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a b s t r a c t 

Multiple new variants of the SARS-CoV-2 virus have emerged globally, due to viral mutation. The major- 

ity of COVID-19 vaccines contain SARS-CoV-2 spike protein, which is susceptible to mutation. It is known 

that protection against COVID-19 after two doses of mRNA vaccine continuously wanes over time. If viral 

variants contain mutated spike protein, current vaccines may not provide robust protection. This perspec- 

tive suggests the inclusion of SARS-CoV-2 nucleocapsid protein in future COVID-19 vaccines and boosters, 

as nucleocapsid is much less vulnerable to mutation and may provide stronger immunity to novel viral 

variants. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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The SARS-CoV-2 coronavirus exemplifies “evolution in action”

s demonstrated by the continuous emergence of new genetic vari- 

nts, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta 

B.1.617.2), and Omicron (B.1.1.529), with the latter seeming to out- 

ompete the others. These new variants are defined by multiple 

pike (S) protein mutations that mediate increased transmissibil- 

ty, replication efficiency, and immune evasion. The ongoing high 

requency of mutations in various regions of the spike sequence 

ssentially renders it a “moving target” and supports a rationale 

o replace or coexpress spike with the nucleocapsid (N) gene in 

he second generation of vaccine candidates. In contrast to spike, 

hich is external, the internal N gene is more conserved and sta- 

le. The presence of fewer mutations over time is consistent with 

ts importance to the viral life cycle, including RNA packaging, 

eplication, and transcription ( Dutta et al., 2020 ). The sequence 

onservation of the nonsurface N protein potentially makes it an 

deal vaccine target for cytotoxic CD8 + T cells, which are posi- 

ively associated with effective viral clearance and less severe dis- 

ase ( Moss, 2022 ). Indeed, robust T-cell responses to nucleocap- 

id have been characterized ( Nguyen et al., 2021 ; Le Bert et al.,

020 ). 

In a worst-case scenario, the evolvability and heterogeneity of 

he SARS-CoV-2 virus in response to the selection pressure im- 

osed by use of spike-centric vaccines and monoclonal antibod- 
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es will promote the rise of variants that are fully resistant to cur- 

ent vaccines, including Pfizer-BioNTek, Moderna, Janssen (Johnson 

 Johnson), AstraZeneca/Oxford, CanSino, Sputnik V, Novavax, and 

thers that narrowly target the S protein ( Ahn et al. , 2022 ). Never-

heless, messenger RNA (mRNA) boosters have been highly effec- 

ive against symptomatic Delta infection, although less so against 

ymptomatic Omicron infection ( Ferdinands et al., 2022 ). How- 

ver, with both variants, mRNA boosters still manage to enhance 

ross-neutralizing antibodies and substantially protect against 

OVID-19–related hospitalization and death. ( Andrews et al., 

022 ). 

Repeated administration of the same mRNA spike vaccine could 

e properly termed a “homologous” prime-boost strategy, as the 

rst dose primes the immune response, and subsequent doses am- 

lify it. Homologous prime-boost is effective for the augmentation 

f humoral responses, but studies have shown that the antibody 

esponse tends to wane over time ( Bates et al., 2022 ), and well be-

ore T-cell responses wane ( Negi et al., 2021 ; Ramshaw and Ram- 

ay, 20 0 0 ). 

In contrast, a “heterologous” prime-boost (a “mix-and-match”

pproach), in which for example a spike-based vaccine is se- 

uentially administered with a nucleocapsid-based vaccine (or vice 

ersa) , may boost cell-mediated immunity. This approach has been 

ell-documented against other pathogens ( Masopust et al., 2006 ). 

owever, several vaccine variables would need to be compared 

nd optimized before the implementation of a heterologous prime- 
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https://doi.org/10.1016/j.ijid.2022.06.046
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijid.2022.06.046&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:boronsky@epicentrx.com
https://doi.org/10.1016/j.ijid.2022.06.046
http://creativecommons.org/licenses/by-nc-nd/4.0/


B. Oronsky, C. Larson, S. Caroen et al. International Journal of Infectious Diseases 122 (2022) 529–530 

b

t

n

S

p

o

(

i

i

(

i

p

c

m

i

g

b

S

i

s

2

c

t

w

a

w

v

f

m

m

a

O

t

t

a

t

e

c

s

S

s

f

2

C

C

S

i

E

c

C

F

R

A  

 

A  

A  

B  

C  

D

D

F

H  

L  

 

M

M

N  

N

N  

R

S  

S

T  

T

 

oost. These include the number, scheme, and schedule of injec- 

ions; safety profile; and type and order of vaccines. 

In addition to mRNA, purified inactivated viruses such as Coro- 

aVac and BBIBP-CorV, manufactured by the Chinese companies 

inovac and Sinopharm (China National Pharmaceutical Group Cor- 

oration), respectively, are options because they incorporate not 

nly the S protein but other viral proteins, including the matrix 

M), envelope (E), and nucleocapsid (N) ( Dinc et al., 2022) . Stud- 

es have demonstrated that in populations that were primed with 

nactivated viruses and in which the seropositivity rate was low 

28%), booster vaccinations significantly increased immunogenic- 

ty; heterologous prime-boost was more effective than homologous 

rime-boost ( Cheng et al., 2022 ). The drawbacks of inactivated vac- 

ines are the low levels of induced immunity (unless vaccine is ad- 

inistered with an adjuvant) and the large dose required for each 

mmunization ( Sharma et al., 2020 ). 

Despite the use of mRNA and inactivated vaccines, the emer- 

ence of multimutational immune escape variants has already 

een described in immunocompromised patients with prolonged 

ARS-CoV-2 replication. These patients serve as potential “breed- 

ng grounds” or “Petri dishes” for viral evolution, propagation, and 

ubsequent spillover into the general population ( Hensley et al., 

021 ; Avanzato et al., 2020 ). Immunocompromised patients in- 

lude those with HIV-1, leukemia, lymphoma, and systemic au- 

oimmune and inflammatory rheumatic diseases who are treated 

ith immunosuppressive or immunomodulatory therapies. For ex- 

mple, Truong et al. (2021) published a case series of patients 

ith B-cell acute lymphoblastic leukemia in whom multiple escape 

ariants were detected over the course of persistent COVID-19 in- 

ection. Nussenblatt et al . (2022) documented an immunocompro- 

ised patient with a SARS-CoV-2 infection that persisted for al- 

ost one year (355 days), during which time virus accumulated 

 unique in-frame deletion in spike and a complete deletion of 

RF7b and ORF8 . 

These and several other case reports lend credence to the adage 

hat “no one is safe until everyone is safe”, and this is especially 

he case with immunocompromised patients who appear to serve 

s reservoirs for new mutations that are potentially transmissible 

o the healthy population. 

Instead of a “whack-a-mole” model, which focuses vaccination 

ffort s on a single spike variant at a time, and in which suc- 

essful suppression leads to the subsequent emergence of another 

pike variant, a broader-protection vaccine strategy is necessary. 

uch a strategy may be based, for example, on the widely con- 

erved N protein, which is essential for RNA synthesis that ef- 

ectively induces T-cell responses ( Silva et al., 2022 ; Thura et al., 

021 ). 
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