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1  |   INTRODUCTION
Neurons of the ventral tegmental area (VTA) and substan-
tia nigra pars compacta (SNC) play central roles in pro-
cessing appetitive and aversive stimuli (Fields, Hjelmstad, 
Margolis, & Nicola, 2007; Morales & Margolis, 2017). In 

particular, dopamine neurons of the VTA and SNC are ex-
cited by unexpected rewards and cues that predict their occur-
rence, suggesting that they encode a reward prediction error 
rule (Schultz, 2007; Schultz, Dayan, & Montague, 1997). 
Although most dopamine neurons are either unresponsive 
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Abstract
Neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta 
(SNC) play central roles in reward-related behaviours. Nonhuman animal studies 
suggest that these neurons also process aversive events. However, our understanding 
of how the human VTA and SNC responds to such events is limited and has been 
hindered by the technical challenge of using functional magnetic resonance imaging 
(fMRI) to investigate a small structure where the signal is particularly vulnerable to 
physiological noise. Here we show, using methods optimized specifically for the 
midbrain (including high-resolution imaging, a novel registration protocol, and 
physiological noise modelling), a BOLD (blood-oxygen-level dependent) signal to 
both financial gain and loss in the VTA and SNC, along with a response to nil out-
comes that are better or worse than expected in the VTA. Taken together, these find-
ings suggest that the human VTA and SNC are involved in the processing of both 
appetitive and aversive financial outcomes in humans.
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or inhibited by aversive stimuli (Mirenowicz & Schultz, 
1996; Schultz & Romo, 1987; Ungless, 2004), some appear 
to be activated by aversive stimuli (Brischoux, Chakraborty, 
Brierley, & Ungless, 2009; Guarraci & Kapp, 1999; Joshua, 
Adler, Mitelman, Vaadia, & Bergman, 2008; Mantz, 
Thierry, & Glowinski, 1989; Matsumoto & Hikosaka, 2009; 
Mileykovskiy & Morales, 2011; Valenti, Lodge, & Grace, 
2011; Wang & Tsien, 2011), though there is some disagree-
ment over the interpretation of these observations (Fiorillo, 
2013; Fiorillo, Song, & Yun, 2013; Fiorillo, Yun, & Song, 
2013; Schultz, 2016). In addition, more recent evidence 
suggests that γ-aminobutyric acid (GABA)-ergic and glu-
tamatergic neurons in the VTA play a role in aversive pro-
cessing (Cohen, Haesler, Vong, Lowell, & Uchida, 2012; 
Kim, Matthews, & Moghaddam, 2010; Qi et al., 2016; Root, 
Mejias-Aponte, Qi, & Morales, 2014; Tan et al., 2012; van 
Zessen, Phillips, Budygin, & Stuber, 2012).

Several fMRI investigations in the human have examined 
processing of appetitive and aversive stimuli in regions that 
receive dopaminergic inputs, including the striatum (Brooks 
& Berns, 2013; Delgado, Jou, & Phelps, 2011; Seymour, 
Daw, Dayan, Singer, & Dolan, 2007), but much less is known 
about the VTA and SNC. This is largely due to technical 
difficulties associated with measuring a blood-oxygen-level 
dependent (BOLD) signal, the indirect measure of neural 
activity used by fMRI, in the midbrain (Düzel et al., 2009, 
2015). These technical difficulties arise due to two main 
reasons. First, the small sizes of the nuclei—the VTA/SNC 
complex is around 900 mm3 (Eapen, Zald, Gatenby, Ding, & 
Gore, 2011)—make it desirable to use high-resolution func-
tional scans, which reduce the influence of partial volume 
effects, and allow more accurate localization of BOLD signal 
to a specific midbrain nucleus. Reducing the voxel size to 
achieve this, however, results in a decrease in the signal-to-
noise ratio (Edelstein, Glover, Hardy, & Redington, 1986; 
Triantafyllou, Polimeni, & Wald, 2011). Consequently, high-
resolution functional scans are less sensitive to BOLD signal 
changes. In addition, because of the small size of the nuclei, 
they are more challenging to colocalize from a group of in-
dividuals onto a standard brain template (Limbrick-Oldfield 
et al., 2012). The second major challenge facing midbrain 
fMRI is that, due to its anatomical location, it is prone to 
physiological artefacts. During the cardiac cycle the mid-
brain undergoes a bulk motion in the direction of the fora-
men magnum, due to the increased intracranial pressure 
as blood enters the brain (Poncelet, Wedeen, Weisskoff, & 
Cohen, 1992). Such bulk motion causes spatio-temporal blur-
ring of the BOLD signal across voxels. In addition, the large 
blood vessels adjacent to the midbrain are subject to cardiac 
pulsations (Dagli, Ingeholm, & Haxby, 1999; Greitz et al., 
1992) causing BOLD signal intensity changes in nearby tis-
sue. Furthermore, intracranial pressure changes and pulsatile 
movement of blood vessels produce oscillatory motion in the 

cerebrospinal fluid (CSF) surrounding the brain and brain-
stem (Friese, Hamhaber, Erb, Kueker, & Klose, 2004; Klose, 
Strik, Kiefer, & Grodd, 2000), which give rise to in-flow sig-
nal artefacts (Piché et al., 2009). In addition to cardiac related 
artefacts, the respiratory cycle also causes bulk magnetic sus-
ceptibility changes within the brain tissue during the respi-
ratory cycle (Raj, Anderson, & Gore, 2001). There may also 
be significant interaction between these two sources of noise 
(Brooks et al., 2008; Harvey et al., 2008).

Nonetheless, several studies indicate that reward-related 
events are associated with a positive BOLD signal in regions 
likely to include the VTA/SNC. For example, using standard 
fMRI approaches, these include the detection of a response to 
positive feedback (Aron et al., 2004), wins and near-misses 
(Chase & Clark, 2010), a prediction error disturbance in 
schizophrenia (Murray et al., 2008; Waltz et al., 2009), the 
encoding of rewarding stimuli (Wittmann et al., 2005), the 
receipt of a food reward (Stice & Yokum, 2014), an oxytocin-
facilitated response to social reward cues (Groppe et al., 2013), 
a response during memory formation (Adcock, Thangavel, 
Whitfield-Gabrieli, Knutson, & Gabrieli, 2006), stimulus 
novelty (Bunzeck & Düzel, 2006) and cues predicting novel 
outcomes (Wittmann, Bunzeck, Dolan, & Düzel, 2007), cog-
nitive control (Boehler, Bunzeck, et al., 2011), cognitive effort 
(Boehler, Hopf, et al., 2011), anticipation of task reward and 
difficulty (Krebs, Boehler, Roberts, Song, & Woldorff, 2012), 
reward predicting cues (Costumero et al., 2013; O’Doherty, 
Deichmann, Critchley, & Dolan, 2002), average reward (Rigoli, 
Chew, Dayan, & Dolan, 2016), reward preference (O’Doherty, 
Buchanan, Seymour, & Dolan, 2006), hypothetical rewards 
(Miyapuram, Tobler, Gregorios-Pippas, & Schultz, 2012), and 
reward-identity errors (Howard & Kahnt, 2018).

In addition, a number of studies have used high-resolution 
scans, revealing a midbrain response to novelty (Guitart-
Masip, Bunzeck, Stephan, Dolan, & Düzel, 2010), and re-
ward and action anticipation (Guitart-Masip et al., 2011, 
2012). Using retrospective image correction (RETROICOR), 
to remove cardiac and respiratory noise, which in contrast to 
cardiac gating allows for continuous acquisition (Glover, Li, 
& Ress, 2000), a reward prediction error signal elicited by 
reward predicting cues has also been observed in the VTA 
using financial gains (Klein-Flügge, Hunt, Bach, Dolan, & 
Behrens, 2011). Importantly, some studies have conducted 
high-resolution imaging and addressed physiological noise. 
For example, D’Ardenne, McClure, Nystrom, and Cohen 
(2008), used cardiac gating (to reduce the influence of 
physiological noise), high-resolution data acquisition, and 
smoothed the data with a Gaussian filter with a small radius 
(to reduce partial volume effects). They observed an out-
come reward-related prediction error response in the VTA 
(changes in the SNC were not reported). More recently, sim-
ilar MRI methodology revealed reward prediction error and 
fictive error related signals in the VTA and SNC (D’Ardenne, 
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Lohrenz, Bartley, & Montague, 2013). Notwithstanding the 
challenges of interpreting these BOLD signals with respect 
to the mechanisms of underlying neural activity (see (Düzel 
et al., 2009, 2015) and Section 4), this body of evidence in-
dicates that the human VTA and SNC are engaged in reward 
processing.

In contrast, relatively few studies have investigated the 
processing of aversive stimuli in the human VTA and SNC. 
Using standard fMRI approaches, a BOLD response in re-
gions likely to include the VTA/SNC has been observed to 
anticipation of noxious heat (Fairhurst, Wiech, Dunckley, 
& Tracey, 2007), anticipation of financial loss (Carter, 
Macinnes, Huettel, & Adcock, 2009), unexpected electric 
shocks and the unexpected omission of electric shocks (Boll, 
Gamer, Gluth, Finsterbusch, & Buchel, 2013), and negative 
feedback (Aberg, Doell, & Schwartz, 2015). An initial study 
using high-resolution imaging and cardiac gating failed to 
observe a BOLD signal in the VTA (changes in the SNC 
were not reported) in response to negative prediction er-
rors and financial losses (D’Ardenne et al., 2008), although 
subsequently using similar methods an unsigned prediction 
error was observed in the dorsolateral SNC (D’Ardenne et al., 
2013), and a response to cues predicting aversive footshock 
was seen in the VTA and lateral SNC (Hennigan, D’Ardenne, 
& McClure, 2015). Moreover, using high-resolution imaging 
and RETOICOR, a response to aversive expected value and 
aversive reward prediction error outcome for an aversive taste 
was seen in the dorsolateral SNC (Pauli et al., 2015). A high-
resolution approach, which defined subregions of the SNC 
based on their connectivity patterns, revealed activations to 
financial loss throughout the SNC (Zhang, Larcher, Misic, 
& Dagher, 2017). Interestingly, these were similar to gain-
related activations in lateral parts of the SNC, whereas in the 
medial SNC they observed greater activations to financial 
gains compared to losses (Zhang et al., 2017).This is intrigu-
ing in light of the electrophysiological and calcium imaging 
studies which find aversive activations in lateral SNC of mon-
keys and mice respectively (Lerner et al., 2015; Matsumoto 
& Hikosaka, 2009). Taken together, these findings suggest 
that aversive stimuli engage the VTA and SNC in humans. 
However, the evidence is certainly more limited compared 
to that for reward processing and mostly concerns the SNC. 
In particular, it is not clear if financial loss can be associated 
with a BOLD signal in the VTA. To address this, we con-
ducted a midbrain-optimized fMRI experiment in humans, 
using a financial gain and loss task that has been shown to 
elicit robust BOLD signals in the striatum (Seymour et al., 
2007). We used high-resolution imaging and a novel regis-
tration approach that we have previously optimized for use 
in the midbrain (Limbrick-Oldfield et al., 2012) combined 
with PNM (physiological noise model), which is a brainstem-
optimized variant of RETROICOR (Harvey et al., 2008), to 
control for physiological noise.

2  |   MATERIALS AND METHODS

2.1  |  Subjects
Forty-two healthy human subjects participated in this ex-
periment (22 female; median age = 25 (range 19–47 years); 
exclusion criteria included having, or having ever had, any 
neurological or psychiatric condition, currently taking psychi-
atric medication, being pregnant, suffering from claustropho-
bia, or having any metal objects in the body). We excluded 
11 further subjects, leaving 31 (16 female, median age = 25 
(range 20–47 years): three subjects were excluded due to ex-
cess motion during the functional scans (excess motion was 
determined to be involve frame-wise displacement in excess 
of 2 mm, a stricter criterion than often used in fMRI analyses 
due to the relatively small voxel size used here), one subject 
was excluded due to a brain abnormality, and seven subjects 
failed the preference test (see Section 2.2). In addition, one 
run of functional data was excluded from 2twosubjects due 
to excess motion or scanner artefacts. The Imperial College 
Research Ethics Committee approved the protocol, and all 
volunteers provided written informed consent prior to starting 
the study.

2.2  |  Experimental design
The task was adapted from a Pavlovian conditioning task pre-
viously used to elicit prediction errors in the ventral striatum 
(Seymour et al., 2007; Figure 1a). Cue-outcome contingen-
cies were presented to participants on a screen. Each cue was 
presented for 3 s, and was followed by an actual financial out-
come that was presented for 1.5 s. This outcome was either 
nil (represented as an empty circle), a financial gain (repre-
sented as a photograph of the amount won), or a financial loss 
(represented as a photograph of the amount lost, with a red 
line running through it). The amount was also written under 
the image, along with a tally of current total winnings. Cue 
A reliably led to a nil outcome, whereas cues B, C, D, and 
E led to two equally probable outcomes each. Participants 
were naïve to the cues and their outcomes prior to the fMRI 
scan, so the initial expected value (EV) of each cue was nil. 
After repeated presentations, according to the temporal dif-
ference model of learning (Sutton & Barto, 1987), the cues 
had an EV that was equal to the mean of the two outcomes. 
Cues were presented in a pseudo-random order with a vari-
able intertrial interval (0.5–4 s) and a jitter relative to the 
repetition time. Stimulus order was optimized using the opt-
seq2 algorithm (http://surfer.nmr.mgh.harvard.edu/optseq/). 
Stimuli were presented using the Psychophysics Toolbox 
library (Brainard, 1997; Pelli, 1997) for MATLAB (2008b, 
Natick, MA; The Mathworks Inc.). There were 3 × 10 min 
functional runs in the scanner with a mean of 10 trials of each 
cue-outcome contingency in each. Participants were paid £20 

http://surfer.nmr.mgh.harvard.edu/optseq/
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for participating in the study, and any outcomes they received 
during the task were added to or taken away from this.

In order to ensure that participants paid attention during 
the task, they were told prior to scanning that they would be 
tested on what they had learnt, and if they performed well 

they could win a £5 bonus. In addition, this ascertained which 
participants had learnt the contingencies during the task. The 
test took the form of a preference task (Figure 1b). Pairs of 
visual cues were presented on a laptop screen outside of the 
scanner, and participants had to choose which cue they would 
prefer with a button press. Each cue was paired with every 
other cue, and each pairing was presented ten times. If the 
participants correctly chose the cue with the higher EV over 
50% of the time, they received immediate feedback that they 
had earned the financial bonus. Preference scores were cal-
culated for each cue, based on the number of times it was 
selected in the preference task. As each cue was presented 
a total of 40 times, a preference score of 40 indicates the 
cue was chosen every time it was presented. If participants 
chose cue C (which had an expected value of −50p) more 
frequently than cue B (which had an EV of +50p; Figure 1a), 
they did not demonstrate that they had learnt the contingen-
cies and consequently they were excluded from the imaging 
analysis. Seven participants (16.7% of those tested) failed 
the preference task and were removed from all analyses. The 
failure of these seven participants to learn the contingencies 
could reflect a failure of attention during the passive task, 
or an inability to learn the contingencies, or a generaliza-
tion of cues that would lead to a similar response to all cues. 
Behavioural data of the remaining participants were analysed 
using a multilevel linear model in R (R Core Team, Vienna), 
to test if participants chose cue B (EV = +50p) more than 
cue A (EV = nil), and cue A more than cue C (EV = −50p). 
Participant and cue were entered as random effects. Such 
analyses were not carried out for cues D and E, because these 
cues have bivalent outcomes with a nil expected value, and 
therefore further factors are involved in the decision-making 
process for these cues, such as individual risk preference, 
making these results not interpretable with regard to the 
tested hypothesis.

2.3  |  Magnetic resonance imaging (MRI) 
acquisition
MR scanning was performed on a 3T Philips Intera scanner 
with an eight-channel phased array head coil. Physiological 
data were recorded via electrocardiogram pads and a res-
piratory belt. High-resolution functional MR images 
were obtained using an EPI sequence with a field-of-view 
that covered the long axis of the brainstem (TE = 44 ms, 
TR = 1,900 ms, flip angle = 90°; resolution, 1.7 × 1.7 mm; 
matrix size, 200 × 200 × 36 mm; slice thickness, 1.7 mm; 21 
coronal slices; no slice gap; interleaved slice order; SENSE, 
2). A matching whole-brain EPI (141 slices; TE = 44 ms; 
TR = 12,640 s; matrix size, 200 × 200 × 240 mm), a T2 
weighted structural scan (TE = 80 ms; TR = 2,000 ms; reso-
lution, 1.8 × 1.8 mm; slice thickness, 2.19 mm; 80 slices) and 
a magnetization-prepared rapid gradient-echo (MPRAGE) 

F I G U R E   1   Financial gain and loss task. (a) Illustration of 
the cue-outcome contingencies. Cue A always led to a nil outcome. 
Cues B, C, D, and E each led to two different outcomes with equal 
probability, resulting in an expect value (EV) of either nil, +50p or 
−50p. (b) Boxplot showing preference scores for subjects that had 
learned the cue-outcome pairings and were subsequently included 
in the imaging analysis. Subjects exhibited a preference for cue B 
compared to cue A, and a preference for cue A compared to cue C. 
*p < 0.05. Boxplot displays the median, interquartile range, range 
(within 1.5* the interquartile range), and outliers. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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T1 weighted structural scan were also collected. These three 
structural scans were used for midbrain-optimized regis-
tration as described previously (Limbrick-Oldfield et al., 
2012). A dual-echo structural image with a partial view 
covering the midbrain was collected with a T2 and proton 
density (PD) contrast to visualize midbrain nuclei (TE of 
16 ms and 80 ms respectively, TR = 4,000 ms, resolution, 
1.3 × 1.3 mm; slice thickness, 1.3 mm; 32 coronal slices; 
matrix size = 240 × 180 × 42 mm).

2.4  |  Registration and anatomical 
localization
Midbrain-optimized registration was used to ensure accu-
rate colocalization of the midbrain nuclei across participants. 
The method involved a 4-step registration pathway that we 
have previously shown provides accurate midbrain registra-
tion (Limbrick-Oldfield et al., 2012). FMRIBs Linear Image 
Registration Tool (FLIRT; Jenkinson, Bannister, Brady, & 
Smith, 2002) was used to carry out the first three steps, and 
FMRIBs Non-Linear Image Registration Tool was used for 
the fourth step: (1) Example functional data were transformed 
onto the whole-brain echo-planar imaging (EPI) image using 
seven degrees of freedom, and a hand-drawn weighting mask 
of the midbrain and pons in reference (EPI) space; (2) The 
whole-brain EPI was transformed onto the T2-weighted 
structural image using seven degrees of freedom. This step 
was then carried out a second time with the inclusion of the 
weighting mask covering the midbrain, pons, and thalamus in 
reference (T2) space; (3) The T2-weighted structural image 
was then transformed onto the T1-weighted MPRAGE image 
using seven degrees of freedom; (4) FSL’s nonlinear regis-
tration (FNIRT) was used with a warp resolution of 10 mm 
to transform the T1-weighted image into standard Montreal 
Neurological Institute (MNI) space. The first three steps were 
concatenated into a single transform before being applied to 
the functional data. The weighting mask used in step 1 was 
hand-drawn on the reference functional image of each partic-
ipant. The weighting mask used in step 2 was drawn in stand-
ard space and transformed onto the individual participant 
T2 images by inverting the transformations of steps 3 and 
4. In addition, the PD images from the dual-echo acquisition 
were also transformed into standard space. To achieve this, 
the PD image was transformed into T2 space using FLIRT 
with six degrees of freedom, and then steps 3 and 4 were 
applied as above. Each individual’s transformed PD image 
was averaged, to create a group template to visualize the mid-
brain nuclei. On this average template, the VTA, SNC and 
substantia nigra pars reticulata (SNR) were localized using a 
combination of the regions of high signal intensity on the PD 
image, and labelled histology images (Naidich et al., 2009; 
Figure 2a–c). The SNC was defined at the dorsal portion of 
the substantia nigra, and the VTA as the region bordering the 

medial edge of the SNC and the red nuclei. For presentation 
purposes, the histology images used in Figure 2b were modi-
fied to remove the original labelling using the clone stamp 
tool in Photoshop.

2.5  |  Functional MRI
Data were analysed using the FMRIB Software Library 
(FSL). Preprocessing of the functional data included motion 
correction, spatial smoothing, and high pass temporal filter-
ing. Spatial smoothing was carried out with a Gaussian filter 

F I G U R E   2   Localization of the ventral tegmental area (VTA) 
and substantia nigra pars compacta (SNC). (a) Images illustrating the 
location of the midbrain slices of interest in two z-planes, showing 
the whole-brain group average T1 in Montreal Neurological Institute 
(MNI) space. (b) Post mortem histological images of the midbrain that 
were used to define boundaries of the VTA (1), SNC (2) and substantia 
nigra pars reticulata (SNR) (3) (shown with green and blue lines), 
adapted with permission from (Naidich et al., 2009). (c) VTA, SNC 
and SNR boundaries on proton density group average images of the 
midbrain in MNI (1 × 1 × 1 mm) space. [Colour figure can be viewed 
at wileyonlinelibrary.com]
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with a full width half maximum (FWHM) of 3 mm. Standard 
fMRI analyses use filters with a larger spatial extent (e.g., 
7 mm is often selected). As the spatial smoothing is car-
ried out in three dimensions, the region within the FWHM 
of a 3 mm filter is a twelfth of the volume of a 7 mm filter. 
This narrower filter was selected to allow for the localiza-
tion of activity to the small midbrain nuclei. A model of the 
blood-oxygen-level dependent (BOLD) response to experi-
mental events was constructed by convolving the stimulus 
input function with a gamma haemodynamic response func-
tion with time-to-peak of 4.5 s. This time-to peak has pre-
viously been shown to be optimum for analysing midbrain 
fMRI (Wall, Walker, & Smith, 2009). A temporal derivative 
of each event was also included, as were six head motion 
regressors.

The experimental task has previously been used to mea-
sure the BOLD response at the outcome phase, and was 
shown to reflect a prediction error signal (Seymour et al., 
2007). We, therefore, designed the analysis to interrogate the 
BOLD response at the outcome. The cue and outcome phase 
of the trials were not temporally separable to a degree that 
would allow analysis of both the cue and outcome; however, 
to ensure that the BOLD response we modelled was associ-
ated with the outcome, cue onset was modelled in the general 
linear model (GLM) as an additional single regressor.

We first carried out a standard analysis without controlling 
for physiological noise. Using FEAT 5.96 (FSLs Expert 
Analysis Tool) the following events were defined: cue onset, 
gain outcomes, loss outcomes, nil outcomes following cue A 
(where the nil was expected), nil outcomes following cue B 
(the other potential outcome was a gain, so nil was worse than 
the mean expected value), and nil outcomes following cue C 
(the other potential outcome was a loss, so nil was better than 
the mean expected value). For these outcome regressors, each 
outcome was modelled using a 1.5 s boxcar function. All cues 
were modelled with a single regressor, with the cue phase of 
each trial modelled using as a 3.5 s boxcar function. As the 
task was designed to measure the response to outcomes, we 
did not investigate the response to cues. Importantly, we did 
not jitter the time between cue and outcome, to allow us to ade-
quately jitter the delay between outcome and next cue. It should 
be noted, however, that it has previously been demonstrated 
using this task (Seymour et al., 2007) that the outcome signal 
remained qualitatively the same under different cue models, 
including a model where cue regressors were orthogonalized 
with respect to the associated outcome. Six contrasts in this 
model were then investigated: gain outcomes > nil expected 
outcomes, loss outcomes > nil expected outcomes, nil better 
than expected outcomes > nil expected outcomes, nil worse 
than expected outcomes > nil expected outcomes, gain out-
comes > loss outcomes, and loss outcomes > gain outcomes. 
Given the small size of the structures involved and recent 
concerns about the use of Gaussian random field theory for 

making valid statistical parametric inference correcting for 
multiple comparisons (Eklund, Nichols, & Knutsson, 2016), 
we used nonparametric permutation testing (RANDOMISE) at 
the group level. Statistical images were corrected to a signifi-
cance level of p < 0.05, with a nominal T-value of 2.3, using 
standard cluster correction in RANDOMISE. Prior to thresh-
olding, non-midbrain voxels were masked out of the analysis.

We then repeated the above analyses whilst controlling 
for physiological noise, to test if any observed signal 
may have been contaminated by physiological noise. 33 
regressors that modelled structured physiological noise 
were included in the general linear model (GLM). These 
regressors were derived from the cardiac and respiratory 
data collected during the task. There were eight cardiac 
regressors and eight respiratory regressors. These eight 
regressors consisted of the sine and cosine values of the 
fundamental frequency of the traces and the next three har-
monics of these sine and cosine terms. In addition, there 
were 16 interaction terms (eight additive and eight sub-
tractive) and a regressor that modelled heart rate. Details 
of the physiological noise modelling (PNM) can be found 
online (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PNM). The 
use of this PNM with 33 regressors has previously been 
shown to improve the localization of a signal in the mid-
brain (Limbrick-Oldfield et al., 2012). Task regressors and 
contrasts were identical to our original analysis that did not 
model physiological noise.

To test if modelling the physiological noise led to a dif-
ferent pattern of results, we carried out an additional group 
level analysis, comparing the parameter estimate images for 
each contrast with and without the PNM. To achieve this, a 
difference image was calculated for each participant, and en-
tered into RANDOMISE to test for differences between the 
two analyses for each contrast, with cluster correction applied 
as above.

In addition, we visualized where in the midbrain the PNM 
was explaining a significant amount of physiological noise. 
An F-test at the individual level was used to determine if 
the 33 PNM regressors explained a significant amount of 
variance in the data, F(33,197) = 1.45, p < 0.05, uncorrected. 
Significant voxels were binarized and added together across 
individuals. This image was converted into probability values 
using the binomial probability distribution function, which 
was then thresholded at p < 0.05 using false discovery rate 
(FDR) to correct for multiple comparisons. The analysis was 
repeated with a more conservative threshold (p < 0.001) for 
the F-test and false discovery rate (FDR) correction, and the 
same pattern of results were observed.

Finally, a temporal difference model was used, based 
on a previous report (Seymour et al., 2007), to model each 
participant’s learning during the experiment. To do this, 
we modified the way the outcomes were modelled. We 
separated the outcomes into gains, losses, and unexpected 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PNM
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nil outcomes. For each of these outcome types, two regres-
sors were entered. One represented the common response 
within the outcome type (using a 1.5 second boxcar func-
tion with a constant height). The second modelled the 
variation in the response to the outcome type as a function 
of the hypothesized prediction error, centred around zero. 
The hypothesized prediction error was calculated using a 
learning rate of 0.3 (see Seymour et al., 2007). For the 
first trial of each cue, the expected value was set at zero, 
and this value was updated throughout the rest of the three 
runs. We also included a single regressor for the expected 
nil outcomes. As we were interested in whether or not the 
observed gain and loss signal was modulated by prediction 
error, we carried out a group analysis on these three, pre-
diction error regressors (gain, loss, unexpected nil) using 
RANDOMISE, as described above. Using this model, a 
prediction error was calculated for each trial outcome. A 
learning rate of 0.5 was used as this has previously been 
shown to be effective at modelling human learning in this 
task (Seymour et al., 2007). The previous analysis, using 
the PNM, was repeated with the addition of parametric 
regressors representing the relative prediction error re-
sponse. There were two such parametric regressors: one 
for prediction error after better than expected outcomes; 
one for prediction error after worse than expected out-
comes. Both were demeaned to fluctuate around zero. 
This analysis represents a first order Taylor expansion, to 
model both the gross response to the outcomes, and the 
additional modulation of the signal by the relative level of 
prediction errors. These regressors were contrasted with 
the implicit baseline (periods of rest in the task).

3  |   RESULTS

A multilevel linear model revealed a significant effect of cue 
on preference scores, χ2(2) = 101.45, p < 0.0001. Planned 
contrasts revealed participants chose cue B (EV = +50p) 
significantly more than cue A (EV = nil), β = 15.25 
(SE = 1.18), p < 0.0001, and cue A significantly more than 
cue C (EV = −50p), β = 10.82 (SE = 1.18), p < 0.0001 
(Figure 1b). Due to the bounded nature of the outcome vari-
able, the residuals of the model did not show a normal distri-
bution. We therefore repeated these planned contrasts using 
a Wilcoxon signed-rank test (A vs. B: T = 20, p = 7.75e-06; 
A vs. C: T = 101, p = 0.0039) revealing qualitatively the 
same results. These results show that, for cues A, B, and 
C, the preference score reflects the expected value of these 
cues, showing that the cue-outcome contingencies had been 
learned.

A standard GLM analysis, without the inclusion of physi-
ological noise regressors, revealed that financial “Gain” was 
associated with increased BOLD activity in the VTA and 

SNC compared to the “Expected nil” outcome (Figure 3a). 
In addition, financial “Loss” was associated with increased 
BOLD activity in the VTA and SNC compared to the “ex-
pected nil” outcome (Figure 3b). “Worse than expected nil” 
outcomes were associated with increased BOLD signal in a 
caudal region of the VTA compared to the “Expected nil” 
outcome (Figure 3c). No significant clusters of voxels were 
found for the “Better than expected nil” outcome compared 
to the “Expected nil” outcome. To explore the nil outcomes 
further, we conducted a region of interest (ROI) analysis to 
extract BOLD signal change values from within the signif-
icant clusters revealed by the “Gain” and “Loss” contrasts. 
We found, using a one-sample t-test, that the BOLD response 
to “Better than expected nil” outcomes was significantly 
greater than zero, t(30) = 3.35, p < 0.01, where zero is the 
“Expected nil” outcome. In addition, the BOLD response to 
“Worse than expected nil” outcomes was also significantly 
greater than zero, t(30) = 4.29, p < 0.001; Figure 3d. Finally, 
no significant clusters of voxels were found for the “Gain” 
outcomes > “Loss” outcomes or “Loss” outcomes > “Gain” 
outcomes contrasts.

Including the physiological regressors revealed qual-
itatively the same pattern of results as the standard model. 
There were no significant clusters of activity when directly 
comparing the standard analysis and the PNM analysis 
for any of the contrasts of interest. However, including the 
PNM regressors revealed more extensive clusters of activ-
ity for the “Gain” > “Expected nil” and “Loss” > “Expected 
nil” contrasts (see Figure 4a,b respectively). For the 
“Gain” > “Expected nil” contrast, the PNM analysis revealed 
1,005 significant voxels within the midbrain with a maxi-
mum T-score of 5.09, whereas without the PNM the number 
of active voxels was 861 with a maximum T-score was 4.48. 
Similarly, for the “Loss” > “Expected nil” contrast, the PNM 
analysis revealed 868 significant voxels within the midbrain 
with a maximum T-score of 4.92, whereas without the PNM 
the number of active voxels was 686 with a maximum T-score 
was 4.60. For the “Worse than expected nil” > “Expected 
nil” contrast the PNM analysis revealed 209 significant vox-
els with a maximum T-score of 3 0.60, whereas without the 
PNM the number of active voxels was 232 with a maximum 
T-score of 3.61 (Figures 3c and 4c).

Next, we visualized physiological noise in our data. 
Analysis of the 33 PNM regressors revealed that the inclusion 
of these regressors explained a significant amount of vari-
ance in large regions of the midbrain. In particular, regions 
adjacent to CSF, such as the rostral regions of the VTA and 
extreme medial and lateral portions of the SNC, had variance 
explained by the PNM regressors, indicating these regions 
are prone to physiological noise (Figure 4c).

Lastly, we found that the gain, loss, and unexpected nil 
prediction error contrasts showed no active clusters. We 
further interrogated these results using a region of interest 
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(ROI) analysis, using Featquery to extract the signal from 
the location of the gain cluster revealed by the previous 
PNM analysis (Figure 4a) for the gain prediction error re-
gressor, the signal from the location of the loss cluster re-
vealed by the previous PNM analysis (Figure 4b), and the 
signal from these two clusters combined for the unexpected 
nil prediction error signal. At the individual subject level, 
we extracted the mean signal change within the cluster 
of interest. We found no significant difference from zero 
for either the gain prediction error contrast, t(30) = 1.25, 
p = 0.22, the loss prediction error contrast, t(30) = 1.46, 
p = 0.16, or the unexpected nil prediction error contrast, 
t(30) = 0.76, p = 0.46.

4  |   DISCUSSION

We examined brain activation in response to financial gains 
or losses. To localize changes in the BOLD signal to the VTA 
and SNC, we used a midbrain-optimized approach which in-
cluded high-resolution imaging, a 4-step registration protocol, 
and physiological noise modelling. Using this approach, we 
were able to observe a BOLD signal in the VTA and SNC as-
sociated with both financial gains and losses. Moreover, in the 
VTA we observed a BOLD signal associated with nil outcomes 
when they were better or worse than expected. In addition, we 
observed significant physiological noise in the SNC and VTA. 
Importantly, we still observed significant BOLD signal in re-
sponse to gain and loss outcomes in both the VTA and SNC 
even when this physiological noise was taken into account 
using the PNM. Although challenging to localize the SNC in 
the human brain with MRI, due to its shape and proximity to 
the substantia nigra pars reticulata, the activation pattern was 
consistent with the estimated location of the SNC. The area 
corresponding to the SNC was modulated by the inclusion of 
the PNM, as can be seen by comparing the activity maps of 
Figures 3b and 4c. We hypothesized that the thin architecture 
of the SNC may make it particularly sensitive to physiologi-
cal noise (Figure 4a). In addition the increased iron content of 
the substantia nigra tissue may mean that the optimum echo 
time for revealing BOLD changes may be shorter than the 
optimum echo time for the VTA, as iron reduces the T2 re-
laxation time of the surrounding tissue (Drayer et al., 1986). 
Therefore, our data acquisition protocol may have been more 
sensitive to VTA signal changes than substantia nigra signal 
changes, which may be why a similar loss-related signal was 
not observed previously in the VTA (D’Ardenne et al., 2008).
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F I G U R E   3   Blood-oxygen-level dependent (BOLD) responses in 
the ventral tegmental area (VTA) and substantia nigra pars compacta 
(SNC) to gains, losses, and nil outcomes. (a) Increased BOLD 
signal (yellow/red) was observed in the VTA and SNC in response 
to financial gains, when compared to expected nil outcomes. White 
lines indicate boundaries of the VTA, SNC and substantia nigra pars 
reticulata (SNR), as defined in Figure 2. (b) Increased BOLD signal 
was observed in the VTA and SNC in response to financial losses, 
when compared to expected nil outcomes. (c) Increased BOLD signal 
was observed only in the caudal VTA in response to nil outcomes that 
were worse than expected, compared to expected nil outcomes. The 
statistical maps show significant clusters of voxels (determined using 
nonparametric random permutation testing with a corrected threshold 
of p < 0.05 and a nominal T-value of 2.3). Magnetic resonance 
images are presented in radiological convention. (d) Boxplot showing 
BOLD signal change values for better (green) and worse (purple) than 
expected nil outcomes, contrasted with the expected nil outcome. 
*p < 0.05 Boxplot displays the median, interquartile range, range 
(within 1.5* the interquartile range), and outliers. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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Unlike previous studies, our signal did not scale with 
prediction errors (Boll et al., 2013; D’Ardenne et al., 2008, 
2013). Because the financial task we used has previously 
revealed prediction error signals in the ventral striatum 
(Seymour et al., 2007), it is possible that the data acquisition 
methods used here did not provide us with sufficient power 
to detect the relatively subtle modulations in signal resulting 
from changes in the level of prediction error.

Importantly, the midbrain BOLD signal that we observed 
within the VTA and SNC without the PNM was likely not 
a physiological artefact, as it remained significant once the 
physiological noise had been modelled. This suggests that 
previously reported midbrain BOLD signals in whole-brain 

studies reflect neural activity, rather than physiological noise. 
Whilst care must be taken when comparing our results with 
studies using larger voxels, the signal-to-noise ratio in larger 
voxels is actually greater than that measured with smaller 
voxels, and so such protocols should be less sensitive to 
physiological noise, although many of these large voxels are 
likely to contain both brain tissue and CSF. Consequently, 
on the basis of our results, and others, it seems reasonable to 
conclude that aversive outcomes are processed in the human 
VTA and SNC. There are a number of possible interpretations 
of these observations. For example, because we observed a 
BOLD signal in response to both appetitive and aversive out-
comes, it may be that this reflects stimulus salience (motiva-
tional and/or physical) rather than specifically aversiveness. 
Indeed, at the level of single neuron electrophysiology it has 
been argued that apparent activations of dopamine neurons 
to aversive stimuli could reflect physical salience and/or gen-
eralization to rewards (particularly in rewarding contexts) 
rather than aversiveness (Fiorillo, 2013; Matsumoto, Tian, 
Uchida, & Watabe-Uchida, 2016; Schultz, 2016).

The relationship between the BOLD signal in the VTA/
SNC and underlying neuronal activity is not well under-
stood. Potential mechanisms include, but are not limited 
to, changes in firing activity in one or more of the neuro-
chemically distinct neuronal groups (i.e., dopamine neurons, 
GABA neurons, and glutamate neurons), excitatory, inhib-
itory, and neuromodulatory synaptic inputs (for a thorough 
discussion see Düzel et al., 2009, 2015). A number of dif-
ferent findings have been taken to suggest that action poten-
tial activity in dopamine neurons can elicit a BOLD signal. 

F I G U R E   4   Modelling physiological noise in the ventral 
tegmental area (VTA) and substantia nigra pars compacta (SNC) 
preserves blood-oxygen-level dependent (BOLD) responses to gains, 
losses, and nil outcomes. (a) Increased BOLD signal was observed 
in the VTA and SNC in response to financial gains, when compared 
to expected nil outcomes. White lines indicate boundaries of the 
VTA, SNC and substantia nigra pars reticulata (SNR), as defined in 
Figure 2. (b) Increased BOLD signal was observed in the VTA and 
SNC in response to financial losses, when compared to expected nil 
outcomes. (c) Increased BOLD signal was observed only in the caudal 
VTA in response to nil outcomes that were worse than expected, 
compared to expected nil outcomes. (d) Distribution of physiological 
noise within the midbrain. The overlay image shows how many 
participants showed significant physiological noise at each voxel. This 
was created by conducting an F-test at each voxel (p < 0.05), assessing 
whether the physiological noise model significantly accounted for 
noise. This test was carried out for each individual, and a binary map 
of each individual’s significant voxels was added together across 
subjects to create an overlay image. The binomial probability density 
function was used to derive p values from the overlay image, which 
was then thresholded using a FDR (p < 0.05) to correct for multiple 
comparisons. [Colour figure can be viewed at wileyonlinelibrary.com]
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First, direct optogenetic excitation of VTA dopamine neurons 
in rodents (i.e., increases in action potential firing activity 
in the absence of any changes in synaptic inputs) evokes a 
large BOLD signal in the midbrain (Domingos et al., 2011) 
and the striatum (Ferenczi et al., 2016; Lohani, Poplawsky, 
Kim, & Moghaddam, 2017). Second, dopamine release in 
the striatum, measured using positron emission tomography 
(PET), is correlated with the BOLD signal in the midbrain 
during reward-related tasks (Schott et al., 2008). However, a 
cross-cohort comparison of reward-prediction error (RPE)-
related BOLD signal and dopamine release, measured using 
fast-scan cyclic voltammetry, suggest that they do not always 
relate to one another (Lohrenz, Kishida, & Montague, 2016). 
Third, the BOLD signal in a gambling task is attenuated in 
Parkinson’s disease (van der Vegt et al., 2013). However, 
each of these observations comes with its own set of cave-
ats. For example: optogenetic activation may not recapitulate 
physiological firing activity; dopamine release can be con-
trolled locally in the striatum; and degeneration of dopamine 
neurons in Parkinson’s disease maybe also lead to a degen-
eration of synaptic inputs in the midbrain. Moreover, even 
if an increase in dopamine neuron firing can cause a change 
in the BOLD signal, that does not mean that all changes in 
the BOLD signal are related to changes in dopamine neu-
ron firing. For example, because GABAergic neurons in the 
VTA and SNC make up around 30% of the population (Nair-
Roberts et al., 2008), it seems possible that changes in their 
firing activity could contribute to a BOLD signal. In addi-
tion, in the cortex it appears that the BOLD signal may be 
more closely linked to synaptic activity (Logothetis, 2008; 
Logothetis & Wandell, 2004). However, whether this applies 
in the VTA and SNC, which are structurally and function-
ally quite different from the cortex, remains unclear. For 
example, it has been noted that (Düzel et al., 2009, 2015), 
in contrast to cortical pyramidal neurons, dopamine neurons 
receive fewer excitatory synaptic inputs (Henny et al., 2012; 
Megias, Emri, Freund, & Gulyas, 2001). Indeed, SNC dopa-
mine neurons in particular, sit within a largely inhibitory net-
work of extrinsic inputs (Lerner et al., 2015; Watabe-Uchida, 
Zhu, Ogawa, Vamanrao, & Uchida, 2012) and receive pro-
portionally more synaptic inhibition than excitation (Bayer 
& Pickel, 1991; Bolam & Smith, 1990; Henny et al., 2012; 
Lerner et al., 2015; Ribak, Vaughn, Saito, Barber, & Roberts, 
1976). One mechanism for the generation of bursts of firing 
activity in dopamine neurons is disinhibition (i.e., a reduction 
in GABAergic inhibition; Paladini & Roeper, 2014; Paladini 
& Tepper, 1999). How such a scenario (i.e., reduced synaptic 
input but increased firing) might relate to a BOLD signal is 
not clear. Interpretation is further complicated by the differ-
ing timescales in which these measures are made. For exam-
ple, in most electrophysiological studies, changes in firing 
activity are observed in response to stimuli with both a short 

latency and onset (often of only several hundred ms; Schultz, 
2007), in contrast to relatively slower BOLD signals.

Regardless of the interpretative limitation regarding the 
precise neural mechanisms involved, our findings indicate 
that a BOLD response to aversive financial outcomes can be 
localized to the human VTA and SNC when controlling for 
physiological noise. An important issue for future investiga-
tion, given the evidence for functional diversity within subre-
gions of the VTA and SNC (Brischoux et al., 2009; Lammel 
et al., 2012; Matsumoto & Hikosaka, 2009), and a further 
current limitation, will be to examine this signal at a higher 
spatial resolution. In addition, it may be valuable to use the 
approach we have developed to examine VTA and SNC func-
tion in disorders such as schizophrenia and addiction. More 
generally, the approach that we have taken to optimize mid-
brain fMRI can be applied to other deep brain structures that 
are prone to the same technical challenges of relatively small 
size and proximity to sources of physiological noise, includ-
ing other prominent neuromodulatory systems such as, for 
example, those found in the raphe nuclei and locus coeruleus.
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