
2018 ATS BEAR Cage Winning Proposal: Cell-Free DNA to Improve
Lung Transplant Outcomes

The first lung transplantation in 1963 brought hope to patients with end-
stage lung disease. In the two decades that followed, short-term survival
remained dismal, primarily because of early surgical complications such
as anastomosis dehiscence and early post-transplant allograft rejection.
With advances in surgical techniques and new immunosuppression
regimens, 1-year survival improved to greater than 90%. Unfortunately,
long-term survival still remains low, with only 50% of patients surviving
5–6 years after transplant. Chronic lung allograft dysfunction (CLAD),
an umbrella term used to describe recognized phenotypes of chronic
lung rejection (1), is a leading contributor to poor long-term survival.
With no available therapies for CLAD, current management strategies
are focused on early detection and treatment of CLAD risk factors,
which include primary graft dysfunction, acute cellular rejection (ACR),
antibody-mediated rejection (AMR), and community-acquired
respiratory viral infections (1–4). The introduction of genomic,
proteomic, and other “omic” approaches have reenergized a new wave
of innovative research that promises to improve long-term outcomes via
early detection of CLAD and its risk factors. One such innovative
project focused on assessing the benefit of early detection and treatment
of AMR by means of a noninvasive genomic technology—donor-
derived cell-free DNA (%ddcfDNA; Figure 1)—and received the 2018
American Thoracic Society (ATS) Building Education to Advance
Research (BEAR) Cage Innovation Award.

AMR: Is Diagnosis the Problem?
The improved ability to detect donor-specific antibodies (DSAs) has
peeled back a layer exposing AMR as a major reason for the
unacceptably high attrition that typically accompanies lung
transplantation. In our cohort, even with aggressive treatment, 75%
of patients progressed to CLAD or died within 2 years of AMR
diagnosis, similar to what was observed in another cohort
(5, 6). Modifying the course of AMR may therefore reduce the
high rate of CLAD and early death in lung transplant patients.
Unfortunately, diagnosis remains a major challenge. AMR is linked
to the development of DSAs. On their own, DSAs are nonspecific,
as only a fraction of patients with DSAs develop AMR (3, 7).
Diagnosis therefore relies on additional confirmatory evidence
of associated allograft injury detectable by histopathology or
spirometry. Unfortunately, these modalities are unsophisticated at
best and limited by poorly defined standards (8), low sensitivities,
and/or high interoperator variability (9). These limitations
potentially delay AMR diagnosis and expose patients to invasive
procedures and excessive costs without a clear benefit. Noninvasive
tools with better sensitivities could predict or detect AMR
earlier, prompt early treatment, and potentially lead to better
outcomes.

Proposed Solution to Improve AMR Outcomes through
Early Detection
We propose that %ddcfDNA provides a noninvasive, reliable,
and sensitive blood screening test that can detect allograft
injury from AMR earlier than histopathology or spirometry. %
ddcfDNA also detects injury from ACR and some infections
(10). On its own, %ddcfDNA showed a high sensitivity (100%)
but low specificity (z35%) for detecting AMR. However, when
combined with the presence or absence of DSAs, the specificity
increased to 90%. The test distinguished DSAs based on the
risk of progression to AMR (5). Levels of %ddcfDNA were also
53 higher in AMR than in ACR and 203 higher than at
nonrejection time points.

Interestingly, elevations in %ddcfDNA from baseline were
detected at a median of 2–3 months before the patients developed
any histopathological, spirometric, or clinical manifestations (5).
Data for a prototypical patient are shown in Figure 2.

cfDNA is released from dying cells into the circulation and
other biological fluids. It is abundant in plasma, with over 10 billion
fragments per milliliter. In the transplantation setting, the vastly
different genomes of the donor and recipient provide large numbers
of distinguishing SNPs, which we leveraged to identify and reliably
quantify %ddcfDNA with a great degree of reproducibility (11). The
assay has broad applicability across organ transplantation (12), as
well as for diagnosing prenatal complications such as trisomies (13)
and cancer (14).

Our data indicate that an approach that combines %ddcfDNA
and DSA testing can detect impending AMR and provide an earlier
time point in the decision tree to intervene. Will early intervention
halt AMR-associated injury and progression to CLAD? We intend
to address this question via the eDATA (Early Detection and
Treatment of AMR) study proposed for the 2018 Bear Cage
Innovation Award Competition. The study proposes to compare
the rates of CLAD in patients treated early for impending AMR via
the use of DSA and %ddcfDNA testing, and in patients treated for
clinical AMR diagnosed via usual care (DSA, histopathology, and
spirometry). Early detection of AMR via the proposed approach is
only effective in circumstances where DSA detection precedes
AMR diagnosis. This approach may be ineffective in two
circumstances:

1. In z10–20% of the patients in our cohorts who received a
diagnosis of AMR, DSAs were first detected at AMR diagnosis
and not before, making early detection via our approach
impossible. Surprisingly, these patients still showed elevated
%ddcfDNA for several weeks to months before circulating
DSAs and AMR become detectable. The elevated %ddcfDNA
without detectable circulating DSAs indicates ongoing allograft
injury, which we suspect could be from DSAs adsorbed in the
allograft (15). The rising %ddcfDNA levels without identifiable
causes may prompt a physician to perform biopsy, DSA testing,
and additional testing to guide management.

2. DSAs directed against non-HLA or self-antigens have been
associated with AMR (16). Our approach is focused on HLA
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DSAs and can be extended to include non-HLA DSAs as the test
becomes clinically available.

The ATS Bear Cage Innovation Award
The ATS BEAR Cage Innovation Award is sponsored by the
ATS Drug/Device Discovery and Development Committee.
The committee’s aim is to spur innovative thinking in basic
and translational research, with an emphasis on technology
development and application. For this award, early-stage career
applicants are asked to submit proposals, and three finalists are
selected to make an oral presentation to a committee of experts

from industry and academia at the ATS annual meeting. By
bringing expertise from industry and academia, the ATS BEAR
Cage Innovation Award Committee provides a rare opportunity for
early-stage investigators to engage different and often contrasting
approaches to the same scientific problem—an interaction that is
rare in academia. This encounter has broadened my scope and
provided practical insights that have reshaped my thinking and
clinical study design. Winning this award has given a significant
boost to my career and attracted essential collaborations.
Furthermore, in my view, the selection of this proposal by a panel
of academic and industrial leaders validates the potential of this
novel genomic approach to reshape clinical practice and studies
even in conditions beyond transplantation. n
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Figure 1. Quantification of donor-derived cell-free DNA (%ddcfDNA). The donor and recipient are genotyped to identify SNPs. After transplantation,
recipient plasma is obtained for cfDNA isolation, library construction, and shotgun sequencing. Recipient plasma contains donor (green) and recipient
(red) cfDNA, as well as common cfDNA that is indistinguishable between the donor and recipient (gray). Sequence reads are surveyed to identify
donor and recipient SNPs. Reads that overlap with these SNPs are used to compute %ddcfDNA. SNPs that overlap with cfDNA reads are used to
compute the error rate.
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Figure 2. Donor-derived cell-free DNA (%ddcfDNA) elevation precedes
antibody-mediated rejection (AMR) diagnosis. Data for a prototypical
patient with a diagnosis of AMR (*) are shown. Trends of %ddcfDNA (solid
line), donor-specific antibodies (DSAs; dashed line), and FEV1 (dotted line)
are shown. An episode of asymptomatic respiratory syncytial virus (RSV)
detected via routine BAL sampling is also shown.
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