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Abstract: Lung cancer is a devastating disease that is responsible for around 160,000 deaths 

each year in United States. The discovery that lung cancer, like most other solid tumors, contains 

a subpopulation of cancer stem cells or cancer stem-like cells (CSCs/CS-LCs) that if eliminated 

could lead to a cure has brought new hope. However, the exact nature of the putative lung CSCs/

CS-LCs is not known and therefore therapies to eliminate this subpopulation have been elusive. 

A limited knowledge and understanding of cancer stem cell properties and tumor biology may be 

responsible for the limited clinical success. In this review we discuss the stemness and plasticity 

properties of lung cancer cells that are critical aspects in terms of developing effective therapies. 

We suggest that the available experimental evidence obtained from lung cancer cell lines and 

patients’ derived primary cultures does not support a tumor model consistent with the classical 

CSC model. Instead, all lung cancer cells may be extremely versatile and new models of cancer 

stem cells may be better working models.
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Introduction
Lung cancer is the most common malignancy in the United States and is responsible 

for around 160,000 death each year.1 Tumor recurrence after resection is very com-

mon and accounts for the majority of mortality.2 The cell of origin of lung cancer has 

been the subject of considerable debate since its elucidation and may lead to new and 

perhaps more effective therapies. Histopathologically, lung cancer is divided into 

two main subtypes: non-small-cell lung cancer (NSCLC) and small-cell lung cancer 

(SCLC). Each subtype may arise from distinct cells of origin localized in defined 

microenvironments.3–5 It was found that both subtypes contain a subpopulation of rare 

undifferentiated cells expressing CD133, a cancer stem cells marker.6 Cancer stem cells 

(CSCs) or cancer stem-like cells (CS-LCs) have been found in the majority of cancers 

and are usually related to chemoresistance and recurrence.7,8 Lung cancer with stem 

cell signatures have been associated with resistance to several anticancer drugs, such 

as, cisplatin,9,10 Epidermal growth factor receptor (EGFR) inhibitors8 such as gefitinib,11 

docetaxel and gemcitabine.12 In a simplistic explanation the classical cancer stem cell 

theory (CSCT) states that CSCs are: a) rare, b) highly resistant to conventional therapies, 

c) similar to normal stem cells capable of unrestricted self-renewal and multipotent 

differentiation13,14 and thus responsible for tumor recurrence.14–16 From a clinical point 

of view the idea that the elimination of this subpopulation will lead to a cure or at least 

to dramatic improvement has become a new dogma in the cancer field.17,18 It is then not 

surprising that considerable efforts and resources are being allocated to identify and 
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eliminate this fraction. As our knowledge of CSCs improves, 

the acceptance of the classical CSC theory as a universal 

model has been questioned and gave rise to alternative models 

that have different clinical implications.

In contrast to the CSCT, the stemness phenotype model 

(SPM)19 proposes that all cancer cells may have stem cell 

properties and that the stemness of cancer cells depend on 

the microenvironment. According to the SPM all cancer 

cells are potentially tumorigenic and any cancer cell could 

be responsible for tumor recurrence. Thus, from the clini-

cal point of view, to cure cancer, all cancer cells should be 

targeted and eliminated at once. Models closely resembling 

the SPM with similar clinical implications have also been 

proposed, amongst them: the “complex system model”,20 

the “reprogramming model”,21 the “dynamic CSC model”,22 

and the “plasticity model”.23 The idea that CSCs possess 

constantly evolving features and are “moving targets” rather 

than fixed entities is gaining acceptance.24

This mini-review will focus on the current knowledge 

of lung cancer stem cells in order to summarize the findings 

supporting alternative models of cancer stem cells. Such 

knowledge is crucial in order to better design new therapies 

that actually benefit patients.

Search method
Literature data of relevant studies were conducted using 

the PubMed (http://www.pubmed.com) and ScienceDirect 

databases for articles published up to January, 2014 (additional 

searches were done for a revised version). Relevant terms such 

as “lung cancer stem cells”, “lung cancer stem cells plasticity”, 

“lung cancer stem cells stemness”, and many other variants 

including keywords relevant to the minireview (eg, microen-

vironment, signaling pathways; see Table 1 and 2) were used. 

Since this article is a minireview/perspective article, only 

selected relevant references were included.

Lung cancer stem cells
Probably the first observation of LCSCs came from the 

work published by Carney et  al in 198225 at a time when 

the CSC hypothesis was not prominent. Later on, putative 

LCSCs were isolated from a variety of cell lines and tumor 

specimens. Recent reviews has summarized this findings 

(see Table 1 and 2 in26 and,19 respectively). LCSCs have been 

associated with radioresistance27 and chemoresistance.8–11 

Similar to findings in other tumors LCSCs are able to form 

spheres28 and express stem cell markers such as CD133, CD44, 

ALDH1, and β-catenin and were found to be associated with 

higher recurrence rates.29 In summary, there is overwhelming 

evidence that lung cancers have cells with traits of stem cells. 

However, there are controversies regarding which model of 

CSC fits better26 in order to be used as a more rational guide-

line to develop new therapies for this disease.

Modulation of stemness  
by signaling pathways
Multiple signaling pathways such as Wnt/beta-catenin, 

Hedgehog and Notch that appear to be involved in the regu-

lation of stemness in other solid tumors have already been 

implicated in lung cancer development.4 An activated Wnt/

beta-catenin pathway, which in A540 cells up-regulates the 

stem marker OCT-4,30 predicts increased risk of tumor recur-

rence.31 SOX17, which acts as a Wnt signaling inhibitor and 

Table 1 Stemness modulation of LCSCs by signaling pathways

Cell type Signaling pathway Effect on  
stemness

Reference

A549 Wnt/beta-catenin ↑ 30,51
A549, H1299 Hedgehog ↑ 58,59
HCC, H1339 Hedgehog ↑ 60
Primary LSCC tumor cells Hedgehog ↑ 61
A549, H1299 and H1755 Notch-1 ↑ 62
H460 and H661 Notch-1 ↑ 9
A panel of primary NSCLC Notch-3 ↑ 63
NSCLC cell lines: NCI-H1299, NCI-H358,  
NCI-H441, NCI-H460, and A549

Notch ↑ 64

H1650, H1975, A549 EGFR/Src/Akt ↑ 65
Several lung AD cell lines including H1975 and PC-3 Akt/Sox2 ↑ 66
A549 pAkt ↑ 67
A549 IGF1R/PI3K/AKT/GSK3β ↑ 68
Gefitinib-resistant A549 cells CXCR4-medated STAT3 pathway ↑ 69

Abbreviations: NSCLC, non-small-cell lung cancer; EGFR, epidermal growth factor receptor; AD, adenocarcinoma; LSCC, laryngeal squamous cell carcinoma; HCC, 
hepatocellular carcinoma.
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inhibits proliferating cells, is frequently downregultated in 

lung cancer cells.32 Hedgehog is also linked to lung cancer 

development33 and plays a role in the maintenance of lung 

cancer cells stemness.

Increased Notch activity enhances epithelial-mesenchymal 

transition in gefitinib-acquired resistant lung cancer cells11 and 

has been correlated with poor clinical outcome in NSCLCs 

patients without TP53 mutations. Approximately 30% of 

NSCLCs showed increased Notch activity due to loss of the 

counteracting function of Numb. In approximately 10% of the 

cases a gain of function mutation of the NOTCH-1 gene34 was 

obderved. Numb acts as an inhibitor of the Notch receptor 

signaling pathway but it is also connected to Hedgehog- and 

TP53-activated pathways, regulating multiple functions such 

as maintenance of stem cell compartments, regulation of cell 

polarity and adhesion, and migration.35

Stemness modulation of LCSCs  
by the microenvironment
The tumor microenvironment contains a variety of malignant 

and non-malignant cells36 and plays a key role in the regula-

tion of the epithelial-mesenchymal transition (EMT)37 that is 

associated with the acquisition of stem cell traits.38 Specifically, 

NSCLC induction of EMT by TGFβ-1 has been shown to 

increase stemness.39 Interactions between tumor cells and the 

stroma cells are therefore considered candidate targets for 

therapeutical interventions.40 In particular, in lung cancer, can-

cer associated fibroblasts (CAFs) have been found to promote 

the stemness of cancer cells (Table 2). It seems that fibroblasts 

in general have a promoting effect as they has been used as 

feeder cells to establish LCSC cultures.41 There is evidence 

that tumor associated macrophages (TAMs) play an important 

role in cancer progression and metastasis in NSCLC.42 TAMs 

depending on the influence of various stimuli in the tumor 

microenvironment can develop into a tumor-inhibitory (M1) 

or tumor-promoting (M2) phenotype.36,43 Hypoxia that is com-

monly associated with resistance to radiation and chemotherapy 

in lung cancer44 is also a known promoter of stemness in LCSCs 

most likely via activation of the Notch pathway.37,38

Plasticity of cancer cells: 
interconversion between CSCs  
and non-CSCs in lung tumors
Cellular plasticity can be defined as the property or abil-

ity of cells to reversible change their phenotype.45 There is 

an increasing acceptance that cancer cells display variable 

degrees of plasticity.46–48 The classical cancer stem cell theory 

proposed a hierarchical and unidirectional organization where 

CSCs can give origin to more differentiated cells. Due to the 

unidirectional organization, differentiated cells have limited 

plasticity and are unable to originate new CSCs.20,22 In contrast, 

the stemness phenotype model initially suggested that cancer 

cells are not hyerachically organized and can interconvert into 

each other.19 This property expands the plasticity of cancer 

cells (that can undergo both differentiation and dedifferentia-

tion) since in theory a single non-CSC can originate a new 

tumor and re-establish a new pool of CSCs. Perhaps the more 

convincing argument for a lack of hierarchical organization in 

lung cancer cells would be a direct observation of the conver-

sion from a non-CSCs phenotype to a CSCs phenotype and 

vice versa as has been recently observed in other systems.49 

In fact recently Akunuru et al,50 provided direct experimental 

evidence of interconversion between different phenotypic sub-

populations of non-small cell lung adenocarcinoma (NSCLA). 

In that study, interconversion was observed not only between 

CSCs that were phenotypically different but also between 

CSCs and non-CSCs. This is consistent with the prediction 

of the SPM. Evidence that the culture conditions alters the 

phenotype of lung cancer cells was reported in 1984,51 long 

before the isolation of putative LCSCs.

Table 2 Microenvironmental factors implicated in stemness modulation of lung cancer cells

Cell type Microenvironmental factor Effect on  
stemness

Reference

H-146 (small-cell lung carcinoma) Hypoxia ↑ 70
NSCLC cell lines, PC9 and HCC827 Hypoxia ↑ 71
A549, NCI-H358 CAF likely via (TGF)-β1 ↑ 72
A549, PC-14, and CRL-5807 VAF ↑ 73
A549 TGF-β1 ↑ 74
A549 IL-8 ↑ 75
A549 VEGF ↑ 75
A549 and HTB177 tMVs ↑ 76
CMT167 Matrix metalloproteinase-10 ↑ 77

Abbreviations: CAF, cancer associated fibroblasts; VAF, vascular adventitial fibroblasts; TGF, transforming growth factor; IL-8, interleukin 8; VEGF, vascular endothelial 
growth factor; NSCLC, non-small-cell lung cancer; CAF, cancer-associated fibroblasts; VAF, vascular adventitial fibroblasts; tMVs, tumor microvesicles.
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More surprising, the plasticity of lung cancer stem cells 

seems to be not limited only to specific tissues. Zhang et al, 

found that the SCLC cell line NCI-H446 can also differenti-

ate to neurons, adipocytes, and osteocytes.52 In the cell line 

LC-42 expression of the stem cell marker CD133 does not 

correlate with tumorigenic potential.53 The recent observation 

that committed epithelial cells can differentiate in vivo into 

stem cells54 provides supporting evidence that stemness may 

be a general porperties of all cells.55

Implication for cancer therapy
Both extreme models of LCSC have also extreme clinical 

implications. In the classical CSC model, the hierarchi-

cal organization gives CSCs a predominant role in cancer 

resistance and tumor recurrence. Therefore, eliminating 

this fraction is considered a crucial target and considerable 

resources are being used in identifying this rare subpopulation 

and developing strategies to eliminate them.56 On the other 

hand, the SPM and similar alternative models propose that 

virtually all cancer cells are potentially tumorigenic. Thus, to 

have a significant impact on cancer treatment all cancer cells 

should be eliminated at once to prevent tumor progression 

and relapse. One aspect of tumor biology that is poorly inves-

tigated is the potential dynamic of the microenvironment due 

to external influences. In the classical CSC model, due to its 

hierarchical nature, CSCs can produce non-CSCs but not in 

the other way. It is then expected that microenvironmental 

changes in tumor regions with non-CSCs will have little 

therapeutic impact but similar changes in tumor regions with 

CSCs are potential promising avenues to explore for therapies 

targeting the CSC-microenvironment.

Conclusion
A better understanding of cancer stem cell biology in lung 

cancer is essential to develop effective therapies. At present 

there is increasing evidence suggesting that LCSCs are a 

dynamic subpopulation harboring a high degree of plastic-

ity and not fixed entities. The complex interaction between 

a) a dynamic cancer cell phenotype that can interconvert 

from a pure non-CSC phenotype to a pure CSC phenotype 

in combination with b) a dynamic microenvironment that can 

either promote or suppress cancer stemness adds a significant 

challenge to the development of novel treatment for lung 

cancer. A similar scenario has been recently recognized in 

ovarian cancer.57 This complex interaction should be taken 

into consideration at the early stages of preclinical research 

to increase the chances of a successful translation into clini-

cal practice.
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