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Simple Summary: RNA:amyloid protein interactions have been observed in the past few years.
Nevertheless, the molecular basis and physiological implications of these interactions are still poorly
understood. Here we focus on a bacterial amyloid protein, Hfq. This protein is a pleiotropic bacterial
regulator that mediates many aspects of RNA metabolism. The protein notably mediates mRNA
stability and translation efficiency by using stress-related small noncoding regulatory RNAs. This
regulation contributes to bacterial adaptation to stresses. Our results show that the amyloid region of
Hfq significantly influences the efficiency of annealing between DsrA small noncoding RNA to its
target mRNA. This unexpected result opens perspectives for a novel physiological role of amyloids,
including those associated with neurodegenerative diseases.

Abstract: Hfq is a bacterial RNA chaperone which promotes the pairing of small noncoding RNAs
to target mRNAs, allowing post-transcriptional regulation. This RNA annealing activity has been
attributed for years to the N-terminal region of the protein that forms a toroidal structure with
a typical Sm-fold. Nevertheless, many Hfqs, including that of Escherichia coli, have a C-terminal
region with unclear functions. Here we use a biophysical approach, Synchrotron Radiation Circular
Dichroism (SRCD), to probe the interaction of the E. coli Hfq C-terminal amyloid region with RNA
and its effect on RNA annealing. This C-terminal region of Hfq, which has been described to be
dispensable for sRNA:mRNA annealing, has an unexpected and significant effect on this activity.
The functional consequences of this novel property of the amyloid region of Hfq in relation to
physiological stress are discussed.

Keywords: bacterial amyloid; functional amyloid; RNA chaperone; RNA/RNA annealing; stress
adaptation; DsrA noncoding RNA

1. Introduction

Bacteria are adapted to function in their normal physiological environment. Any
change in environmental conditions such as temperature, pH, nutrients starvation, salts,
and oxidation inflict stresses on bacteria [1,2]. Many regulatory systems help to respond
to these changes and post-transcriptional regulation of mRNA translation and stability
provides a rapid and efficient mechanism [3–5]. The Hfq protein, a chaperone for small
noncoding RNAs (sRNAs), is considered a core component of a global post-transcriptional
network in bacteria [6–9]. Hfq was discovered as a host factor required for replication of
the bacteriophage Qβ in Escherichia coli [10,11]. Approximately 50% of sequenced bacterial
genomes contain at least one gene coding for Hfq [12]. As a global regulator of E. coli
metabolism, deletion of the hfq gene can cause pleiotropic effects, such as decreased growth
rate, maladaptation to stress, altered cellular morphology, and increased cell length [13,14].
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Hfq is a member of the Sm and Sm-like family of RNA-binding proteins [15–18]. In
E. coli, it is composed of an Sm N-terminal region (NTR, residues 1–65) which forms a
homohexameric ring-shaped structure, and an intrinsically disordered C-terminal region
(CTR, residues 66–102) [18–20]. The surface of the Sm domain comprising the N-terminal
α-helices is designated as the proximal face, the opposite face as the distal face, and the
outer ring as the rim surface. All these surfaces of the NTR bind RNAs with different
specificities and affinities [7,21–23]. The proximal face binds polyU sequences, which
usually can be found in the Rho-independent terminators of sRNAs [19]. The distal face
binds AAN triplet repeats, which are often found in the 5′-UTR of target mRNAs [24].
Recent work has shown that the rim surface is a secondary binding site for UA-rich
sequences in sRNAs and mRNAs [25,26]. Therefore, the NTR (Sm) domain stabilizes the
sRNAs against turnover [27–29] and promotes their interactions with mRNAs leading to
altered stability and/or translation of these mRNA targets [30,31].

Although the functional importance of the Sm domain is well established, the function
of the presumably disordered CTR is poorly understood [6]. Indeed, all Hfq 3D structures
lack the CTR and include only the NTR of the protein [18,25,32–36]. CTR has been shown
to be at the periphery of the tore [20] and prefers to locate at the proximal side [37]. It was
initially described to be dispensable for sRNA-based regulation [38]. Nevertheless, more
recent results indicate that it could play a role in sRNA post-transcriptional control [39]. The
recent structure of the Hfq-RydC complex showed that the CTR makes distributive contacts
over the surface of RydC sRNA, which suggested that the CTR may also help Hfq to recruit
sRNAs [25]. The CTR was also proposed to be dispensable to accelerate RNA-pairing, but
required for the release of double stranded RNA [40]. Combined integrative experimental
techniques and multi-scale computational simulations also proposed that non-specific
interactions between the CTR and RNA may play a dual role in a steric effect (especially
at the proximal side) and recruitment (at the both sides) of RNAs [37]. The precise 3D
structure of the CTR is also unclear [6,41]. Initially described as an Intrinsically Disordered
Proteins (IDP) [37,42] it was recently shown to have the intrinsic property to self-assemble
into long amyloid-like fibrillar structures in vitro and in vivo [43,44]. Amyloidogenesis
of CTR is accelerated by DNA [45], but the effect of RNA on this amyloidogenic process
is still unclear. Hfq-CTR thus belongs to the family of functional bacterial amyloids.
Amyloid proteins are characterized by a β-sheet secondary structure (referred as cross-β
structure [46]) and have a fibrillar morphology of ~10 nm in diameter [47]. While amyloids
are associated with diseases such as Alzheimer’s [48], they have also useful features [49,50].
This is, for instance, the case of bacterial amyloids that play important and positive roles for
the cell [51,52]. Bacterial functional amyloids usually contain a particularly high prevalence
of alanine, asparagine, and threonine, and this applies to Hfq-CTR [53].

Among Hfq-dependent sRNAs, DsrA is one of the first sRNA regulators found to
regulate translation of multiple mRNAs, such as rpoS [54], hns [55,56], mreB [57], and
rbsD [58]. DsrA forms a structure with three stem-loops (SL1, SL2, and SL3) and a long
linker between SL1 and SL2 (Linker 1). SL3 is a Rho-independent transcription terminator,
which consists of many G-C base-pairs followed by multiple uridine nucleotides. SL2
contains a dynamic conformational equilibrium, so it can participate in base-pairing with
hns, mreB, or rbsD mRNAs with different conformational states [59]. The SL1 and Linker 1
promote efficient translation of rpoS mRNA, which encodes for the stress sigma factor σS, by
acting as an anti-antisense RNA [54,60]. The 5′ UTR of the rpoS mRNA forms a large stem-
loop structure that shields the ribosome binding site (rbs, or Shine-Dalgarno sequence) and
therefore inhibits ribosome binding [54,61]. When DsrA pairs to the upstream region in the
5′-UTR of rpoS, it causes this stem-loop to open, releases the rbs and activates the translation
of rpoS mRNA. Opening of DsrA SL1 is required for efficient DsrA:rpoS annealing [62].
However, the mechanism of SL1 unfolding remains unclear. During DsrA:rpoS annealing,
Hfq recruits DsrA for base-pairing with rpoS mRNA [63]. The preferential Hfq-binding site
of DsrA is Linker 1, while SL1 is partially destabilized by Hfq [62]. Meanwhile, recent NMR
studies showed that SL1 has a very stable stem-loop structure, and cannot be significantly
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unfolded to base pair with the rpoS mRNA without Hfq at room temperature [59]. These
results indicate that Hfq may play an important role in the unfolding of DsrA SL1.

Here, we used a biophysical approach, Synchrotron Radiation Circular Dichroism
(SRCD), to study the effect of the Hfq-CTR on DsrA SL1 annealing to rpoS mRNA. Follow-
ing RNA annealing using ElectroMobility Shift Assay (EMSA) is usually challenging for
polymerizing proteins, as in the case of amyloids [64]. SRCD thus provides a new useful
tool to observe RNA annealing in real time by amyloids (and in general by proteins that
polymerize), but also to characterize annealing precisely. SRCD allows differentiation base
pairing and base-stacking in a double-stranded helical transition [65]. Unexpected effects
of the Hfq CTR amyloid-like region on the RNA annealing process are presented herein.
This result reveals a perspective for a novel physiological role of amyloids, including those
associated with neurodegenerative diseases.

2. Materials and Methods
2.1. Chemicals

All chemicals were purchased from Sigma-Aldrich (Saint-Louis, MO, USA) or Ther-
mofisher scientific (Waltham, MA, USA).

2.2. Hfq CTR Peptide and Protein

Full-length Hfq and NTR were purified as described previously [66]. Hfq-CTR peptide
was chemically synthetized (Proteogenix, Schiltigheim, France). This peptide corresponds
to the amyloid CTR domain of Hfq (residues 64 to 102) and is referred to as Hfq-CTR
throughout the manuscript. This peptide cannot be purified from E. coli bacteria as it is
unstable when translated independently of the NTR region. The sequence of Hfq-CTR
is SRPVSHHSNNAGGGTSSNYHHGSSAQNTSAQQDSEETE [43]. Before use, Hfq-CTR
peptide was reconstituted in water at 20 mg/mL. We determined that the pH used in
our condition (~5) was the most appropriate to form the complex with RNA. Indeed, the
positive charge of the peptide at pH 5 allows its interaction with RNA, while increasing pH
reduces or abolishes this interaction. We also chose to avoid the addition of salts (except
those already present in RNA, protein, and peptide solutions) in order to allow a better
investigation in deep-UV [45]. When the complex is analyzed in the presence of salts
(or far-UV absorbing buffers), the spectral bandwidth accessible is limited, reducing the
spectral information obtained [67]. We checked that presence of salts (NaCl 50 mM) does
not change significantly the kinetics of annealing.

2.3. DsrA and rpoS Sequences

For SRCD analysis, we focused on the core of the RNA–RNA interactions and used
DsrA and rpoS fragments described in Hwang et al. [68]. Two fragments of DsrA (DsrAcore
WT and mutant) and two fragments of rpoS (rpoSrbs and rpoSreg) were used (Figure 1).

Sequences of DsrA fragments were: DsrAcore WT (pentaloop, underlined) 5′-AACACA
UCAGAUUUCCUGGUGUAACGAAUUUUUUAAG-3′, DsrAcore

mut (tetraloop) 5′-AACA
CAUCAGGGAACUGGUGUAACGAAUUUUUUAAG-3′. Sequences of rpoS fragments
were rpoSreg: 5′-AUUUUGAAAUUCGUUACAAGGGGAAAUCCGUAAACCC-3′; rpoSrbs:
5′-CAAGGGAUCACGGGUAGGAGCCACCUUAUGAGUCAGAAU-3′.

Before use, the oligonucleotides (Eurogentec) were heated at 90 ◦C for 3 min and then
slowly cooled down at 20 ◦C to allow proper folding. Duplexes of oligonucleotides (i.e.,
DsrAcore:rpoSreg, rpoSrbs:rpoSreg . . . ) were formed using the same protocol after stoichio-
metric addition of the two oligonucleotides in the same tube.
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Figure 1. DsrA and rpoS fragments used in SRCD experiments. Base pairing of DsrA with the leader sequence of rpoS
enhances its translation by exposing the ribosome binding site (rbs) and start codon (AUG), which are sequestered in the
inhibitory stem structure. This process requires the RNA chaperone Hfq. Until now, Hfq-CTR was described as dispensable
for this activity.

2.4. Synchrotron Radiation Circular Dichroism (SRCD)

SRCD measurements were carried out on the DISCO beamline at SOLEIL Synchrotron
as described previously [45] (proposal 20201013). Samples (~4 µL) were loaded into a CaF2
circular cell of 10 µm pathlength. Spectral acquisitions of 1 nm steps at 1.2 s integration
time were recorded in triplicates between 320 and 180 nm. (+)-camphor-10-sulfonic acid
(CSA) was used to calibrate amplitudes and wavelength positions of the experiment. Data
analyses (averaging, baseline subtraction, smoothing, scaling, and spectral summations)
were carried out with CDtoolX [69]. Spectra are presented in units of mdeg versus nm
maintaining the same molar ratios for all presented samples. Due to the origin of absorption,
spectra of mixed samples (polynucleotides + peptide) could not be standardized to ∆ε.

Two types of experiments have been performed: the effect of Hfq or CTR were tested
either on individual RNA, or on duplexes such as DsrAcore:rpoSreg, rpoSrbs:rpoSreg. For
all SRCD experiments, RNA concentrations were fixed at 20 mM (while Hfq or CTR
(monomeric) concentration were 0.2 or 0.4 mM, respectively (full-length Hfq concentration
was lower due to its lower solubility). RNAs were in excess relative to proteins. The
effect of Hfq or CTR on RNAs was analyzed at 15 ◦C. For kinetic measurements, an
apparent catalytic kinetic constant kcat

app was determined during initial rate conditions.
This constant was expressed in mdeg·M−1·min−1 and depends on protein concentration
(CD units cannot be normalized to protein concentration as they are not expressed in the
same unit, mdeg vs. M).

For melting curves, triplet SRCD spectra were acquired every 3 ◦C between 15 ◦C and
81 ◦C. Averaged SRCD values of the maximum of the peak around 180 nm are presented
as a function of temperature to measure the melting point (Tm). Note that a shift of the
peak may occur in some cases and that the maximum is not always precisely at 180 nm [70]
(Supplementary Materials Figure S1). A Boltzmann sigmoid equation, which assumes a
two-state model, was used for fitting of melting curves: y = Bottom + (top − bottom)/(1 +
e((Tm − x)/slope)).
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2.5. ElectroMobility Shift Assay (EMSA)

The Electromobility Shift Assays were performed with labelled RNAs (Cy3-DsrAcore
and Cy5-rpoSreg) or unlabeled RNA (DsrAcore, DsrAcore

mut). After incubation with CTR
for one hour, samples were loaded on a polyacrylamide gel (10% or 4–20%) and subjected
to electrophoresis in Tris-Acetate-EDTA (TAE) buffer. The gels were scanned using a
fluorescence imager.

3. Results
3.1. The Amyloid CTR Region of Hfq Triggers RNA Annealing

The effect of Hfq-CTR on RNA annealing was analyzed at 15 ◦C. This low tempera-
ture is physiologically relevant because DsrA is expressed at low temperature allowing
a cold-shock response [71]. In addition, measurements at 15 ◦C avoid spontaneous an-
nealing between RNA molecules occurring at 37 ◦C with RNA fragments (even if this
spontaneous annealing at 37 ◦C is slow). Kinetics of annealing at 15 ◦C were thus longer
than at 37 ◦C and were recorded for few hours to ensure accurate measurements. As seen
in Figure 2, we clearly observe an effect of Hfq-CTR on sRNA:mRNA annealing, shown by
the different increase of amplitudes observed at 180 nm and 260 nm with and without the
Hfq-CTR. Indeed, the spectral region between 320 and 170 nm contains several electronic
transitions of interest. Around 260 nm, the positive CD signal shows base-pairing and
base-stacking [72,73]. On the other hand, the positive band at 185 nm and the negative one
between 200 and 210 nm are indicative for the formation of double-stranded right-handed
RNA molecules (A- and B-forms). The increase of amplitudes of these peaks signifies the
formation of base pairs and right-handed double stranded RNA. In addition, denaturation
of the RNA induces a shift of the spectral maximum from ~180 to ~192 nm [70]. Spectro-
scopically the batho-chromic shifting (red-shift) of a maximum corresponds to a change
(reduction) of absorption energy of the chromophore (RNA). This shift therefore indicates
a clear structural change or the existence of two states of the chromophore and can also
be used to confirm the structural change of RNAs (Supplementary Materials Figure S1).
Therefore, the dynamics of RNA annealing can be qualitatively and quantitatively followed.
This effect of Hfq-CTR on RNA annealing was also confirmed using EMSA (Supplementary
Materials Figure S2). Nevertheless, due to the high molecular weight of the complex with
the amyloid form of the CTR, that stays on the top of the gel, it is difficult to discrimi-
nate solely with an EMSA the complex (i.e., triplex) CTR:Cy3-DsrAcore:Cy5-rpoSreg from
CTR:Cy3-DsrAcore and CTR:Cy5-rpoSreg duplexes. They all migrate at the same position.
In addition, precise kinetics measurements are not possible using EMSA as they are with
SRCD analysis.

SRCD kinetics of rpoSreg annealing have been measured using SRCD for WT DsrAcore
and for a mutated form called DsrAcore

mut, harboring a mutated tetraloop (GGAA vs.
AUUUC pentaloop) (Figure 1). DsrAcore forms a stem–loop structure with a typical A-form
helix and with a dynamic AUUUC pentaloop [59]. Many other pentaloops can form stable
structures with unusual interactions, while AUUUC pentatloop is unstructured. To test
whether the unstructured dynamic AUUUC pentaloop is important for the annealing, we
replaced it with a very stable GGAA tetraloop. At 180 nm, an apparent Hfq-CTR catalytic
kinetic constant kcat

app of 0.083 mdeg·M−1·min−1 for DsrAcore was determined compared
with 0.0173 mdeg·M−1·min−1 for DsrAcore

mut (Figure 3). In comparison, for full-length
Hfq the kinetics constant kcat

app measured was for 0.039 mdeg·M−1·min−1 for DsrAcore
(Supplementary Materials Figure S3); nevertheless, Hfq was two-times less concentrated
than Hfq-CTR, thus CTR seems to have an activity similar to that of the full-length protein
to promote DsrAcore:rpoSreg RNA annealing. Note that when measured at 260 nm, the
kcat

app measured was 0.0257 mdeg·M−1·min−1 for DsrAcore and 0.0069 mdeg·M−1·min−1

for DsrAcore
mut, thus with a similar decrease by a factor ~5 compared with WT DsrAcore.

This suggests that the formation of base pairs/base stacking and helical structure during
annealing occurs at the same rate regardless of the sequence of the loop. We also tried
to analyze Hfq-NTR in SRCD experiments but failed to have this form of the protein at



Biology 2021, 10, 900 6 of 14

a concentration sufficient to measure annealing kinetics with SRCD. This shows a limit
of the technique: for SRCD, short pathlengths (two to several tenths of microns) are used
permitting very small loading volumes (3–4 µL). Therefore, high concentrations are chosen
following Beer–Lambert law. This has the advantage of reducing overall precious sample
consumption as well as extending the spectral-band down to 170 nm. With Hfq-NTR
we could not reach a concentration of ~0.2 mM and increasing its concentration clearly
promoted precipitation of the protein which is incompatible with SRCD measurements
because it results in diffusion of the UV light. We tried to measure the annealing activity of
Hfq-NTR using lower concentrations but, unfortunately, were not able to detect a significant
signal change for SRCD, because the signal to noise ratios were dropping considerably
below 10 in contrast to above 200 for high concentration and short pathlengths. We thus
presume NTR activity is significantly lower than that of the full-length protein, even if
this region is able to promote annealing in vivo [38]. This result is in agreement with the
significant activity of the CTR.
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Figure 2. Observation of DsrAcore and rpoSreg annealing by Hfq-CTR using SRCD (from blue
t = 0 min to red t = 300 min). Inset: control without the protein; no significant RNA annealing occurs
without the protein.

The effect of Hfq and Hfq-CTR on the stability of the complex formed was evaluated
using meting curves. As seen in Figure 4 and Table 1, the DsrAcore:rpoSreg complex is more
stable in the presence of both Hfq and CTR. This confirms that the full protein stabilizes
the sRNA:mRNA complex, but this result was unexpected for the CTR.

Note that DsrAcore
mut is significantly more stable than DsrAcore in the absence or in

the presence of CTR (Table 1). This effect is probably due to the presence of the tetraloop
vs. the pentaloop. As shown in Figure 3, the effect of the replacement of the pentaloop by a
tetraloop affects the rate of annealing that is decreased by a factor 5. We next analyzed the
complex between CTR and DsrAcore or DsrAcore

mut in the absence of rpoS.
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33.6 ± 2.2 ◦C, and 39.9 ± 0.4 ◦C.
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Table 1. Melting point (Tm) of RNA measured at 180 nm. DsrAcore + rpoSreg means not prehybrided,
DsrAcore:rpoSreg means prehybrided by heat and cooling (see methods).

Sample Tm at ~180 nm (◦C)

DsrAcore + rpoSreg 33.6 ± 2.2

DsrAcore + rpoSreg + CTR 36.6 ± 0.8

DsrAcore + rpoSreg + Hfq 37.0 ± 0.9

DsrAcore:rpoSreg 39.9 ± 0.4

DsrAcore:rpoSreg + CTR 44.2 ± 0.7

DsrAcore 42.1 ± 0.3

DsrAcore + CTR 45.5 ± 0.8

DsrAcore
mut 49.1 ± 1.2

DsrAcore
mut + CTR 50.3 ± 0.9

rpoSrbs + rpoSreg 29.5 ± 2.2

rpoSrbs + rpoSreg + CTR 31.6 ± 1.7

3.2. Hfq-CTR Stabilizes DsrA Secondary Structure

One possibility is that annealing efficiency depends on the DsrA stem-loop which
must be melted to associate with rpoSreg (Figure 1). We thus tested the effect of Hfq-CTR on
DsrAcore stability. Unexpectedly, we observed that Hfq-CTR does not melt DsrAcore SL1,
but in contrast it stabilized it significantly (Figure 5). This can be observed by the increase
of peaks at 180 and 270 nm (Figure 6) and by Tm measurements (Table 1). This is in contrast
with DsrAcore

mut where CTR does not have any effect (Figure 6). As the pentaloop of DsrA-
SL1 is similar to single strand RNA (e.g., like AU6A in the linker between SL1 and SL2), we
suspect this loop is important to form the complex. This is confirmed using EMSA where
we show that Hfq-CTR binds DsrAcore

mut but less than DsrAcore (Supplementary Materials
Figure S4). The SL1 pentaloop is likely an important determinant for rpoS annealing to
DsrA by Hfq-CTR, as it is the case of full Hfq [59].
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Figure 6. Effect of Hfq-CTR on DsrAcore
mut spectral evolution. In this case no significant stabilization

is observed. Note the amplitude of 18 mdeg measured at 180 nm. As DsrAcore (Figure 5) and
DsrAcore

mut were used at the same concentration and pathlength, this confirms that DsrAcore
mut

has a stronger (3-fold) structuration than DsrAcore. This was expected due to the presence of the
structured tetraloop.

3.3. Hfq CTR Does Not Affect rpoS Secondary Structure

Another possibility to explain the effect of Hfq-CTR would be that it unwinds the
rpoS stem-loop. This possibility was tested using a prehybrided rpoSreg:rpoSrbs. As shown
in Figure 7, Hfq-CTR does not have any significant effect on the rpoSreg:rpoSrbs complex
and thus does not influence rpoS structure. This was also confirmed by Tm measurement;
Hfq-CTR does not affect rpoSreg:rpoSrbs stability (Table 1).
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4. Discussion

Using SRCD analysis, we show herein that, unexpectedly, the amyloid region of
Hfq-CTR is able to promote DrsA:rpoS annealing with an efficiency similar to that of the
full-length protein at 15 ◦C. This work thus provides a new useful tool to analyze label-free
RNA annealing by an amyloid protein, an analysis that is not trivial using classical EMSA
(Supplementary Materials Figure S2). This spectroscopic analysis provides an alternative
to fluorescence measurements without RNA labelling, that in addition gives information
on base-pairing, base-stacking, and type of helix formed [72,73]. In turn, SRCD could also
allow observation of the formation of the amyloid structures [45].

We show that the effect of Hfq-CTR is not due to the melting of the SL1 loop of DsrA
(Figure 5) nor to the melting of the rpoS stem (Figure 6), which contrasts with the mechanism
observed for the full Hfq including the Sm core [62]. Indeed, ribonuclease footprinting
shows full Hfq binds the AUUUC DsrA pentaloop and that it melts DsrA-SL1 [62].

As for the recognition of DsrA by Hfq-CTR, DsrA-SL1 contains a capping AUUUC
pentaloop (Figure 8, left). All these five nucleotides are conserved in Escherichia coli,
Salmonella typhimurium, and Klebsiella pneumoniae, and are all complementary to the rpoS
mRNA. Previous mutational analysis of DsrA-SL1 showed that DsrA sRNA lost its activity
to activate rpoS translation with most of the mutations in this pentaloop [54]. NMR studies
show that A11 and U12 are stacked in a helical environment, while U13, U14, and C15 are
highly flexible [59]. All five nucleotides of DsrA-SL1 participate in the formation of an A-
form helix in the structure of the DsrA:rpoS complex. These studies suggest that the highly
dynamic character of DsrA-SL1 plays an important role in base-pairing with rpoS mRNA
and in regulating its translation [59]. To investigate the role of DsrA-SL1 in regulating
rpoS translation, we thus designed a mutated form of DsrAcore called DsrAcore

mut in which
AUUUC pentaloop is replaced by GGAA tetraloop in DsrA-SL1. The GGAA tetraloop
belongs to the GNRA tetraloop family (N = any nucleotide, R = A or G), which is extremely
widespread, comprising one-third of the tetraloops in ribosomal RNA [74]. The GNRA
tetraloop is particularly stable in comparison with other RNA loops [75]. The GGAA
tetraloop forms an asymmetric loop structure, where only the first G is stacked on the
5′ side of the stem and the last three nucleotides stack on the 3′ side of the stem [76].
It also contains several hydrogen bonds. The first G and fourth A form a sheared base
pair with two hydrogen bonds. Additional hydrogen bonding occurs between the 2′-OH
of the first G and the base R7 of the third A [77]. The extensive base stacking and the
intramolecular interactions provide GGAA tetraloops with a high thermodynamic stability.
We also confirm this effect with our Tm measurement (Table 1).
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Here we show that Hfq-CTR binds to WT DsrA SL1, and also to the mutated form
of the SL1 with a tetraloop, but less solidly than WT (Supplementary Materials Figure S4,
Figures 3 and 6). We also show that the presence of the tetraloop in DsrA SL1 does not
allow efficient annealing to rpoS (probably due to less base pairing with rpoSreg) and more
important stabilization of DsrA (Figures 2 and 6). Thus, we conclude that the effect of
the CTR is directly linked to the efficiency of sRNA:mRNA annealing and not to complex



Biology 2021, 10, 900 11 of 14

stabilization nor SL1 melting. As Hfq-CTR binds the tetraloop mutant less than WT
pentaloop, and cannot stabilize the mutant structure, it may indicate that CTR binds the
AUUUC pentaloop and then promotes sRNA:mRNA annealing.

Finally, EMSA shows that Hfq-CTR can bind free DsrAcore, free rpoSreg, and DsrAcore:rpoSreg
and suggests that Hfq-CTR prefers to bind to the DsrAcore:rpoSreg complex (Supplementary
Materials Figure S2). However, it has been shown that Hfq cannot bind the DsrA:rpoS
complex very well after annealing [68]. This result should be investigated further as it
could indicate that the NTR/Sm domain of Hfq may transfer the DsrA:rpoS complex to
CTR after annealing [40]. Unfortunately, it was not possible to analyze Hfq-NTR activity
using SRCD due to the poor solubility of this form of the protein.

5. Conclusions

The main and unexpected result of this study is that an amyloid-like region promotes
RNA annealing. This result opens a perspective for a new physiological role of amyloids,
including those associated with neurodegenerative diseases. In addition, we show here
that a biophysical method, SRCD, can be used to follow RNA annealing by an amyloid
protein, which is not trivial using EMSA. The role of amyloids on deoxyribonucleic (DNA)
and ribonucleic (RNA) acid conformational changes has been observed previously [78]. In
particular, amyloids may bind non-coding RNA [79]. They also may sequester RNA [80].
As stress-induced RNA activates amyloidogenesis in vivo [81], the effect of stress induced
sRNA such as DsrA on amyloidogenesis may also occur, such as with DNA [45], and
should be investigated further.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10090900/s1, Figure S1: Observation of the shift of the SRCD peak maximum (λmax)
from ~180 to 190 nm for DsrAcore and DsrAcore

mut, Figure S2: EMSA analysis to confirm DsrAcore
rpoSreg annealing reaction by Hfq-CTR, Figure S3: Observation of DsrAcore and rpoSreg annealing by
Hfq full-length using SRCD, Figure S4: Analysis of the complex between DsrAcore

mut and CTR.
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Abbreviations

CTR/NTR C/N-terminal region
IDP Intrinsically Disordered Proteins
rbs ribosome binding site
sRNA small noncoding RNAs
SL stem-loop
SRCD Synchrotron Radiation Circular Dichroism.
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