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The high mortality of colorectal cancer (CRC) patients and the limitations of conventional tumor-node-metastasis (TNM) stage
emphasized the necessity of exploring hub genes closely related to carcinogenesis and prognosis in CRC. The study is aimed at
identifying hub genes associated with carcinogenesis and prognosis for CRC. We identified and validated 212 differentially
expressed genes (DEGs) from six Gene Expression Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA) database.
We investigated functional enrichment analysis for DEGs. The protein-protein interaction (PPI) network was constructed, and
hub modules and genes in CRC carcinogenesis were extracted. A prognostic signature was developed and validated based on
Cox proportional hazards regression analysis. The DEGs mainly regulated biological processes covering response to stimulus,
metabolic process, and affected molecular functions containing protein binding and catalytic activity. The DEGs played
important roles in CRC-related pathways involving in preneoplastic lesions, carcinogenesis, metastasis, and poor prognosis. Hub
genes closely related to CRC carcinogenesis were extracted including six genes in model 1 (CXCL1, CXCL3, CXCL8, CXCL11,
NMU, and PPBP) and two genes and Metallothioneins (MTs) in model 2 (SLC26A3 and SLC30A10). Among them, CXCL8 was
also related to prognosis. An eight-gene signature was proposed comprising AMH, WBSCR28, SFTA2, MYH2, POU4F1, SIX4,
PGPEP1L, and PAX5. The study identified hub genes in CRC carcinogenesis and proposed an eight-gene signature with good
reproducibility and robustness at the molecular level for CRC, which might provide directive significance for treatment selection
and survival prediction.

1. Introduction

Colorectal cancer (CRC) is diagnosed the secondmost cancer
in females and the third most form in males, which has been
a major global public health problem [1]. The number of
cases diagnosed is forecast to rise from 1800 million now to
3093 million by 2040 through the World Health Organiza-
tion [2]. Although modern medicine has made great
advances, CRC is still the third leading cause for cancer-
related mortality [3]. As we all know, early detection of
CRC has some effect on reducing its mortality and the dis-

covery of precursor lesion can even cut down the incidence
[4]. Early diagnosis with better survival and later diagnosis
with worse prognosis have no doubt. Tumor-node-
metastasis (TNM) stage, identified by the American Joint
Committee on Cancer according to pathologic and clinical
factors, is not only the fundamental for treatment but also
the gold standard for CRC prognosis [5, 6]. The 5-year sur-
vival rate at stage I is more than 90%, and the 5-year survival
rate for stage IV is only 10% [7]. However, 20% of patients at
stage II undergo cancer-specific death and some stage III
patients confront better outcomes than some patients at stage
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II [8]. Hence, it is extremely necessary to identify novel
prognostic biomarkers for early diagnostic detection and
improving outcomes due to the limitation of TNM stage.

In recent decades, the research on the molecular and
genetic mechanisms in CRC carcinogenesis and progression
has accelerated the investigation of genetic prognostic
markers for the TNM staging system supplement [9]. And
the progress of microarray and high-throughput sequencing
technology has also promoted to interpret epigenetic or crit-
ical genetic alternations in carcinogenesis and to decipher
hopeful biomarkers for cancer diagnosis, treatment, and
prognosis [10, 11]. Publicly available genome databases like
the Cancer Genome Atlas (TCGA) and the Gene Expression
Omnibus (GEO) have provided more facilitated genome
exploration on different cancers containing CRC for clini-
cians and bioinformatics, which was generally impossible in
the past [12–15]. Meanwhile, integrated bioinformatics
methods have been applied to cancer research and large
amounts of valuable information have been excavated, which
were explored to overcome the restricted or discordant
results because of the application of either a small sample size
or different types of technological platforms [16–19].

In this study, we identified and integrated differentially
expressed genes (DEGs) from gene expression profile and
RNA sequencing data for human CRC. The DEGs were fur-
ther preformed functional enrichment analysis to investigate
biological processes, molecular functions, and reactome
pathways regulated by the DEGs. The protein-protein inter-
action (PPI) network reflecting the interactions among DEGs
was constructed, and hub network modules were captured
and deciphered, which embodied representative genes in
CRC carcinogenesis. Finally, patients with overall survival
data were randomly divided into two groups, the train group
and the test group. The train group was used to reveal genes
associated with survival and build a CRC gene signature for
prognosis. The test group was employed to assess the prog-
nosis model comprehensively.

2. Materials and Methods

2.1. DEG Identification by GEO. The gene expression profile
data (GSE21510, GSE24514, GSE32323, GSE89076,
GSE110225, and GSE113513) for colorectal cancer were
extracted from the GEO database [20–24]. All included data-
sets contained at least 10 samples. The normalization and
log2 conversion were performed for the matrix data of each
GEO dataset, and the DEGs between tumor and control tis-
sues were filtered out via the Limma package in R [25]. Gene
integration for the DEGs screened from the six datasets was
executed using the RobustRankAggreg (RRA) package based
on a robust rank aggregation method [26]. jlog2FCj>1:5 and
adjusted P value < 0.05 set the criteria to filter statistically sig-
nificant DEGs.

2.2. DEG Validation by TCGA. The integrated significant
DEGs from GEO datasets were validated by means of RNA
sequencing data in TCGA COADREAD dataset. Raw RNA
sequencing data including 647 COADREAD samples and
51 matched noncancerous samples were extracted from

TCGA database, and the clinical information of patients
was also downloaded. The Mann-Whitney test was employed
to normalize and analyze the TCGA data. Genes with jlog2
FCj>2 and adjusted P value < 0.05 were considered to be
significantly differentially expressed. Overlapping DEGs
between GEO and TCGA database were reserved for follow-
ing studies.

2.3. Functional Enrichment Analysis. The potential biological
processes and molecular functions of the overlapping DEGs
were evaluated using BINGO plug-in of Cytoscape 3.2.1
[27]. During this procedure, the significance level was set to
0.05, and organism was selected as Homo sapiens. The path-
way enrichment analysis was performed utilizing Reactome
FI plug-in of Cytoscape 3.2.1, and the threshold level was
defined as FDR < 0:05 [28]. The top ten terms of the func-
tional enrichment analysis were visualized using the Bubble
package [29].

2.4. PPI Network and Module Analysis. The protein-protein
interactions among overlapping DEGs were identified via
STRING database, and genes with the combined score ≥ 0:4
were selected to construct the PPI network [30]. The PPI net-
work was visualized and analyzed by Cytoscape 3.2.1. And
the hub network modules were captured with the help of
the Cytoscape plug-in Molecular Complex Detection
(MCODE) with parameters degree cutoff = 2, Node Score
Cutoff = 0:2, and K − Core = 2 [31]. Then, the topological
parameters were also calculated, and survival analysis was
performed using clinical information via the survival package
for hub modules.

2.5. COX Model Construction and Verification. After
eliminating patients without overall survival data, 617
patients’ data were used for survival analysis. All patients
were randomly divided into two groups with the help of the
caret package, train group and test group [32]. The train
group was used for constructing the COX prognostic signa-
ture, and the test group was used for validating the signature.
The train group executed univariate Cox proportional haz-
ards regression analysis to recognize candidate genes associ-
ated with survival. Then, the LASSO penalized regression
model was employed to achieve shrinkage and variable selec-
tion simultaneously and to prevent the prognostic model
overfitting. Subsequently, the multivariate Cox proportional
hazards regression model was performed and corresponding
coefficients were calculated in the train group. The predicted
overall survival information with a risk score for each patient
in two groups was assessed on the basis of the expression
level of the prognostic gene and its corresponding coefficient
in the train group. The patients in two groups were classified
into low- or high-risk groups according to the median risk
score of the train group. Survival curves were plotted utilizing
the survival package to assess the differences in survival rate
between high- and low-risk patients in two groups. Further-
more, the receiver operating characteristic (ROC) curve was
constructed based on the survivalROC package and the area
under the curve (AUC) was measured to evaluate the predic-
tive ability of the prognostic signature for clinical outcomes.
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The risk score distribution, survival time, and gene expres-
sion patterns for patients in the train and test groups were
visualized in R.

3. Results

3.1. DEG Identification and Validation. The detailed infor-
mation for the six GEO datasets in this study is shown in
Table 1. 254 DEGs in total including 80 upregulated genes
and 174 downregulated genes were obtained through screening
of the Limma package and integration of the RRA package for
the six datasets (Table S1). The top 20 up- and downregulated
genes after the integrated analysis are displayed in Figure 1(a).
The DEGs extracted from TCGA database comprised 1386
upregulated and 2142 downregulated genes (Table S2).
Finally, 212 overlapping DEGs containing 46 upregulated and
166 downregulated genes were identified (Figure 1(b) and
Table S3). In addition, the clinical information of patients was
also organized for survival analysis (Table S4).

3.2. Functional Enrichment Analysis. To explain the potential
biological functions of the 212 overlapping DEGs, the biolog-
ical process, molecular function, and reactome pathway
enrichment analyses were executed. The biological processes
were mainly involved in response to stimulus and metabolic
process (Figure 2(a) and Table S5). The molecular functions
were significantly enriched in protein binding and catalytic
activity (Figure 2(b) and Table S6). According to the
reactome pathway enrichment analysis, the upregulated
genes were mainly associated with signaling by GPCR and
extracellular matrix organization (Figure 2(c) and Table S7).
And the downregulated genes participated in response to
metal ions, metabolism, signal transduction, and
transmembrane transport of small molecules (Figure 2(d)
and Table S8).

3.3. PPI Network and Module Analysis. The PPIs between 37
upregulated and 131 downregulated genes were excavated via
STRING database with the combined score ≥ 0:4, and the
PPI network was displayed containing 168 nodes and 417
interactions (Figure 3(a) and Table S9). To further
investigate the hub network modules from the complex
network, two hub modules with a score > 5 were extracted
based on MCODE (Figures 3(b) and 3(c)). And three
topological parameters covering degree, closeness centrality,
and betweenness centrality were calculated to measure hub
nodes in hub network modules (Tables S10 and S11). Hub

genes with parameters greater than the mean of each group
were considered to reflect key biological characteristics in
the network module. However, all parameters were the
same in model 1, but CXCL family genes accounted for a
half. SLC26A3 and SLC30A10 were defined as hub genes in
model 2. Then, the impact of the two modules on the
pathways was also investigated. The genes in model 1 were
significantly enriched in nine pathways, and the top five
pathways coincided with the pathways that 46 upregulated
genes mainly regulated, which might indicate that the
upregulated genes in model 1 were dominant (Figure 3(d)).
The genes in model 2 mainly gathered in six pathways, and
the top five pathways were consistent with the pathways
affected by 166 downregulated genes, which revealed that
Metallothioneins (MTs) played an important role in model
2 (Figure 3(e)). Survival analysis of hub modules suggested
CXCL8, CXCL13, and CLCA1 were associated with
prognosis (P < 0:05), and the high expression group
presented better prognosis (Figures 3(f)–3(h)).

3.4. COX Model Construction and Verification. The 617
patients’ data were randomly divided into two groups, the
train group (309) and the test group (308). In all, 102 genes
were captured through the univariate Cox proportional
hazards regression model in the train group, which were sig-
nificantly associated with survival time (P < 0:001) and all
belonged to high-risk genes (HR > 1) (Table S12). Then, 16
representative genes were screened out through shrinkage
and variable selection simultaneously of the LASSO
penalized regression model in the train group (Figures 4(a)
and 4(b) and Table S13). A prognostic gene signature
involved in eight genes was developed using the multivariate
Cox proportional hazards regression model, covering
Muellerian-inhibiting factor (AMH), transmembrane protein
270 (WBSCR28), surfactant-associated protein 2 (SFTA2),
myosin-2 (MYH2), POU domain, class 4, transcription
factor 1 (POU4F1), homeobox protein SIX4 (SIX4),
pyroglutamyl-peptidase 1-like protein (PGPEP1L), and
paired box protein Pax-5 (PAX5) (Table 2). All the eight
genes with HR > 1 were identified as risky prognostic genes,
which implied that the patient’s risk increased along with the
rising of the gene expression. The risk scores were calculated
based on the gene expression values and relevant coefficients,
and all patients were divided to high- or low-risk groups
based on the median risk score of the train group
(Figures 5(a) and 5(b)). The survival time statistics in high-
and low-risk groups are exhibited in Figures 5(c) and 5(d).

Table 1: Information for six GEO datasets in the study.

Dataset Platform Number of samples (tumor/control)

GSE21510 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 148 (104/44)

GSE24514 [HG-U133A] Affymetrix Human Genome U133A Array 49 (34/15)

GSE32323 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 44 (22/22)

GSE89076 Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 80 (41/39)

GSE110225
[HG-U133A] Affymetrix Human Genome U133A Array; [HG-U133_Plus_2]

Affymetrix Human Genome U133 Plus 2.0 Array
60 (30/30)

GSE113513 [PrimeView] Affymetrix Human Gene Expression Array 28 (14/14)
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Obviously, a significant difference in survival rate was
represented between the high- and low-risk groups in the
train group in Figure 5(e), and Figure 5(f) verifies the
existence of the significant difference in the test group. The
survival rates of the low-risk group were 94.3% (95% CI:
90.6%-98.2%), 88.6% (95% CI: 82.1%-95.6%), and 65.3%
(95% CI: 49.3%-86.4%) for 1, 3, and 5 years, respectively,
compared with 85.8% (95% CI: 80.2%-91.8%), 70.3% (95%
CI: 62.0%-79.7%), and 50.4% (95% CI: 37.0%-68.5%) for the
high-risk group in the train group. The accuracy of the
prognostic gene signature in survival prediction was
presented with AUC as 0.713 and 0.614, respectively, for the
train group and the test group (Figures 5(g) and 5(h)). With
the rising of the risk score, the distribution of the gene
expression trend is revealed in Figures 5(i) and 5(j).

4. Discussion

At the moment, TNM stage is the principal guideline for
treatment selection and prognosis prediction of CRC

patients. In clinical practice, CRC patients with similar histo-
pathological characteristics presented significantly different
prognosis or diverse responses to treatment, which might
be associated with the high molecular heterogeneity of CRC
and could expose the TNM stage limitations towards preci-
sion medicine in CRC [33–35]. Moreover, although increas-
ing studies concerning biomarkers have been accumulated
focusing on tumor diagnosis, treatment, and prognosis, there
are scarce biomarkers utilized for early diagnosis, treatment
selection, and predicting outcome in clinical. Thus, reliable
prognostic biomarkers capable of differentiating patients’
prognosis are still desperately required in CRC.

In this research, 254 DEGs containing 80 upregulated
genes and 174 downregulated genes were screened and inte-
grated from six GEO datasets and were mapped into RNA
sequencing data from TCGA to extract 212 overlapping
DEGs containing 46 upregulated and 166 downregulated
genes. The biological process analysis suggested that the
upregulated genes were mainly implicated in multiple meta-
bolic processes including collagen catabolic process,
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Figure 1: DEG identification from GEO and validation from TCGA. (a) The top 20 up- and downregulated genes in six GEO datasets based
on a RRA package. (b) Overlapping DEGs between GEO and TCGA database.
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Figure 2: Functional enrichment analysis for DEGs. (a) The top 10 terms of biological process enrichment for up- and downregulated DEGs.
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Figure 3: Construction of PPI network and module analysis. (a) The PPI network with red nodes for upregulated genes and green nodes for
downregulated genes. (b) Module 1 of PPI network. (c) Module 2 of PPI network. (d) Reactome pathway enrichment for module 1. (e)
Reactome pathway enrichment for module 2. (f) Survival curve of CXCL8. (g) Survival curve of CXCL13. (h) Survival curve of CLCA1.
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Figure 4: LASSO regression analysis for the train group. (a) LASSO coefficient profiles of prognostic genes with P < 0:001. (b) Selection of the
optimal value of lambda via 10-fold cross-validations.

Table 2: Prognostic information for the eight genes in train group.

Gene symbol
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value Coefficient

AMH 1.001 (1.000-1.02) 0.000297 1.001 (1.000-1.001) 0.011546 0.000842

WBSCR28 1.022 (1.010-1.033) 0.000139 1.012 (0.999-1.026) 0.080719 0.012188

SFTA2 1.001 (1.001-1.002) 1.61E-05 1.001 (1.001-1.002) 0.000137 0.001245

MYH2 1.061 (1.029-1.095) 0.000162 1.067 (1.027-1.108) 0.00076 0.064845

POU4F1 1.005 (1.003-1.008) 5.65E-05 1.004 (1.002-1.007) 0.002323 0.004278

SIX4 1.003 (1.002-1.004) 6.33E-07 1.003 (1.002-1.005) 1.79E-05 0.003124

PGPEP1L 1.061 (1.032-1.090) 2.46E-05 1.070 (1.038-1.103) 1.43E-05 0.067637

PAX5 1.001 (1.000-1.001) 1.53E-05 1.001 (1.000-1.001) 0.000106 0.000774
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Figure 5: Continued.
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multicellular organismal catabolic process, collagen meta-
bolic process, multicellular organismal macromolecule meta-
bolic process, and multicellular organismal metabolic
process. The downregulated genes were primarily involved
in various responses to stimulus, response to chemical stim-
ulus like chemotaxis and response to nutrient, response to
external stimulus like taxis and response to extracellular
stimulus, and response to endogenous stimulus like response

to glucocorticoid stimulus, response to corticosteroid stimu-
lus, response to steroid hormone stimulus, and response to
hormone stimulus. The molecular function analysis showed
that the upregulated genes chiefly affected protein binding
containing chemokine activity, chemokine receptor binding,
cytokine activity, G-protein-coupled receptor binding, recep-
tor binding, etc. The downregulated genes had much effect
on catalytic activity such as lyase activity, oxidoreductase
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Figure 5: The evaluation and confirmation of the eight-gene signature. (a) The risk score distribution for the train group. (b) The risk score
distribution for the test group. (c) The survival time statistic for the train group. (d) The survival time statistic for the test group. (e) Survival
curve for the train group. (f) Survival curve for the test group. (g) ROC curve for the train group. (h) ROC curve for the test group. (i) Gene
expression pattern for the train group. (j) Gene expression pattern for the test group.
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activity, transferase activity, and hydrolase activity. For the
reactome pathway enrichment analysis, the upregulated
genes mostly focused on regulation of the immune system
and inflammation and cancer cell invasion and metastasis
[36, 37]. The downregulated genes played important roles
in CRC-related pathways involving in preneoplastic lesions,
carcinogenesis, metastasis, and poor prognosis [38–40].

Two hub modules were also identified, and topological
parameters were calculated in the PPI network. Topological
parameters of genes in module 1 were not significantly differ-
ent, but the pathway enrichment results mainly accumulated
in pathways regulated by 46 upregulated genes, which
revealed the major status of CXCL1, CXCL3, CXCL8,
CXCL11, NMU, and PPBP. Increased CXCL1 levels had pos-
itive relationships with tumor size, degree of invasion,
advancing stage, metastasis, and poor prognosis [41, 42].
High expression of CXCL3 was detected in premalignant
adenomas and CRC tissue, and CXCL3 significantly down-
regulated in liver metastasis compared with the primary
tumor. And CXCL3 obviously presented high expression in
patients with local relative to systemic disease [43]. On the
contrary, overexpression of CXCL8 promoted proliferation,
migration, and invasion of CRC cells, which was strongly
correlated with CRC angiogenesis, metastasis, poor progno-
sis, and disease-free survival [44, 45]. However, high expres-
sion of CXCL8 could act as a protective barrier for liver
metastasis of CRC and coincide with better prognosis [46,
47]. Objectively, the role of CXCL8 still remained in dispute.
This study confirmed that CXCL8 was associated with prog-
nosis and suggested that the high CXCL8 expression group
had a better prognosis than the low expression group. Besides
angiogenesis, CXCL11 was an important cytokine in the pro-
gression of inflammation to CRC and induced tumor-
associated macrophages to infiltrate, which enhanced the
proliferation and invasion of CRC cells and generated poor
prognosis [48–50]. NMU was capable of facilitating the pro-
liferation, migration, and invasion of CRC cells [51]. PPBP,
also known as CXCL7, was overexpressed in CRC and asso-
ciated with poor prognosis and disease-free survival [52].
SLC26A3 and SLC30A10 were uncovered as hub genes in
model 2, and the top 2 significant pathways hit on MT1M,
MT1X, MT1F, MT1G, MT1H, and MT1E, which occupied
the one-sided subnetwork of model 2. SLC26A3 downex-
pressed in CRC played a tumor suppressor role and was
expected to be a candidate epithelial marker in CRC [53,
54]. SLC30A10 was acceptable to classify methylation epi-
genotypes and correlated with molecular genesis in CRC
[55]. MTs, a protein family of low molecular weight and full
of cysteine, contained at least 11 functional isoforms and
implicated in zinc and redox metabolism. MTs were epige-
netically downregulated in CRC early progression (especially
MT1G) and tended to induce a worse prognosis [56]. MT
overexpression represented a crucial early step in the devel-
opment of ulcerative colitis-associated CRC [57]. MT expres-
sion was also a potential reminder affecting lymph node
metastases, particularly in patients with synchronous liver
metastases [40]. MT1G uncovered the capability of tumor
suppressor via promoting CRC differentiation through zinc
signaling [58]. Also, MT1G overexpression sensitized CRC

cells to oxaliplatin and 5-fluorouracil via activating p53 and
repressing NF-κB activity [59]. In addition, CXCL13 and
CLCA1 in hub modules were downregulated, and high
expression of that had a better prognosis. CXCL13 showed
significantly lower expression in CRC, and patients with
CXCL13 deletion had a significantly higher risk of relapse
[60]. CLCA1 was also reported to be involved in the patho-
physiology of CRC, and upregulation of CLCA1 was associ-
ated with a favorable prognosis [61, 62].

In the present study, we detected the association between
gene expression and prognosis in CRC patients by recruiting
RNA sequencing data for 3528 genes of 309 patients and
identified 102 genes significantly associated with CRC
patients’ overall survival. After removing gene information
highly correlated, an eight-gene signature was developed
and risk scores were evaluated, which classified CRC patients
into high- and low-risk groups with significantly different
overall survival. The test group validated the prognostic value
of the eight-gene signature capable of good reproducibility
and robustness, which suggested that the eight-gene signa-
ture could improve prognostic prediction at the molecular
level beyond the conventional TNM stage. The eight-gene
signature also pushed the limitation of traditional TNM stage
for prognostic prediction due to molecular heterogeneity in
CRC. Currently, several gene signatures have been reported
for prognostic prediction of CRC [63–66]. Compared to the
reported signatures, the uniqueness of this study was that
LASSO regression analysis could execute feature selection
and shrinkage and screen highly correlated genes, which
determined the optimal genes to participate in subsequent
signature building [66]. LASSO regression could prevent
the gene signature overfitting and increase the accuracy of
bioinformatics analysis [67]. We explored both ROC curve
and test verification to assess the prognostic performance of
the signature. In the future, the value of the eight-gene signa-
ture still needs to be examined in clinical guidelines. The
eight-gene signature could delaminate the risk of CRC
patients’ survival before surgery selection, which implied
patients’ benefit from therapy with a good prognosis and
avoiding unnecessary treatment with a poor prognosis.

Finally, the genes of the signature were more or less
researched in human tumors. A monoclonal antibody target-
ing anti-mullerian-hormone-receptor II (AMHRII) acted
through tumor-associated macrophage engagement in
advanced/metastatic CRC and had been performed phase 2
study [68]. WBSCR28 had not been well studied in human
tumor, but it was repressed by androgen receptor in prostate
cancer [69]. SFTA2 was identified as a potential disease-free
survival prognostic gene in colon cancer and one of the
potential biomarkers for distinguishing between lung adeno-
carcinoma and squamous cell carcinoma [70, 71]. MYH2 was
confirmed significantly changed in hepatocellular carcinoma
and highly expressed in the origin of squamous cell carci-
noma in the lungs of patients with previous head and neck
malignancies [72, 73]. POU4F1 was upregulated and induced
neuroendocrine phenotype in small cell lung cancer [74].
SIX4 promoted tumor angiogenesis and metastasis via acti-
vating AKT pathway in CRC [75, 76]. PGPEP1L was con-
firmed downregulated in CRC via Expression Atlas
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database and firstly proposed as an independent prognostic
factor (Table S14). PAX5 was identified to be relevant to
CRC with peritoneal metastasis [77].

5. Conclusion

In conclusion, we identified hub genes involved in the path-
ogenesis of CRC with the help of integrated bioinformatics
analysis. We also proposed an eight-gene signature compris-
ing AMH, WBSCR28, SFTA2, MYH2, POU4F1, SIX4, PGPE
P1L, and PAX5, which would provide directive significance
for prognostic prediction and treatment selection in CRC.
However, the application of the eight-gene signature still
needed to be assessed and validated in clinical.
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