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Abstract

Purpose: The purpose of this study was to determine if microRNA profiling of urine and plasma at radical prostatectomy can
distinguish potentially lethal from indolent prostate cancer.

Materials and Methods: A panel of microRNAs was profiled in the plasma of 70 patients and the urine of 33 patients
collected prior to radical prostatectomy. Expression of microRNAs was correlated to the clinical endpoints at a follow-up
time of 3.9 years to identify microRNAs that may predict clinical response after radical prostatectomy. A machine learning
approach was applied to test the predictive ability of all microRNAs profiled in urine, plasma, and a combination of both,
and global performance assessed using the area under the receiver operator characteristic curve (AUC). Validation of urinary
expression of miRNAs was performed on a further independent cohort of 36 patients.

Results: The best predictor in plasma using eight miRs yielded only moderate predictive performance (AUC = 0.62). The best
predictor of high-risk disease was achieved using miR-16, miR-21 and miR-222 measured in urine (AUC = 0.75). This
combination of three microRNAs in urine was a better predictor of high-risk disease than any individual microRNA. Using a
different methodology we found that this set of miRNAs was unable to predict high-volume, high-grade disease.

Conclusions: Our initial findings suggested that plasma and urinary profiling of microRNAs at radical prostatectomy may
allow prognostication of prostate cancer behaviour. However we found that the microRNA expression signature failed to
validate in an independent cohort of patients using a different platform for PCR. This highlights the need for independent
validation patient cohorts and suggests that urinary microRNA signatures at radical prostatectomy may not be a robust way
to predict the course of clinical disease after definitive treatment for prostate cancer.
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Introduction

Prostate cancer is characterised by its distinctly variable and

unpredictable outcomes. The introduction of prostate specific

antigen (PSA) testing has resulted in a dramatic increase in early

detection of prostate cancer (CaP) and a stage migration such that

more men with early stage CaP are now being diagnosed with the

disease [1,2]. However, the test is neither specific for CaP [3] nor

does it allow for accurate risk stratification and selection of those

patients likely to succumb to their disease after early radical

therapy [4,5]. The morbidity associated with typical treatments

has given rise to a plethora of biomarker development studies in an

attempt to identify patients most likely to benefit from timely

intervention to reduce their risk of recurrence and metastasis [6].

Although much research is aimed at finding biomarkers that can

improve prostate cancer detection rates over PSA, the key issue

clinically, is the detection of high-risk CaP at an early, curable

stage. Whilst the majority of cases follow an indolent course and

do not require curative treatment, some cancers have the potential

to metastasize and require aggressive, early, clinical intervention.

However current clinicopathological models do not allow clini-

cians to accurately discern at an early stage between high risk and

indolent CaP [7]. There is an urgent clinical need for new markers

that will discriminate indolent from aggressive prostate cancers at

an early stage.

MicroRNAs (miRNAs) are approximately 22 nucleotide-long,

single-stranded, non-coding RNAs that bind to complementary

‘‘seed’’ regions found in the 39 untranslated region (UTR) of

particular messenger RNA (mRNA) species. MiRNAs modulate
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expression of their mRNA targets, either marking them for

destruction or inhibiting their binding to translational machinery

[8]. MiRNAs have been shown to be involved in a wide range of

important physiological and pathological processes including cell

cycle processes, development, survival, differentiation, growth,

apoptosis and immune response [8].

Several studies have shown the deregulation of miRNA is an

important mechanism in prostate carcinogenesis [9] and that such

changes can be detected in the sera of CaP patients [10,11,12,13].

There are several advantages of miRNAs as biomarkers in

biofluids. Biofluids such as plasma and urine are less invasive to

obtain compared to tissue and miRNAs are frequently deregulated

in cancer and exhibit tissue specific expression. In addition, their

expression in blood and urine is stable and can be quantified

sensitively by quantitative real time polymerase chain reaction

(RT-PCR)[14]. There has thus been much excitement about the

potential of miRNAs as biomarkers of CaP. However few of these

studies have performed systematic validation of these biomarkers,

which has prevented their clinical translation in management of

CaP. Additionally, the majority of these studies that have

compared early CaP to advanced/metastatic CaP have used

samples collected once the patients have developed metastatic

disease. The aim of this study was to investigate if the profiling of a

panel of miRNAs in the plasma and urine of primary prostate

cancer patients prior to radical prostatectomy can distinguish

indolent CaP from the high-risk phenotype and to validate any

findings in an independent cohort of patients.

Materials and Methods

Ethics Statement
This project had full ethics approval from institutional review

boards. The ethics approvals pertaining to this manuscript are

Royal Melbourne Hospital Human Research Ethics Committee

Figure 1. Plots for assessing endogenous controls. a) Ct values for the endogenous control across all samples in the plasma cohort. A Ct of 34
is considered undetected. b) the standard deviation of Ct values across samples for each miR in the original urine cohort.
doi:10.1371/journal.pone.0091729.g001
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(HREC) No 2006.073 and Epworth Healthcare HREC

No. 34506. All patients gave full written consent for their samples

to be stored and used for research using patient information and

consent forms that were approved by the ethics committees.

MicroRNA panel selection
A systematic literature review was conducted in PubMed to find

microRNAs implicated in prostate and epithelial cancer initiation,

progression and metastasis using the terms ‘prostate cancer’ and

‘microRNA’ in July 2011. The cited references of studies were

checked for further articles of interest. All articles including

original articles, reviews and abstracts were considered. Based on

our review we chose a panel of 12 miRs for profiling in plasma and

13 miRs for profiling in urine, all of which had at least 2

independent studies published showing involvement in prostate

cancer carcinogenesis, with preference given to those with

concomitant supporting mechanistic data. In addition we included

RNU48 in our panel as a putative endogenous control [15].

Patient Selection
All patients with a diagnosis of CaP who underwent radical

prostatectomy at the Epworth Hospital from 2003 to 2010 with

detailed PSA follow-up and complete clinical and pathological

data were identified from a prospectively recorded and maintained

dedicated prostate cancer database. The first cohort consisted of

patients with high-risk phenotype prostate cancer (n = 33 plasma

samples, 16 urine samples) and patients with low-risk or indolent

phenotype cancer (n = 37 plasma samples, 17 urine samples). The

second (validation) cohort consisted of patients with high-risk

phenotype prostate cancer (n = 22 urine samples) and patients with

Table 1. Clinical and pathological characteristics of the patient cohort in the original cohort.

Plasma cohort Urine cohort

Low-Risk High-Risk Low-Risk High-Risk

n 33 37 17 16

Age Median 64 67 63 66

(yrs) Range 48–74 57–81 52–72 57–81

Follow-up Median 3.89 4.44 4.24 4.39

(yrs) Range 1.16–6.02 1.65–7.01 3.65–5.05 2.12–5.10

Prostate Weight Median 58 46 58 48

(g) Range 28–86 20–118 34–86 20–64

Gleason Grade (%) 6 33 (100) 0 (0) 17 (100) 0 (0)

7 (3+4) 0 (0) 7 (19) 0 (0) 1 (6)

7 (4+3) 0 (0) 8 (22) 0 (0) 3 (19)

8 0 (0) 3 (8) 0 (0) 1 (6)

9 (4+5) 0 (0) 16 (43) 0 (0) 8 (50)

9 (5+4) 0 (0) 3 (8) 0 (0) 3 (19)

Tumour Volume Median 0.20 7.76 0.20 9.45

(cc) Range 0.04–0.90 0.85–28.70 0.09–0.80 1.40–25.20

pT stage (%) pT2a 12 (36) 0 (0) 6 (35) 0 (0)

pT2b 0 (0) 2 (5) 0 (0) 1 (6)

pT2c 21 (64) 6 (16) 11 (65) 3 (19)

pT3a 0 (0) 13 (35) 0 (0) 5 (31)

pT3b 0 (0) 16 (44) 0 (0) 7 (44)

EPE (%) Present 0 (0) 27 (73) 0 (0) 10 (63)

Absent 33 (100) 10 (27) 17 (100) 6 (37)

SV Invasion (%) Present 0 (0) 5 (14) 0 (0) 1 (6)

Absent 33 (100) 32 (86) 17 (100) 15 (94)

PN Invasion (%) Present 7 (21) 35 (95) 2 (12) 16 (100)

Absent 26 (79) 2 (5) 15 (88) 0 (0)

LV Invasion (%) Present 0 (0) 18 (49) 0 (0) 9 (56)

Absent 33 (100) 19 (51) 17 (100) 7 (44)

Multifocal (%) Yes 25 (76) 25 (68) 12 (71) 10 (63)

No 8 (24) 12 (32) 5 (29) 6 (37)

Surgical Margins (%) Positive 1 (3) 26 (70) 1 (6) 9 (56)

Negative 32 (97) 11 (30) 16 (94) 7 (44)

Metastatic Disease (%) Yes 0 (0) 5 (14) 0 (0) 2 (13)

No 33 (100) 32 (86) 17 (100) 14 (87)

doi:10.1371/journal.pone.0091729.t001
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indolent phenotype prostate cancer (n = 14 urine samples). High-

risk cancer was defined as Gleason grade greater than or equal to 7

and tumour volume .1cc or development of metastatic disease or

early biochemical recurrence suggestive of systemic micro

metastases (short PSA doubling time, failed salvage radiotherapy,

PSA persistence). Indolent cancer was defined as Gleason 6, T2a,

PSA,10 and PSA-free survival for at least 3 years (Epstein

criteria)[16]. Plasma and urine were collected from patients prior

to prostatectomy immediately after a digital rectal examination,

snap-frozen and stored in liquid nitrogen.

Clinical data collection
Relevant clinical and pathological data were recorded prospec-

tively and analysed retrospectively. Details of PSA follow-up were

recorded prospectively and updated annually. Tumour volumes

were measured accurately by computed planimetry at the time of

histological assessment as previously described [17]. The TNM

(2002) classification system was used to stage the specimens. The

Gleason sum score, and pathologic tumour stage were all assessed

separately. For patients who did not experience a biochemical

recurrence during the study period, follow-up was censored at the

time of their last recorded PSA test. For patients with more than a

single postoperative PSA recorded, PSA doubling time (PSAdt)

was calculated using the log slope method [18]. For this study,

biochemical recurrence was defined as a postoperative PSA value

greater than or equal to 0.2 ng/ml and rising, or a rising PSA level

below this threshold that was felt by the treating physician to

represent a recurrence and led to the institution of salvage therapy.

Significant biochemical recurrence was defined as PSA recurrence

with a doubling time ,6 months, as this has been shown to be a

more accurate predictor of the development of metastases and

cancer-specific mortality than PSA recurrence alone [19,20]. For

patients with primary PSA persistence who were immediately

treated with salvage therapy the PSAdt was arbitrarily assumed to

be ,6 months. Collection and use of this information had

Melbourne Health Ethics Committee approval.

Figure 2. A heatmap showing the Ct values for each miR and each sample in the plasma cohort. The samples have been subjected to
unsupervised hierarchical clustering and the results are depicted by the dendrogram at the top of the image.
doi:10.1371/journal.pone.0091729.g002
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RNA extraction
500 ml of plasma or urine was thawed on ice for total RNA

extraction using the mirVana miRNA Isolation Kit (Ambion, TX,

USA) according to the manufacturer’s protocol with the following

modifications/conditions: 1.5 volumes of Lysis/Binding Buffer was

used for cell lysis, before addition of homogenate, and RNA was

eluted in 40 ml water. RNA elutions were frozen on dry ice and

stored in 280uC.

RT-PCR
RNA was concentrated from 40 ml to 15 ml using a Savant

SpeedVac (Thermo Fisher Scientific, NC, USA) at 45uC/high

pressure. Reverse transcription was performed on a thermal cycler

(Applied Biosystems, CA, USA) using the Taqman microRNA

Reverse Transcription Kit (Applied Biosystems, CA, USA)

according to manufacturer’s small RNA assay protocol with the

following modifications: 7 ml RNA was used as template and

pooled primers were used for the pre-selected 14 miRNA species.

Original Cohort. Quantitative real-time PCR was per-

formed with the resulting cDNA on custom Taqman Low Density

Array Cards (Applied Biosystems, CA, USA) containing primers

for our miRNA panel according to manufacturer’s protocol. All

reactions were performed in triplicate and the median included in

the final analysis. TLDA cards were run on a 7900HT Fast Real-

Time PCR System.

Validation Cohort. Preamplification of the synthesised cDNA

was performed according to the manufacturer’s instructions. Briefly,

2.5 ml cDNA was added to 12.5 ml preamplification MasterMix,

3.75 ul primer pool and 6.25 ml nuclease-free water. This reaction

was heated to 95uC for 10 min, 55uC for 2 min, 72uC for 2 min

followed by 12 cycles of amplification before heating to 99uC for

10 min. The amplified reaction products were diluted to 200 ml

using 0.16Tris-EDTA buffer (pH = 8). RT-PCR was perfomed on

the ViiA 7 (Applied Biosystems, CA, USA) using 0.5 ul 206
miRNA assay, 0.1 ml preamp product, 5.0 ml TaqMan Fast

Universal PCR Master Mix (2)), 4.4 ml nuclease-free water were

combined for a 10 ul PCR reaction. All reactions were performed in

triplicate and the median included in the final analysis.

Data analysis
Pre-processing. Thresholds for the PCR runs were set using

RQ Manager (Applied Biosystems) and manually checked to ensure

the cT corresponded to the midpoint of the logarithmic amplifica-

tion. All observed Ct values greater than 34 were considered not

expressed and set to 34. Any undetermined Ct values were also set to

34. As each miR was profiled in triplicate, any replicate value more

than 20% different from the remaining two values was considered an

outlier and removed from analysis. The mean Ct value was then

determined for each sample and miR across replicates.

Normalisation. RNU48 was profiled in each samples as an

endogenous control but was deemed inappropriate for plasma as

in the majority of samples it was not detected (Figure 1a), deemed

inappropriate for urine as it was the miR with the third highest

standard deviation (Figure 1b), and showed variable expression

between high-risk and low-risk groups. Therefore, geometric mean

normalisation was used, a normalisation shown to be effective in

miR PCR profiling [21]

Differential expression analysis. The mean Ct of samples

belonging to high-risk and low-risk groups was used to calculate

DDCt. Fold-change was calculated as 22DDCt. A student t-test was

used to calculate the significance of the difference between high

and low risk groups and the p-value was adjusted for multiple

testing correction using the Benjamini-Hochberg method [22]

Feature selection and classifiaction. We assume the data

is given as a matrix xij

� �
, N features (miRs) for M samples i.e.

1ƒiƒn and 1ƒiƒm with the label vector yj

� �
~+1 arranged in

such a way that yj

� �
~z1for 1ƒjƒmz and yj

� �
~{1 for the

remaining samples mzvjƒm. We have used two different

methods for selection/ordering of features/miRs from most to the

least ‘‘discriminating’’. The first method used was the classical

Student’s t-test, which allocated to the i-th feature the score

ti~
�xxzi{�xx{iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
zizs2

{i

q ,

where

�xxzi~
1

mz

Xmz

k~1

xijk
and �xx{i~

1

m{

Xm

k~mzz1

xijk

denote the means and

s2
zi~

1

mz{1

Xmz

k~1

xijk
{�xxzi

� �2

and

s2
{i~

1

m{{1

Xm

k~mzz1

xijk
{�xx{i

� �2

denote the variances of the i-th variable for samples of the both

groups of interest, respectively. Then the features are ranked in the

descending order of absolute values of the statistic tij j, for

i~1,2, . . . ,n. The second technique, named the centroid feature

selection, ranks the feature in the descending order of the magnitude

D�xxzi{�xx{i D of the difference between means of the i-th variable for

samples of the both groups of interest.

For various subsets of t top features, (xi1 ,xi2 , . . . ,xit ), we

generated linear classifiers

Figure 3. Receiver operating characteristic (ROC) curve for
profiling of miRs in plasma. miR-16 does not accurately predict
likelihood of developing high-risk disease at radical prostatectomy
(AUC = 0.62).
doi:10.1371/journal.pone.0091729.g003
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f tð Þ xð Þ~
Xt

k~1

wkxik
zb,

for a sample x~ x1, . . . , xnð Þ, using a support vector machine

algorithm, which selected weights wk and the intercept b by

minimising the following functional:

wk,bð Þ~arg min wk ,bð Þ
Xt

k~1

wk
2z

C

m

Xm

j~1

yj{
Xt

k~1

wkxik ,j{b

 !2

:

Here C is adjustable regularisation constant, with a relatively weak

impact on the final result in our case. The results reported have

used C = 1.

Results

The demographics and clinicopathological characteristics of the

low-risk and high-risk patients in cohort 1 (discovery cohort) in the

plasma and urine profiling arms are outlined in Table 1.

microRNA profiling of plasma
The majority of miRNAs were at detectable concentrations in

the plasma of patients with high-risk prostate cancer and low-risk

prostate cancer (Figure 2). Three samples showed overall low

detection rates and were removed from subsequent analysis.

Unsupervised clustering was applied to samples across the 12 miRs

profiled in plasma to determine if there was separation between

high-risk and low-risk groups. There appeared to be no apparent

separation between high and low-risk groups. We applied a feature

selection procedure and tested the performance of the 12 miRs for

Figure 4. A heatmap showing the Ct values for each miR and each sample in the urine cohort. The samples have been subjected to
unsupervised hierarchical clustering and the results are depicted by the dendrogram at the top of the image.
doi:10.1371/journal.pone.0091729.g004
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their ability to delineate high-risk prostate cancer from low-risk

prostate cancer. Table 2 shows the results from our feature

selection procedure. Using both the t-test and centroid feature

selection procedure, miR16 was selected as the most predictive

feature, however, the ranking showed unstable results across all of

the miRs. Figure 3, shows a ROC curve for miR16, demonstrating

that the miR overall has quite poor performance with an area

under the curve of 0.62. While predictive, we decided this

performance was not sufficient to warrant further validation.

microRNA profiling of urine
Discovery cohort. In screening urine, all samples showed a

detectable level of expression for the selected miRs (Figure 4).

Unsupervised clustering of the samples across all miRs showed a

moderate separation of low-risk and high-risk samples (Figure 4).

miRs 16, 20a, 21, 34a, 145, 106b, 182, 205, 221, 222, 331 and 375

were detected at higher levels in the high-risk group, whereas miR

218 was detected at lower levels in the urine of high risk prostate

cancer patients. Of these miRs all but miR 218 were significantly

different between the high and low risk groups (q-value,0.1) as

shown in Table 3. The fold change for the miRNAs, which were

significantly upregulated ranged from 2.17 (miR 145) to 8.09 (miR

222) as shown in Table 3. To determine the minimal set of miRs

which showed the best separation of high and low risk groups, we

used a feature selection procedure of which the results can be seen

in Table 4. Both the t-test feature selection procedure and the

centroid procedure selected miR16 and miR222 as the most

predictive features. Beyond this, the ranking of miR performance

was unstable. We therefore chose miR222 and miR16 for

validation. In addition, we also chose miR21. Even though it

did not rank highly on the feature selection procedure, we selected

it as a feature that was likely to be independent from miR222 and

miR16, as the least correlated miR within the cluster containing

miR222 and miR16 (Figure 4). We tested the performance of all

combinations of the 3 miRs and all three combined showed the

best performance of AUC = 0.75 (Figure 5). We deemed this

performance sufficient for further followup and sought a validation

cohort.

Validation cohort. The demographics and clinicopatholog-

ical characteristics of the low-risk and high-risk patients in cohort 2

(validation cohort) are outlined in Table 5. Validation was only

undertaken for urinary expression as the classifier for plasma

expression of miRNA yielded only moderate performance.

We chose miR 16, 21 and 222 for validation in an independent

cohort of low-risk and high-risk prostate cancers. We chose a

different method of profiling of miRNAs in the validation cohort

to test for robustness, as described in the methods. To test for

uniformity of detection across the two platforms, we profiled the

samples from the original cohort on the new platform and

observed the correlation of Ct values between the platforms for the

three miRs. All three miRs showed high correlation between

platforms (Figure 6) suggesting that detection of these miRs was

robust. Their performance as predictors of high-risk disease was

also comparable across platforms (Figure 7, AUC = 0.72). How-

Figure 5. Receiver operating characteristic (ROC) curve for
profiling of miRs in urine from prostate cancer patients. miR 16,
miR 222 and miR 21 predict high-risk prostate cancer with an AUC of
0.75.
doi:10.1371/journal.pone.0091729.g005

Table 3. MicroRNA detection in urine of low-risk and high-risk prostate cancer patients at radical prostatectomy in the original
cohort.

miR Mean low-risk Mean high-risk DDCt Fold Change P-value Q-value

miR 222 22.6284 25.6460 3.017597 8.098176 0.013078 0.057554

miR 16 22.7880 25.8020 3.014036 8.078210 0.024273 0.057554

miR 205 25.8730 28.5610 2.687978 6.444098 0.038138 0.057554

miR 20a 25.2013 27.8736 2.672283 6.374369 0.042064 0.057554

miR 331 26.5414 29.1520 2.610608 6.107610 0.037799 0.057554

miR 21 25.6082 28.0528 2.444620 5.443823 0.039690 0.057554

miR 375 25.4324 27.8130 2.380519 5.207240 0.029020 0.057554

miR 34a 27.6115 29.8324 2.220869 4.661743 0.025066 0.057554

miR 106b 28.2883 30.1729 1.884607 3.692524 0.045221 0.057554

miR 221 28.4153 30.0484 1.633065 3.101714 0.060869 0.070955

miR 182 29.2585 30.6111 1.352615 2.553746 0.028318 0.057554

miR 145 29.3191 30.4363 1.117213 2.169275 0.065887 0.070955

miR 218 26.1297 25.6887 20.441010 0.736619 0.612671 0.612671

doi:10.1371/journal.pone.0091729.t003

Urinary and Plasma MicroRNAs in Prostate Cancer

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e91729



T
a

b
le

4
.

T
h

is
ta

b
le

co
n

ta
in

s
th

e
re

su
lt

s
o

f
o

u
r

fe
at

u
re

se
le

ct
io

n
p

ro
ce

d
u

re
fo

r
m

iR
s

p
ro

fi
le

d
in

u
ri

n
e

.

R
a

n
k

T
o

p
1

T
o

p
2

T
o

p
3

T
o

p
4

T
o

p
5

T
o

p
6

T
o

p
7

T
o

p
8

m
iR

T
-t

e
st

1
6

0
9

0
9

7
1

0
0

1
0

0
1

0
0

1
0

0
1

0
0

m
iR

2
2

2

2
7

3
3

5
0

6
0

7
7

7
7

8
0

8
3

m
iR

1
6

3
7

2
3

3
7

6
0

6
7

9
0

9
0

9
3

m
iR

3
4

a

4
0

3
3

7
5

0
6

7
8

0
8

3
8

7
m

iR
1

8
2

5
2

0
2

7
3

3
4

7
5

3
5

3
6

3
7

0
m

iR
3

7
5

6
0

7
1

3
2

3
3

7
5

0
5

3
6

3
m

iR
2

0
5

7
0

3
1

0
1

7
2

7
3

7
7

0
7

7
m

iR
3

3
1

8
0

3
7

7
2

0
3

3
4

7
5

7
m

iR
2

1

9
0

0
0

1
3

2
0

3
0

4
0

6
7

m
iR

2
0

a

1
0

0
0

3
7

1
0

2
3

3
3

4
3

m
iR

1
0

6
b

1
1

0
0

0
0

3
7

1
3

3
0

m
iR

2
2

1

1
2

0
3

7
1

0
1

3
1

3
2

0
2

3
m

iR
1

4
5

C
e

n
tr

o
id

1
3

7
9

0
9

7
1

0
0

1
0

0
1

0
0

1
0

0
1

0
0

m
iR

2
2

2

2
5

0
6

7
8

3
8

3
9

3
9

7
9

7
1

0
0

m
iR

1
6

3
1

3
3

0
4

3
5

7
7

0
7

7
9

3
9

3
m

iR
2

0
5

4
0

7
3

3
7

3
9

0
9

7
9

7
1

0
0

m
iR

2
0

a

5
0

3
2

7
5

0
8

0
9

0
9

7
1

0
0

m
iR

3
3

1

6
0

3
1

0
1

0
2

0
6

3
9

3
1

0
0

m
iR

2
1

7
0

0
7

1
7

2
3

4
3

7
0

8
7

m
iR

3
7

5

8
0

0
0

3
1

0
2

0
4

0
9

3
m

iR
3

4
a

9
0

0
0

0
3

3
3

1
3

m
iR

1
0

6
b

1
0

0
0

0
7

1
0

1
0

1
0

1
3

m
iR

2
1

8

1
1

3
7

9
0

9
7

1
0

0
1

0
0

1
0

0
1

0
0

1
0

0
m

iR
2

2
2

1
2

5
0

6
7

8
3

8
3

9
3

9
7

9
7

1
0

0
m

iR
1

6

T
h

e
m

iR
s

h
av

e
b

e
e

n
ra

n
ke

d
b

as
e

d
o

n
th

e
ir

ap
p

e
ar

an
ce

in
th

e
T

o
p

n
m

iR
s

fo
r

d
if

fe
re

n
t

cl
as

si
fi

e
rs

as
p

ar
t

o
f

th
e

cr
o

ss
-v

al
id

at
io

n
p

ro
ce

d
u

re
.

T
h

e
p

e
rc

e
n

ta
g

e
o

f
ti

m
e

s
th

e
m

iR
is

se
le

ct
e

d
b

y
th

e
cl

as
si

fi
e

r
in

th
e

to
p

n
=

1
..8

m
iR

s
is

re
p

o
rt

e
d

fo
r

b
o

th
t-

te
st

an
d

ce
n

tr
o

id
ap

p
ro

ac
h

e
s.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

1
7

2
9

.t
0

0
4

Urinary and Plasma MicroRNAs in Prostate Cancer

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e91729



ever, as shown in Table 6, in the validation cohort, we found that

the three miRNAs were surprisingly detected at lower levels in the

high-risk group, compared to the low-risk group: miR 16

(FC = 0.07, q = 0.08), miR 21 (FC = 0.14, q = 0.10) and miR 222

(FC = 0.14, p = 0.10). When the classifier built on the original

cohort using the three miRs was used on the validation cohort, we

achieved a performance of AUC = 0.35 (Figure 7).

Evaluation of methodology of miRNA profiling. To

evaluate if this change in expression pattern of the miRNAs was

due to methodological difference, we profiled for the three

miRNAs using both methodologies on the original discovery

cohort. We found that using both methodologies, all three

miRNAs were detected at higher levels in the high-risk group in

the original discovery cohort. Comparison of expression of these

three miRNAs using both methodologies on the original cohort

showed good correlation (Correlation coefficient R2 = 0.96 (miR

16), R2 = 0.91 (miR 222) and R2 = 0.86 (miR 21)) confirming that

the difference observed was due to a biological variation rather

than methodological variation.

Discussion

Predicting high-risk CaP remains a challenge and this underpins

our current overtreatment of biologically insignificant cancers. For

any biomarker to be successfully translated to the clinical arena, it

must withstand sufficient validation in independent cohorts of

patients and demonstrate methodological robustness. In this study

we have highlighted the importance of validating results in an

independent cohort using alternate methodological platforms. In

the original cohort, we found that miR 16, 222 and 21 were

Table 5. Clinical and pathological characteristics of patients in the validation cohort.

Urine cohort

Low-Risk High-Risk

n 14 22

Age Median 63 63

(yrs) Range 45–71 49–79

Follow-up Median 3.47 3.84

(yrs) Range 2.79–5.13 2.77–5.41

Prostate Weight Median 60 50

(g) Range 28–78 31–87

Gleason Grade (%) 6 14 (100) 0 (0)

7 (3+4) 0 (0) 0 (0)

7 (4+3) 0 (0) 1 (4)

8 0 (0) 3 (14)

9 (4+5) 0 (0) 15 (68)

9 (5+4) 0 (0) 3 (14)

Tumour Volume Median .2000 10.65

(cc) Range 0.10–0.90 2.50–28.70

pT stage (%) pT2a 4 (29) 0 (0)

pT2b 0 (0) 0 (0)

pT2c 10 (71) 1 (5)

pT3a 0 (0) 10 (45)

pT3b 0 (0) 11 (50)

EPE (%) Present 0 (0) 21 (96)

Absent 14 (100) 1 (4)

SV Invasion (%) Present 0 (0) 10 (45)

Absent 14 (100) 12 (55)

PN Invasion (%) Present 3 (21) 22 (100)

Absent 11 (79) 0 (0)

LV Invasion (%) Present 0 (0) 16 (73)

Absent 14 (100) 6 (27)

Multifocal (%) Yes 12 (86) 13 (59)

No 2 (14) 9 (41)

Surgical Margins (%) Positive 0 (0) 16 (73)

Negative 14 (100) 6 (27)

Metastatic Disease (%) Yes 0 (0) 0 (0)

No 14 (100) 22 (100)

doi:10.1371/journal.pone.0091729.t005
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upregulated in high risk prostate cancer compared to low-risk

cancer and urinary profiling of miR 16, miR 222 and miR 21, was

able to distinguish between those cancers likely to have an indolent

course from the biologically significant cancers after radical

prostatectomy. However these same miRNAs were found to be

detected at lower levels in an independent cohort of high-risk

prostate cancers compared to low-risk cancers. This is in contrast

to the results from the original cohort. Thus profiling for these

miRNAs in plasma or urine, in our study, did not robustly

distinguish between low-risk and high-risk CaP.

Given that miRNA profiling using both these distinct method-

ologies on the original discovery cohort yielded similar results, this

is most likely to represent genuine biological variation rather than

a difference due to methodological variation. The TLDA cards are

a relatively new platform for performing PCR that haven’t been

subjected to intense validation but have been used by many groups

previously for quantifying gene expression [23,24,25]. Profiling of

miR 16, 21 and 222 on the samples in the original cohort using the

two different methodologies showed that the results correlated

well. This confirmed that the experimental methodology was

robust and results are indicative of a true biological variation in the

expression of these miRNAs in the two independent groups.

The analysis of urine as a diagnostic or prognostic tool is not

unprecedented. Levels of protein, mRNA, miRNA and even gene

methylation in urine have been correlated with cancer presence

and aggression in prior studies [26,27,28,29,30]. In addition,

others have found urine to be a better source of prostate material

than plasma [28]. The method of these cellular substances

reaching the urine is likely via transport of cancer cells through

the prostatic ductal system [30] or the exosomal pathway [27].

Many previous studies have studied the regulation of miRNA

species in prostate cancer tissues relative to benign prostate, high-

grade primary relative to low-grade, or metastatic relative to

primary cancer [31,32,33]. Additionally, many of the miRNAs

involved in prostate cancer initiation, progression and metastasis

have been functionally characterised [34,35]. Recent work also

profiled miRNA species found to be upregulated or downregulated

in plasma or serum of prostate cancer patients

[10,11,12,13,36,37]. These studies have revealed that specific

miRNAs may be useful for a non-invasive prognostic test, but only

using plasma or serum. Few studies have profiled for miRNAs in

urine from patients with prostate cancer. They have found that

several circulating miRNAs are differentially expressed in prostate

cancer [10,11,12,13,36,37,38]. Some have found that miR 26a,

30c and let 7 are differentially expressed in plasma or serum of

patients with prostate cancer compared to those with benign

prostatic hyperplasia (BPH)[12,36]. Others have compared

patients with low-risk to high-risk prostate cancer and across

various studies miR-141, miR-375, miR-221, miR-21 and miR-

145 have shown to be elevated in patients with high-risk or

metastatic prostate cancer [10,11,37,38]. Whilst miR 222 has not

been shown to be significantly predictive of high-risk disease in

previous studies [39], miR 21 has been shown to be elevated in

more aggressive prostate cancer in some studies [11,37]. Shen et al

found that miR 21 levels correlated with Cancer of the Prostate

Risk Assessment (CAPRA) scores [11] and Agaoglu and colleagues

found that miR 21 levels were elevated in patients with metastatic

tumors compared to those with localized disease [37]. Similarly

miR 221 has been shown to be elevated in both these studies but

miR 221 was not consistently elevated in high-risk tumors in our

cohort.

Figure 7. Receiver operating characteristic (ROC) curve for
profiling of miRs in urine. Prostate cancer patients from the original
cohort (blue). Prostate cancer patients from the validation cohort (red).
doi:10.1371/journal.pone.0091729.g007

Figure 6. Ct values of three miRs profiled across the same samples using two independent platforms. R2 values represent Pearson
correlation.
doi:10.1371/journal.pone.0091729.g006
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However these studies have repeatedly yielded different miRNA

signatures to risk stratify prostate cancer due to varying

experimental methodology, lack of robustness of statistical analysis

and non-standardised definitions of high-risk or low-risk prostate

cancer. We have tried to address some of these problems by using

robust statistical approaches for analysis of results as well as using

standardised definitions of indolent (Epstein criteria) and high-risk

disease. The majority of the previous studies have not included

validation of significant miRNAs and hence they lack the ability to

demonstrate reproducibility of data [11,12,13,36,37].

Another point to be highlighted is that the samples in other

studies done so far were taken from patients when they had

developed metastatic disease. Whilst this provides insight into the

biology of tumour progression, it doesn’t allow risk stratification of

patients when they still have localised disease and as such doesn’t

have an immediate clinical implication. Our study is novel in that

all plasma and urine samples were collected prior to radical

prostatectomy and hence at the time when risk stratification,

selection for treatment and prognostication of patients is

paramount.

Other tests commercially available for risk stratification of

prostate cancer are the PCA3 and the PHI test. The PCA3 test,

which is a urine-based mRNA test, is more specific for prostate

cancer than the PSA test [30,40]. It has been shown to be useful in

guiding decisions for prostate biopsy based on a cumulative score

calculated by measuring the expression of the prostate cancer gene

mRNA. More recently it has been shown to be predictive of

‘significant’ prostate cancer as there was a significant difference in

PCA3 scores of patients who satisfied the Epstein criteria for

indolent cancers [41] and ‘significant’ cancers that were deemed

appropriate for radical prostatectomy. The PHI test which

measures a different isoform of PSA, the [22] pro-PSA, has been

found to be useful in predicting prostate cancer with Gleason

score$7 in patients with PSA of 2–10 ng/ml however is not

associated with prostate volume [42]. However, neither of these

tests help to determine those people likely to develop metastatic

disease after radical prostatectomy.

There are some limitations of this study that need to be

enumerated. With no accepted biological control for miRNAs in

biofluids, we haven’t normalised our results to a ‘house-keeping’

gene. Several endogenous controls are used in tissue profiling

studies. However when we used RNU48 as an endogenous

control, we found that its expression was not consistent in the low-

risk and high-risk groups. With such a systematic perturbation in

its expression, it was unsuitable as an endogenous control. With

time, as miRNAs are studied further in biofluids, certain biological

controls might emerge. Secondly urine is a dynamic body fluid and

concentrations can change with hydration status and renal

pathology. In our study all urine samples were collected

immediately prior to radical prostatectomy hence there is likely

to be a high degree of uniformity within the urine compositions.

Measuring 24-hour urine volumes would be the gold standard to

assess hydration status but this is laborious, expensive and fraught

with low compliance rates in the clinical setting. Measuring

creatinine ratios or specific gravity remain other possibilities and

potentially more feasible alternatives. Finally our sample size is

small.

To conclude, here we have shown plasma and urinary profiling

of miRNAs may not be a robust marker for prognostication of

prostate cancer aggression and high-risk disease. This study

highlights the importance of incorporating validation cohorts and

methodological robustness to ensure reproducibility of data in all

future biomarker studies.
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