differentiation genes (48).

SALMONELLA ENTERICA

Salmonellae are Gram-negative, flagellated, facultative anaerobic
bacteria that cause disease in various hosts. The clinical
disease in humans is typically caused by different serovars
of Salmonella enterica subspecies (79). Typhoidal Salmonella
serovars, including Typhi, Sendai, and Paratyphi A, B, or C,
exclusively infect humans and cause a life-threatening enteric
fever. Non-typhoidal Salmonella (NTS) serovars, such as S.
Typhimurium, S Enteritidis, and S.Dublin cause a gastroenteritis
which can manifest with acute diarrhea, abdominal pain,
fever and vomiting. In some cases, largely in infants, older
individuals and the immunocompromised, NTS can cause an
invasive infection including bacteremia meningitis and septic
arthritis (80).

Salmonellae are transmitted via the fecal-oral route through
contaminated food or water, person-to-person contact, or contact
with animals (81, 82). After ingestion, the bacteria survive the
acidic environment of the stomach using a pH homeostasis
mechanism. This mechanism is triggered by the low pH of
the stomach. It allows the bacteria to maintain an internal pH
above 5 and prevent severe acid stress (83). Then, the bacteria
migrate into the small intestine and invade intestinal epithelial
cells. Salmonellae preferably adhere to and translocate into the
Microfold cells (M cells) of the small intestinal epithelium that
overlie the Peyer’s patches (4, 84). Invasion of the intestinal
epithelial cells is mediated by the Salmonella Pathogenicity Island
(SPI)-encoded virulence factors including two distinct TTSSs.
The TTSSs transport their effectors in the host cells where they
disrupt the actin and microtubule cytoskeletons and the cell
membrane to form a membrane ruffle that facilitates engulfment
of the bacteria. In the cytoplasm, the bacteria replicate in a
vacuole, termed the Salmonella containing vacuole (SCV), that
transcytoses to the basolateral membrane and allows invasion
of the submucosa (85–88). The bacteria cells are subsequently
phagocytosed by macrophages in the intestinal submucosa where
they replicate within the SCVs (89). Migration of the infected
macrophages facilitates dissemination of the bacteria, which in
some cases allows for the establishment of a systemic infection
(90). The infection to the pathogens is also modulated by the

microbial community of the gut. A microbiome rich in SCFAs-
producing bacteria inhibit motility, biofilm formation and gene
expression of S. enterica (91).

The early host response to infection by NTS is triggered by
the detection of TLRs. Activation of TLRs leads to production
of proinflammatory cytokines such as TNF, IL-1β, and IL-6
which promote the production of anti-microbial peptides and
the recruitment of neutrophils and macrophages in the mucosa
(92–94). During NTS infection, neutrophils play an important
role in the early host defense but also in the development of
gastroenteritis. While neutrophils prevent bacterial replication
and limit their dissemination (95), they also contribute to
intestinal tissue damage and loss of barrier integrity, leading to
increased inflammation and diarrhea (96).

The adaptive immune response to infection by NTS such
S. Typhimirium starts with an early DC-mediated activation of
pathogen-specific CD4T cells limited to the Peyer’s patches and
the mesenteric lymph nodes (97, 98). This CD4T cell response is
mainly mediated by Tbet-expressing, IFNγ-secreting Th1 cells,
and it is necessary for resistance to the infection and final
clearance of the bacteria in the tissues (99, 100). However, in
the early stage of the infection and in the absence of CD4T
cells, CD8T cells and NK cells secrete IFNγ and are able to
control the bacterial load (101, 102). Salmonella enterica serovars
including Typhimirium have evolved mechanisms to limit DC
function and evade T cell immunity. This evasion mechanism is
mediated by Salmonella TTSS and effector proteins (103). Passive
immunization against NTS has been shown to be protective,
and IgA is not essential for this protection. Also, it has been
shown that B cells are required for resistance against secondary
infection. However, the mechanism of protection is independent
of secreted antibodies (104–107).

During the course of infection, S. typhi induces an early extra-
follicular, low affinity antibody response, consisting largely of
non-class-switched IgM. The germinal center reaction and the
production of high affinity antibodies are significantly delayed
but this does not prevent clearance of the bacteria (108). Both
typhoidal and NTS have been shown to impair plasma cell
responses. An S. typhi adhesin protein, SiiE has been shown to
reduce IgG-secreting cells in the bone marrow suggesting that
the plasma cell response following Salmonella infection may not
be long-lived. Also S. Typhi infection may abrogate established
long-lived plasma cell response against previous infections (109).
Very little is known about the Salmonella specific memory B
cell response and the role it plays during infection. However, it
has been shown that the outer membrane proteins of S. Typhi
induces the development of IFNγ-secreting T follicular cells and
IgM+ memory B cells (110).

SHIGELLA

Shigella species are Gram-negative, non-spore forming,
facultative anaerobic bacteria, including Shigella sonnei, S. boydii,
S. flexneri, and S. dysenteriae that cause shigellosis. Shigellosis
is an acute mucosal inflammation that leads to symptoms
ranging from abdominal pain and mild diarrhea to severe
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dysentery, and sepsis (111). There are about 125 million cases of
Shigella-associated diarrhea each year, resulting in more than 160
thousand deaths worldwide particularly in young children (112).

Shigella is transmitted via the fecal-oral route directly from
one person to another or through contaminated water or food,
and is highly infectious (113). After ingestion, the bacteria survive
the acidic environment of the stomach and migrate to the colon
and the rectum (114). The bacteria are non-motile and do not
adhere to the colon but are able to invade and colonize the
colonic epithelia (5). The bacteria break the intestinal epithelial
barrier by invading the M cells that overlie the Peyer’s patches
(115, 116). They are translocated byM cells and are phagocytosed
by macrophages. The bacteria escape the phagosome and quickly
induce macrophage cell death by apoptosis. The bacteria are
released and they propagate in the intestinal submucosa (117–
119). Then, they enter the basolateral side of epithelial cells
by micropinocytosis (120). The Shigella Type III secretion
system (TTSS) secretes various effectors encoded in the Shigella
virulence plasmid (121). Along with the TTSS, the invasion
plasmid antigens (IpaB, C, and D) are the major virulence
factors of Shigella. They are essential for bacterial invasion and
intracellular survival, mediate the secretions of other effectors,
and are dominant immunogenic antigens (122–124). Other
TTSS effectors mediate polymerization of actin filaments and
reorganization of the cytoskeleton by activating small GTPases.
The restructuring of the cytoskeleton facilitates uptake of bacteria
by epithelial cells and invasion of host cells (125–128). Some
Shigella strains secrete toxins including the cytotoxic Stx1 and
Stx2, and two other enterotoxins that may play a role in the early
phases of Shigella-associated diarrhea (129–131).

The initial host immune response against Shigella is
characterized by a severe and acute inflammation mediated by
Caspase-1 activation of IL-1β and IL-18 following infection
of macrophages and epithelial cells (117, 132). Invasion of
Shigella can also lead to IL-8 secretion triggering massive
neutrophil infiltration (133). The effect of IL-8 limits bacterial
translocation but also worsens neutrophil-mediated intestinal
epithelial damage (134). Besides inducing macrophage death,
Shigella utilizes various mechanisms to counteract the host
innate immune response. Through the TTSS and its effectors,
Shigella dampens inflammatory responses to facilitate bacterial
colonization by inhibiting ATP-dependent endogenous danger
signaling, manipulating NF-κB pathways, and regulating
expression of some pro-inflammatory cytokines and anti-
microbial peptides (135–138). The administration of SCFAs may
counteract this action in patients with shigellosis as the SCFAs
modulate inflammation and increase the production of the anti-
microbial peptides LL-37 (139). IFN-γ is crucial for the control
of bacterial colonization and recovery from acute infection,
however studies suggest that its levels are downregulated during
shigellosis (140, 141).

Adaptive immunity, including antibody-mediated responses,
have also been shown to play an important role in protection
against Shigella infection. Following infection, the antibody-
mediated immune responses are characterized by mucosal and
systemic responses specific to Shigella lipopolysaccharide (LPS)
antigens, the invasion plasmid antigens (Ipa), shiga toxins, and

other TTSS effectors. These responses are Shigella serotype-
specific and there is no cross-protection against infection from
different strains (142, 143). Systemic Shigella LPS-specific IgG
antibodies appear to be a good correlate of protection against
shigellosis (144). Natural infection elicits the development of
Shigella-specific IgA plasma cells detectable in the peripheral
blood of patients. Contrary to immunization with live attenuated
Shigella which elicits protective antigen-specific IgG and IgA
Bmem cells, initial challenge with Shigella does not appear to
induce development of antigen-specific IgA or IgG Bmem cells.
However, there is an increase in the frequency of circulating LPS-
specific IgA Bmem cells following a secondary Shigella challenge
that negatively correlates with disease severity (145–148). Also,
Shigella outer membrane protein A has been shown to enhance
the germinal center reaction and antibody affinity maturation
(149). Moreover, Shigella infection induces both primary and
recall T cell expansion, predominantly of Th17 cells. Th1 cells are
induced at a low frequency following reinfection, and Shigella-
specific Th2 and CD8+ T cells are not detectable (150). T cells are
essential for clearance of bacteria during primary infection, and
Shigella-specific IL-17A secreting T cells are crucial for limiting
bacterial growth during reinfection (150).

There is evidence of natural Shigella infections inducing
serotype specific adaptive immune responses against recurrent
infection. However, protection appears to only occur after
multiple episodes, and the responses are slow and short-
lived especially in young patients who have had less exposure
to the infection (146, 151, 152). This can be attributed to
the fact that Shigella manipulates the host adaptive immune
response by targeting DCs, T and B cells. Shigella downregulates
DC recruitment during infection by decreasing production
of the chemokines and cytokines such as CCL20 (138).
Shigella effectors also mediate apoptotic death of DCs (153).
Moreover, studies have shown that Shigella invades T cells and
impacts their function and dynamics in the lymph nodes by
inhibiting chemokine-mediated migration (154, 155). Lastly,
Shigella suppresses or evades the adaptive immune response
by inducing B cell apoptosis both in vitro and in vivo during
shigellosis through interaction between the TTSS effector IpaD
and TLR2 (156).

CLOSTRIDIOIDES DIFFICILE

Clostridioides difficile is a Gram-positive, spore-forming, obligate
anaerobe and the main causative agent of hospital-acquired
diarrhea (157, 158). The Centers for Disease Control and
Prevention (CDC) has classified C. difficile as an urgent threat.
The CDC reported that in 2017, there was an estimated 223,900
cases of C. difficile infection (CDI) in hospitalized patients
resulting in 12,800 deaths and costing the healthcare system
more than one billion dollars (159). Although healthcare-
associated cases have been declining, there is a growing number
of community-acquired cases which represent 41% of CDIs
(160). The C. difficile-associated gastrointestinal disease (CDAD)
ranges from mild diarrhea to pseudomembranous colitis, toxic
megacolon, or sepsis. CDI is further complicated by a high and
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increasing frequency of recurrence; up to 35% of patients will
relapse with often more severe disease (161).

Intestinal homeostasis, the diversity in the microbial
community and the abundance of health-associated metabolites
constitute an effective mechanism of resistance to C. difficile
colonization. The disruption of the microbiome often due to
prolonged use of broad-spectrum antibiotics is a major risk
factor for infection. CDI is characterized by the depletion
of essential bacteria that produce SCFAs and butyrate which
normally alleviate the pathogenicity of infection (162, 163).
C. difficile is transmitted via the fecal-oral route. After ingestion
and upon loss of colonization resistance factors, the spores resist
the acidity of the stomach, germinate upon exposure to bile
acids in the small intestine and adhere and colonize the large
intestine (164). CDAD is mainly caused by the two secreted
toxins, toxin A (TcdA) and toxin B (TcdB). The toxins target
the colonic epithelium by inducing cytoskeleton condensation
leading to cell death and loss of intestinal barrier integrity (165).
Besides TcdA and TcdB, C. difficile can produce other virulence
factors that contribute to motility, adherence and colonization
including binary toxin (CDT), flagella, adhesins such the surface
layer proteins (SLPs), and hydrolytic enzymes (166).

The host innate immune response is thought to play both
pathogenic and protective roles during CDI. Toxins induce the
production of pro-inflammatory cytokines and other immune
mediators such as IFN-γ, IL-1β, TNF, and leptin that may
contribute to inflammation and intestinal damage (167–171).
Conversely, the toxins and other virulence factors including
the flagella and SLPs activate NOD-1 and TLR5. This in
turn promotes recruitment of neutrophils which play an
important role in early defense against CDAD. C. difficile
antigens induce secretion of anti-inflammatory cytokines that

mediate protective repair mechanisms (172). The damaging
action of the toxins can be inhibited by SCFAs. Butyrate has
been shown to stabilize the transcription factor HIF-1 which
protects against colitis, to increase expression of epithelial tight
junctions and prevent bacterial translocation (163). Also, anti-
microbial peptides such as cathelicidin, NVB-302, surotomycin
have been shown to be protective against C. difficile-mediated
colitis by decreasing expression of pro-inflammatory cytokines,
inhibiting toxin production, and facilitating bacterial killing of
antibiotics (173–175).

The adaptive immune response does not play a direct role in
the protection against CDI and disease (176). However, studies
have demonstrated that an antibody-mediated immune response
is important for limiting pathogenesis during the initialC. difficile
infection, and in recurrent disease in patients. Animal models of
CDI have been used to explore ways to induce protective immune
responses through both passive immunization with toxin-specific
antibodies and active immunization with C. difficile toxoids
(177–180). Mucosal IgA responses may contribute to protection
against CDI and associated disease, but it is dispensable. An
initial CDI induces antigen-specific, mostly anti-toxin, IgA
responses in patients and in animal models but the responses
do not appear to correlate with protection against disease (181–
185). High levels of fecal IgA are associated with protection
against C. difficile colonization, whereas infection has been
shown to significantly reduce mucosal IgA producing cells in
patients (186, 187). In contrast, systemic toxin–specific IgG
appears to be a better determinant of clinical outcome. IgG
has been shown to protect against CDAD in both patients
and animal models by decreasing gastrointestinal symptoms
and mortality (188–190). C. difficile flagellar proteins (FliC
and FliD), the surface layer proteins (SLPs), and the adhesins

TABLE 1 | Overview of humoral immune responses to enteric pathogens.

C. rodentium V. cholerae Salmonella Shigella C. difficile

T helper cell • Protective IL-4+ and

IL-21+ Tfh cells (41)

• IL-17+, IL-22+ and IFN

γ+ Th1 and Th17 cells

(41, 43–46)

• IL-13+ Th2-mediated

response (65)

• Induction of Tfh cells (66)

• Interferon

gamma-secreting T

follicular cells (110)

• Protective

Th17-mediated primary

and recall response (150)

• Poor initial T-cell

and Tfh response in

patients and infected

mice (183, 193)

Antibodies (Abs)

and Plasma cells

(PC)

• Strong Ag-specific IgA

and systemic IgM and IgG

(34, 35)

• Anti- toxin and LPS IgG

and sIgA Abs (67–69)

• Short-lived PC response

(70, 71)

• Rapid Low affinity

extra-follicular IgM (108)

• Short-lived PC

response (109)

• Serotype and antigen

specific IgA, IgM and IgG

(142, 143)

• Slow and short-lived

response especially in

young patients

(146, 151, 152)

• Anti-toxin IgA in

mice and

humans (181–185)

• Poor anti-bacteria

and toxin IgG (183)

• Some IgM and IgG

to surface proteins

(191, 192)

Memory B cells

(Bmem)

• Rapid germinal center in

mLN (42) No study

on Bmem

• Cholera-specific Bmem

and rapid recall responses

(66, 72–74)

• Delayed germinal center

reaction (108)

• IgM+ Bmem (110)

• No Bmem cells for 1st

infection

• LPS-specific IgA Bmem

cells after 2nd challenge

(145–148)

• Limited Bmem

response (183, 197)

Correlates of

protection against

disease

• Systemic IgG

translocated to gut via

FcRn (36, 38–41)

• LPS and OSP-specific

IgG (20, 21)

• B- cell induced IFNy+

Th1 cells and CD8T cells,

independent of secreted

antibodies (70–72)

• Systemic LPS-specific

IgG (144)

•Systemic anti-toxin

IgG (188–190)

Frontiers in Immunology | www.frontiersin.org 7 September 2020 | Volume 11 | Article 565648

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Amadou Amani and Lang Humoral Immunity to Enteric Pathogens

(Cwp66 and Cwp84) have also been shown to induce antibody
responses in some patients. However, whether they play a
role in the defense against recurrent disease has not been
examined (191, 192).

Although the importance of antibody responses against CDI
and disease has been well documented through assessment of
antibody titers in patients, the cellular mechanisms required for
protective B and T cell responses are not well defined. CDI is
characterized by a poor initial T-cell response which can also be
a marker for recurrence in CDI patients (193). Our group has
recently shown that C. difficile infection in mice poorly activate
CD4T cells and induces a limited Tfh cell response (183).

Studies have shown that toxin A and B specific memory B
cells may significantly contribute to protection against C. difficile
associated disease. However, the high frequency of disease
recurrence in C. difficile patients suggest that infection may
not always induce a good memory response. Immunization
with the inactive toxin induces toxin neutralizing antibodies
and development of toxin-specific memory B cells, which
confers protection against disease associated with CDI (194,
195, 197). Yet, primary C. difficile infection in mice induces
a poor expansion of the memory B cell compartment (183).
In CDI patients, anti-toxin memory B cells are detected
but at a much lower frequency than in asymptomatic
carriers (196).

CONCLUSIONS AND FUTURE
DIRECTIONS

Humoral immune responses make a critical but incompletely
understood contribution to protection against bacterial enteric
pathogens. Long-lived humoral immunity, required for sustained
protection relies on the orchestrated activation of professional
antigen-presenting cells, T helper and T follicular helper cells,
and B cells capable of differentiation into long-lived plasma
cells and memory B cells. Secretion of high affinity antibodies
from long-lived plasma cells and those newly differentiated
from memory B cells are essential for complement-mediated
bacterial clearance, and for neutralization of bacterial toxins
and other virulence factors (Figure 2). As we have discussed
in this article and summarized in Table 1, there are many
differences in the humoral immune responses to different
bacterial enteric pathogens.

C. rodentium, a murine model for the attaching and effacing
bacteria EPEC and EHEC, has been shown to induce a long-
lasting immunity humoral immune response that is not always
observed with other enteric pathogens. The plasma cell responses
in V. cholerae and Salmonella infection are short-lived. The
humoral response following C. difficile infection appears to be
severely limited. Tfh cells and germinal center responses regulate
humoral immune responses and are necessary for the induction
of protective isotype-switched antibody as with C. rodentium.
However, enteric pathogens such as C. difficile and Salmonella do
not appear to induce a robust response. This limits not only the

plasma cell response but also the Bmem compartment. Also, both
pathogens mainly induce low affinity IgM responses.

Infections with C. rodentium, C. difficile, V. cholerae, and
Shigella, promptly activate mucosal T and B cell responses
leading to the production of IgA antibodies. Yet, secreted
IgA appears to be dispensable for protection and bacteria-
specific systemic IgG appears to be the best correlate of
protection. This suggests that enteric pathogens or their antigens
need to reach the extra-intestinal lymphoid organs to induce
a systemic antibody response. Also, it suggests that there
must be mechanisms by which IgG is translocated to the
intestinal lumen to limit disease and bacterial dissemination.
The neonatal Fc receptor (FcRn) mediates this IgG transport in
C. rodentium (31), but little is known about the mechanism in the
other pathogens.

As regards humoral immunity to enteric bacterial pathogens,
future directions may include:

• More complete investigation of the Th/Tfh, Bmem cell, and
plasma cell responses to infection in both animal models and
human patients.

• Determining the mechanisms of antigen presentation in the
gut, and how this influences activation and programming of B
cell and Th/Tfh responses.

• Determining whether secreted toxins subvert humoral
immunity and the mechanisms by which this is achieved.

• A systematic genomic approach to obtain in-depth
immune profiles of the humoral response to infection
and immunization.

• Single cell BCR sequencing to determine the plasma cell and
memory B cell repertoires.

The application of newer technologies to the humoral response
to enteric pathogens may be particularly important for
infections with C. difficile and Salmonella that are characterized
by persistent and/or recurrent disease. This may lead
to a better understanding of the mechanisms by which
memory B cell and plasma cell responses are limited, and
could contribute to determining causes of persistent or
recurrent disease.
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