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Abstract: Placenta-derived mesenchymal stromal cells (MSC) have attracted more attention for
their immune modulatory properties and poor immunogenicity, which makes them suitable for
allogeneic transplantation. Although MSC isolated from different areas of the placenta share several
features, they also present significant biological differences, which might point to distinct clinical
applications. Hence, we compared cells from full term placenta distinguishing them on the basis of
their origin, either maternal or fetal. We used cells developed by Pluristem LTD: PLacenta expanded
mesenchymal-like adherent stromal cells (PLX), maternal-derived cells (PLX-PAD), fetal-derived cells
(PLX-R18), and amniotic membrane-derived MSC (hAMSC). We compared immune modulatory
properties evaluating effects on T-lymphocyte proliferation, expression of cytotoxicity markers,
T-helper and T-regulatory cell polarization, and monocyte differentiation toward antigen presenting
cells (APC). Furthermore, we investigated cell immunogenicity. We show that MSCs and MSC-like
cells from both fetal and maternal sources present immune modulatory properties versus lymphoid
(T cells) and myeloid (APC) cells, whereby fetal-derived cells (PLX-R18 and hAMSC) have a stronger
capacity to modulate immune cell proliferation and differentiation. Our results emphasize the
importance of understanding the cell origin and characteristics in order to obtain a desired result,
such as modulation of the inflammatory response that is critical in fostering regenerative processes.

Keywords: human placenta; amniotic membrane; immunomodulation; mesenchymal stromal cells;
PLX: PLacenta expanded mesenchymal-like adherent stromal cells

1. Introduction

In the past several decades, mesenchymal stromal cells (MSC) have been the subject of extensive
studies, representing a hypothetical magic bullet in regenerative medicine. Initially, MSC attracted
much attention due to their low immunogenicity and differentiation capability. However, currently,
they are widely recognized for their immunomodulatory properties. Over the years, it has been
possible to identify MSC in different tissues and, over time, it has been appreciated that different tissues
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harbor MSC with peculiar characteristics/properties. More specifically, in the past two decades, the
human placenta has become a consolidated source of MSC that possess unique properties.

Placenta plays an essential role in supporting the development of the fetus and represents an
important reservoir of transient progenitor and stem cells. To date, MSC have been isolated from
different regions of the placenta of both fetal and maternal origin.

According to the First International Workshop on Placenta-Derived Stem Cells held in Brescia, Italy in
2007 [1], four major regions of fetal placenta are identified in which each harbor potential stem/progenitor
cells identified as: human amniotic epithelial cells (hAECs), human amniotic mesenchymal stromal cells
(hAMSCs), human chorionic mesenchymal stromal cells (hCMSCs), and human chorionic trophoblastic
cells (hCTCs) [1–5]. Mesenchymal stromal/stem cells (MSCs) have also been isolated from other placental
tissues, such as the chorionic villi [6–11], the maternal decidua basalis [4,12,13], and from different
compartments of the umbilical cord, such as the Wharton’s jelly [14–16].

The maternal component of the placenta, which is in direct contact with extra-embryonic
fetal tissues, the decidua, has been the subject of intensive investigation in an attempt to explain
the mechanisms involved in the delicate immunological balance that governs pregnancy. Within
the decidua, different immune cells can be identified, whether they are T lymphocytes [17–19],
macrophages [20], or natural killer (NK) cells [21,22], with proportions that change during pregnancy,
play a significant role in regulating the implantation, placentation, and maintenance of pregnancy, and,
ultimately, impact the maternal immune system [21,23,24]. The unique immunological setting between
mothers and the fetus during pregnancy has led to the hypothesis that the placenta fosters cells with
immunological properties being critical in maintaining feto-maternal tolerance during pregnancy.

In line with this hypothesis, MSC isolated from different placenta regions have been shown to
possess immune modulatory properties [25–29]. In addition, the regions from which placental cells are
taken has been shown to impact properties such as differentiation, angiogenesis, and ability to inhibit
T-lymphocyte proliferation [30–33], which potentially has a significant impact on their applications in
regenerative medicine as well as in the treatment of inflammatory and autoimmune disorders.

A current open and critical aspect for the applications of MSC in regenerative medicine is the
origin of tissue and inherent heterogeneity that it poses. Fetal membranes have been shown to
possess areas with different structural characteristics [34] and mitochondrial activity [35]. Moreover,
the maternal-fetal immune interactions during gestation could influence the immunomodulatory
properties of MSC isolated from maternal and fetal tissues, and some differences have been reported in
the ability to impact proliferation [32,33]. However, these studies use a non-specific stimulus such
as phytohaemagglutinin (PHA), which has little relevance to the in vivo setting. Thus, given that
MSC isolated from specific placenta regions (e.g. amniotic membrane, umbilical cord, chorionic villi)
have been shown to possess immune modulatory properties, and given that other properties (such as
structural characteristics and mitochondrial activity) have been shown to differ based on the specific
region of placenta from which the MSC were isolated, we hypothesized that the maternal-fetal immune
interactions during gestation could influence the immunomodulatory properties of MSC isolated from
maternal and fetal tissues. In this study, we performed a detailed comparison of the immunological
properties of MSC isolated from maternal and fetal components of human term placenta. In addition,
we use both research and standardized cell preparations and good manufacturing practice (GMP)
products, which bypasses heterogeneity associated with differing cell isolation and culture conditions
that could, in turn, influence their immunological properties.

We compared maternal MSC-like cells (PLX-PAD) and two different fetal-derived cells known as
PLX-R18 [36–40] and a well-characterized MSC population from the amniotic membrane [41]. Placental
expanded (PLX) are of a good manufacturing practice (GMP)-grade clinical investigational product
that are prepared using a 3-dimensional (3D) bioreactor-based cell growth platform. The two products
are currently being investigated for the treatment of muscle injury following hip fracture and critical
limb ischemia (CLI) for PLX-PAD and bone marrow recovery following incomplete hematopoietic
cell transplantation (HCT) for PLX-R18 as reported in the ClinicalTrials.gov website, available online:

ClinicalTrials.gov
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https://clinicaltrials.gov/ (accessed on 04/01/2020). Hence, we analyzed and compared the capacity
of maternal and fetal MSC to (a) inhibit T lymphocyte proliferation, (b) modulate the expression
of cytotoxicity markers upon activation with CD3/CD28 mAbs, (c) impact the Th subset and Treg
polarization, and (d) affect monocyte differentiation toward antigen presenting cells [M1 macrophages
and mature dendritic cells (mDC)] and skew toward the M2 phenotype. Furthermore, we investigated
the immunogenicity of PLX-PAD cells evaluated as the capacity of these cells to spontaneously induce
lymphocyte proliferation in the absence of specific stimuli.

Our findings demonstrate that placenta-derived cells, and, most of all, fetal-derived cells directly
impact the immune response by interfering with T-cell activation and by modulating antigen presenting
cells (APC) differentiation. These results underline the importance of the origin of cells and, for the first
time, provide a vast characterization of two GMP products that approved clinical investigational products.
Our observations could, therefore, be useful in guiding clinical decisions as to which placenta-derived cell
population could potentially be more promising/apt for specific immunological disorders.

2. Materials and Methods

2.1. Ethics Statements

For the amniotic membrane-derived MSC (hAMSC), human term placentae (n = 11) were collected
from healthy women after vaginal delivery or caesarean section at term after obtaining informed written
consent, according to the guidelines set by the local ethical committee “Comitato Etico Provinciale di
Brescia”, Italy (number NP 2243, 19 January 2016).

PLX cells are collected from healthy women undergoing an elective caesarean section. The
placenta donors sign an informed consent form and no ethical issues are known to exist with the use of
placenta-derived cells. Placenta collection and use is approved by the Israeli medical center Ethics
Committees (protocol number PLC-001-03 MOH reference number: 302102218).

2.2. Isolation of Mesenchymal Stromal Cells from the Amniotic Membrane

Human term placentas were obtained from healthy women with informed consent after vaginal
delivery or caesarean section and processed immediately. Cells were isolated as previously described [41].
The amnion was manually separated from the chorion, washed in saline solution containing 100 U/mL
penicillin and 100 µg/mL streptomycin (catalog number P0781), and cut into small pieces. Amnion
fragments were digested at 37 ◦C for 9 min with 2.5 U/mL dispase (catalog number 734–1312 from VWR,
Radnor, PA, USA), and then transferred to RPMI complete medium (catalog number R0883) composed of
RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum (FBS) (catalog number
F9665), 1% penicillin, and streptomycin (herein referred to as P/S), and 1% L-glutamine (catalog number
G7513) (all from Sigma Aldrich, St. Louis, MO, USA). Afterward, the fragments were treated with
0.94 mg/mL collagenase (catalog number 11088793001) and DNase I (catalog number 11284932001) (both
from Roche, Basel, Switzerland) for approximately 2.5–3 h at 37 ◦C. Resulting cell suspensions were
centrifuged at low g. The supernatant was filtered through a 100-µm cell strainer (catalog number
CLS431752 from BD Falcon, Bedford, MA, USA) and the cells were collected by centrifugation. Freshly
isolated (p0) are referred to as hAMSC and were expanded until passage 1 (p1) by plating at a density
of 104/cm2 in Chang medium C (catalog number 12400080 from Irvine Scientific, Santa Ana, CA, USA)
supplemented with 2 mM L glutamine at 37 ◦C in the incubator at 5% CO2.

2.3. Placental Expanded (PLX) Cells

PLX is an allogeneic ex-vivo placental expanded adherent stromal cell product obtained from
Pluristem LTD in the GMP compliant facilities located at Haifa Israel. The mesenchymal-like stromal
cells, referred to as adherent stromal cells, are derived from the full-term human placenta collected
from healthy women undergoing an elective caesarean section and expanded using plastic adherence
on tissue culture dishes. This was followed by three-dimensional growth on carriers in a bioreactor,

https://clinicaltrials.gov/
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as previously described [42–44]. The manufacturing process consists of two stages. In the first stage,
the cells are digested from the placenta and expanded in 2-dimensional (2D) cell growth for several
passages after which the cells are concentrated and cryopreserved to produce vials containing the
Intermediate Cell Stock (ICS). In the second stage of the production, one vial of ICS is further cultured
to produce the final PLX-PAD product. After thawing, the ICS is cultured in 2D for additional passages
until the culture reaches 60–90% confluency and then transferred to bioreactors for a final culture in
controlled 3D-expansion on carriers. The final PLX-PAD drug product is immediately formulated,
filled in vials, and cryopreserved. The growth stage at the bioreactor is automatically controlled to
keep ideal growth conditions such as Dissolved Oxygen (DO) at 70%. From each placenta, several
ICS vials are being produced and, after thawing each ICS vial, can produce one PLX-PAD batch. The
overall population doubling level of the cells does not exceed 25 doublings.

The results obtained from maternal-derived PLX-PAD cells are representative of the cumulative
data obtained from two different batches of PLX-PAD cells supplied by Pluristem LTD, Israel. For fetal
PLX-R18 cells, one batch was used for all experiments.

2.4. Analysis of PLX Cells and hAMSC Phenotype

Both maternal (PLX-PAD) and fetal (PLX-R18 and hAMSC) cell populations (hereafter, collectively
referred to as “MSC”) were analyzed by flow cytometry for the expression of CD90 (clone 5E10), CD105
(clone 266), CD73 (clone AD2), CD13 (clone L138), CD45 (clone HI30), CD66b (clone G10F5), CD14
(clone MΦP9), CD34 (clone 581/CD34), CD107a (clone H4A3), CD146 (clone P1H12), CD140b (clone
28D4), CD40 (clone 5C3), CD80 (L307.4), CD86 (clone FUN-1), CD95 (clone DX2), CD178 (clone NOK-1),
CD273 (clone MIH18), CD274 (clone MIH1), CD200 (MRC OX-104), CD324 (clone 67A4), CD326 (clone
HEA-125), Galectin-9 (clone REA435), B7H4 (clone MIH43), HLA-ABC (clone G46-2.6), HLA-DR
(clone TU36), HLA-DQ (clone TU169), HLA-DM (clone MaP.DM1), and HLA-G (clone MEM-G9). All
antibodies were purchased from BD Biosciences (BD Biosciences, Franklin Lakes, NJ, USA), except
for HLA-G, which was purchased from Serotec-Bio-Rad, (Hercules, CA, USA), and CD324, CD326,
and Galectin-9, which were purchased from Miltenyi Biotec (Bergisch Gladbach, Germany). Dead
cells were gated out by E-Fluor 780 (catalog number 65-0865-14, Thermofisher, Waltham, MA, USA)
staining. Surface staining was carried out at 4 ◦C for 30 min by using a standard procedure.

The intracellular staining for human leukocyte antigen (HLA)-DM and Galectin 9 was performed
upon fixation and permeabilization following with BD Cytofix/Cytoperm (catalog number 554714), BD
Biosciences, Franklin Lakes, NJ, USA). Cells were then incubated with anti-HLA-DM or anti-Galectin 9.

Antigen expression was detected using FACSAria III (BD Biosciences) and data were analyzed
with FCS express v5 (De Novo Software, Los Angeles, CA, USA).

2.5. Analysis of T Cell Proliferation

Human peripheral blood mononuclear cells (PBMC) were obtained from heparinized whole blood
samples donated by healthy subjects (n = 24) using density gradient centrifugation (Histopaque 1077,
catalog number 10771, Sigma-Aldrich, St. Louis, MO, USA).

To study the effect of maternal-derived and fetal-derived cells on PBMC proliferation upon stimulation
with anti-CD3 OKT3 and anti-CD28 mAbs, MSC were seeded in 96 well plates and given the chance
to adhere overnight. The day after, MSC were irradiated at 30Gy and 1 × 105 allogeneic PBMC were
added to each well. The co-culture was performed with three different PBMC:MSC ratios (1:1, 1:0.5 and
1:0.1) and stimulated or not (for the basal activation of the PBMC) with 0.125 µg/mL of CD3 mAbs (CD3
Orthoclone OKT3, catalog number L04AA02, Janssen-Cilag, Neuss, Dusseldorf, Germany) and 7 µg/mL
of CD28 mAbs (CD28 soluble anti-CD28.2, catalog number 555725, BD Biosciences). Cell proliferation was
assessed three days after stimulation by adding EdU 16–18 h before harvesting, as previously described
(catalog number C10425, Life Technologies, Carlsbad, CA, USA) [45]. Cells were stained with E-Fluor
780 (catalog number L34975, Thermofisher) for the exclusion of dead cells and with anti-CD45 (clone
HI30), anti-CD3 (clone UCHT1), anti-CD4 (clone SK3), anti-CD8 (clone SK1), anti-CD56 (clone N901), and
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anti-CD14 (clone MϕP9). All antibodies were purchased from BD Biosciences (BD Biosciences, Franklin
Lakes, NJ, USA) except for CD56, which was purchased from Beckman Coulter. Cells were acquired at
FACSAria III (BD Biosciences) and the percentage of proliferating EdU-positive cells was analyzed with
FCS express v5 (De Novo Software, Los Angeles, CA, USA).

2.6. Degranulation and Cytotoxic Marker Expression

To study the capacity of maternal-derived and fetal-derived MSC to modulate the expression of
cytotoxicity markers on PBMC activated with anti-CD3 and anti-CD28 mAbs. MSC were seeded in
96 well plates and given a chance to adhere overnight. The day after MSC were irradiated at 30Gy
and allogeneic PBMC were added to each well. The co-culture was performed with two different
PBMC:MSC ratios (1:1, 1:0.5) chosen based on the results previously obtained in the proliferation
inhibition tests. Lymphocytes were stimulated or not (for the basal activation of the PBMC) with
CD3/CD28 mAbs. Cytotoxic activity was assessed three days after stimulation. PBMC were stimulated
for 4 h with 10µg/mL Phorbol Myristate Acetate (PMA) (catalog number P1585) and 6µg/mL Ionomycin
(catalog number I0634, both from Sigma-Aldrich). After 1 h and 15 min, 30 µg/mL of Brefeldin A
(catalog number B7651, Sigma Aldrich) was added.

For degranulation assays, cultured PBMC were incubated in the presence of anti-CD107a (clone
H4A3) monoclonal antibody (mAb) with a Golgi stop (catalog number 554724, both from BD Biosciences)
directly added in parallel with PMA and Ionomycin. CD107a surface expression on effector cells was
assessed after 4 h.

To detect spontaneous degranulation or constitutive expression of cytokines/cytotoxic effectors,
an unstimulated control condition was included.

Cells were then stained with E-Fluor 780 (Thermofisher) for the exclusion of dead cells and
with anti-CD3, anti-CD8, anti-CD45, anti-CD14, and anti-CD56 for the surface staining. CD4+ T
lymphocytes are represented by CD45+CD3+CD8− cells. The intracellular staining for Perforin (clone
δG9), Granzyme B (GrzB) (clone GB11), and IFN-γ (clone B27) was performed upon fixation and
permeabilization with BD Cytofix/Cytoperm (all from BD Biosciences). All the antibodies were
purchased from BD Biosciences (BD Biosciences). Cells were acquired at FACSAria III (BD Biosciences)
and the analyzed with FCS express v5 (De Novo Software, Los Angeles, CA, USA).

2.7. Phenotype of CD4+ T Helper (Th) and T Regulatory (Treg) Subsets

The phenotypes of the different Th and Treg subsets were assessed by a panel of specific surface
markers for the expression of the transcriptional factor FoxP3. After 6 days of a co-culture with
maternal or fetal-derived MSC performed at the same PBMC:MSC ratios used for the degranulation
and cytotoxicity marker assay, CD3/CD28 PBMC were collected and centrifuged at 300 g for 5 min. Cells
were stained with E-Fluor 780 (Thermofisher) for the exclusion of dead cells. The surface staining was
performed using antibodies for CD3, CD4, CD45RA (clone HI100), CD196 (clone 11A9), CD183 (clone
1C6/CXCR3), CD194 (clone REA279), CD161 (clone DX12), CD25 (clone M-A25), and CD127 (clone
MB15-18C9), which all came from BD Biosciences. The intracellular staining for FoxP3 (clone 259D/C7)
was performed upon fixation and permeabilization with BD Cytofix/Cytoperm (BD Biosciences). Cells
were then incubated with anti-FoxP3 antibody, acquired at FACSAria III (BD Biosciences), and Th/Treg
subsets analyzed with FCS express v5 (De Novo Software, Los Angeles, CA, USA).

2.8. Analysis of Monocyte Differentiation toward Antigen Presenting Cells

Monocytes (Mo) were purified from PBMC by positive selection using anti-CD14-coated
microbeads and MACS® separation columns (catalog number 130-250-201, Miltenyi Biotec).
Monocyte-derived dendritic cells (DC) were obtained as previously described [46], with modification.
DC were obtained from allogeneic purified Mo (5 × 105 cells) seeded in 48-well plates for four
days (Corning) in the presence of recombinant human IL-4 (catalog number 204IL, R&D Systems,
Minneapolis, MN, USA) (50 ng/mL) and granulocyte macrophage-colony stimulating (GM-CSF, catalog
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number 130-093-862, Miltenyi Biotec) (50 ng/mL) in 0.5 mL RPMI 1640 complete medium (Sigma
Aldrich). Complete maturation was reached by adding lipopolysaccharide (LPS) (catalog number
L4516, Sigma Aldrich) 0.1 µg/mL for two days.

Monocyte-derived M1 macrophage cells were obtained as previously described in Reference [45].
To analyze the effect of MSC on monocyte differentiation, MSC were seeded in RPMI complete

medium and given the chance to adhere overnight. The next day, MSC were gamma-irradiated at 30Gy
and Mo were added. The co-culture was performed with two different Mo:MSC ratios (1:0.4 and 1:0.2)
for both DC and M1 macrophages, as described previously [46–49].

mDC and M1 macrophages were collected after 6 days of differentiation. The phenotypic profile
was investigated by flow cytometry. Prior to the surface staining, cells were stained with E-Fluor
780 (Thermofisher) for the exclusion of dead cells. Then cells were surface stained with anti-CD45,
anti-CD80 (clone L307.4), anti-CD1a (clone HI149), anti-CD163 (clone GHI/61), anti-CD209 (clone
DCN46), anti-CD197 (clone 3D12), and anti-CD14 antibodies (purchased from BD Biosciences).

2.9. Cytokine/Chemokine Analysis

Cytokine/chemokine levels were measured in supernatants collected from PBMC stimulated with
CD3/CD28 mAbs. 1 × 105 PBMC were stimulated with CD3/CD28 mAbs and cultured in 96 well plates
in the absence or presence of PLX-PAD, PLX-R18, or hAMSC cells at a PBMC:MSC ratio of 1:1. The
supernatant was collected after 6 days and stored at −80 ◦C. Supernatants from PLX-PAD, PLX-R18, or
hAMSC cells cultured alone were all included as controls. Each supernatant was thawed right before
use in cytokine/chemokine assays. A multiplex bead-based immunoassay (BD CBA Flex Set system
from BD Biosciences) was used to determine the levels of human IFN-γ (catalog number 560111), TNFα
(catalog number 560112), IL-4 (catalog number 558262), IL-5 (catalog number 557288), IL-13 (catalog
number 558450), IL-10 (catalog number 558274), TGF-β1 (catalog number 560429), IL-17A (catalog
number 560383), Granzyme-A (GrzA) (catalog number 560299), Granzyme-B (GrzB) (catalog number
560304), Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES/CCL5) (catalog
number 558324). Samples were processed, according to the manufacturer’s instructions, acquired
using a FACSAria III (BD Biosciences) and analyzed using FCAP Array software (BD Biosciences).

2.10. Analysis of Immunogenicity

To study the capacity of maternal-derived and fetal-derived MSC to induce PBMC proliferation,
MSC were seeded in RPMI complete medium and left to adhere overnight. The next day, cells were
irradiated (30Gy) and an allogeneic responder PBMC were added. Five different PBMC:MSC ratios
(1:1, 1:0.5, 1:0.25, 1:0.125, and 1:0.0625) were tested. All cultures were carried out in triplicate using
round-bottomed 96-well tissue culture plates (Corning) in a final volume of 200 µL of RPMI complete
medium. As a positive control for PBMC activation, allogeneic PBMC and mDC cells were additionally
used as stimulators and added at the same ratios used to test the immunogenic properties of MSC.
MSC, allogeneic PBMC, and mDC were irradiated to ensure that any proliferation observed could be
attributed solely to the proliferation of responder lymphocytes. Proliferation of PBMC was assessed
after 6 days by adding [3H]-thymidine (0.7 µCi per well, catalog number NET027250UC, PerkinElmer)
for 16–18 h. Cells were then harvested with a Filtermate Harvester, and thymidine incorporation was
measured using a microplate scintillation and luminescence counter (Top Count NXT), which are both
from PerkinElmer (PerkinElmer Waltham, MA, USA).

2.11. Statistical Analysis

The data are displayed as box plots and histograms with Tukey variations. The parameters were
compared using one-way analysis of variance. Data are representative of at least four independent
experiments. Statistical analysis was performed using Prism 6 (GraphPad Software, La Jolla, CA, USA).
A p-value lower than 0.05 was considered statistically significant.
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3. Results

3.1. Immunophenotype of Maternal and Fetal Cells

We first analyzed the immunophenotype of maternal (PLX-PAD) and fetal (PLX-R18 and hAMSC)
cells considering the expression of a panel of CD markers (Figure 1). More specifically, all three cell
populations expressed typical MSC markers including CD13, CD73, CD105, and CD90, and had a
low/absent expression of hematopoietic markers (CD14, CD34, and CD45) and epithelial markers
(CD324 and CD326). Moreover, both maternal and fetal populations expressed HLA-ABC, but lacked
the expression of the different HLA-II isoforms (HLA-DR, HLA-DQ, HLA-DM). It had very low
expression of HLA-G, where the latter has a documented role in fetal-maternal tolerance [50].

Furthermore, we evaluated the expression of antigen presenting cells (APC) co-stimulatory molecules
(CD80, CD86, CD40, CD95) and co-inhibitory molecules (CD273, CD274, B7H4, CD200, Galectin-9). Both
maternal and fetal cell populations did not express co-stimulatory markers, with the exception of CD95
(stimulatory) [51–53] that was expressed by all three populations. On the other hand, co-inhibitory
markers such as CD273 (PD-L2), CD274 (PD-L1), and Galectin-9 were expressed by all three populations,
where the latter was highly expressed (>70%), (Figure 1). Lastly, we confirmed the differential expression
of the CD200 inhibitory ligand as reported by others [33,54], whereby maternal cells were negative for
this ligand and the two fetal cell populations had variable expression. In this case, hAMSC moderately
expressed CD200 (33.3% ± 18.8) and PLX-R18 had a very low CD200 expression (1.4% ± 1.36), (Figure 1).Cells 2020, 9, x FOR PEER REVIEW 8 of 23 
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Figure 1. Phenotype analysis of cells derived from different batches of maternal (PLX-PAD R06 and 
R08) and fetal (PLX-R18 and hAMSC) placental tissues. Immune phenotype screening of the three 
different cell populations. Phenotype was analyzed by flow cytometry and data are presented as 
mean ± SD (*** p < 0.001, **** p < 0.0001). Results were obtained from biological replicates obtained 
from different experiments (n ≥ 3 individual experiments). 

3.2. Maternal and Fetal Cells Differently Impact the Proliferation of T Lymphocytes 

We next evaluated the capacity of maternal-derived or fetal-derived placenta cells to inhibit T-
cell proliferation. Approximately 80% of CD4+ (79.5 ± 7.53%; Figure 2, left panel) and CD8+ (81 ± 9.8%, 
Figure 2, right panel T cells (range 60–85%, n = 4) proliferated upon stimulation with CD3/CD28 
mAbs. Both CD4+ and CD8+ T-cell proliferation were modestly reduced by maternal cells. In the 
presence of a 1:1 ratio of maternal cells, CD4+ T cell proliferation was 67.7 ± 9.6% and CD8+ T cell 
proliferation was of 71.46 ± 13.3% (Figure 2). On the other hand, fetal cells significantly reduced T-
cell proliferation triggered through the polyclonal stimulus CD3/CD28 mAbs in a dose-dependent 
manner (Figure 2). CD4+ T cell proliferation was significantly reduced by fetal-derived cells 
(proliferation at 1:1 ratio of 17.17 ± 13.15% for PLX-R18, 36.3 ± 16.1% for hAMSC). Similar results were 
observed concerning the proliferation of CD8+ T cells when co-cultured with fetal cell populations 
(proliferation at 1:1 ratio of 17.17 ± 7.15% for PLX-R18, 40.7 ± 15.5% for hAMSC). 

Maternal
PLX-PAD PLX-R18 hAMSC

CD90 80.00±4.82 74.49±34.12 92.70±8.29
CD105 85.88±11.12 62.92±9.21 54.88±25.83
CD73 95.53±8.27 61.45±29.68 64.04±15.88
CD13 63.69±16.01 77.85±4.35 81.05±11.32

CD324 0.27±0.25 0.35±0.33 0.25±0.26
CD326 1.84±1.48 0.23±0.10 0.29±0.24
CD45 0.69±0.71 0.59±0.35 0.94±0.88

CD66b 0.68±0.60 0.25±0.54 0.22±0.18
CD14 0.24±0.41 0.24±0.01 0.73±0.10
CD34 0.17±0.27 0.14±0.08 0.24±0.29

CD107a 15.83±20.17 16.43±7.83 26.97±29.68
CD146 62.89±17.74 54.43±16.49 7.09±5.71

CD140b 89.37±5.14 60.35±24.11 58.57±24.59
CD40 0.56±0.36 0.57±0.28 0.19±0.15

CD80 (B7H1) 0.37±0.28 0.57±0.64 0.14±0.12
CD86 (B7H2) 0.44±0.52 0.86±1.07 1.48±1.22
CD95 (Fas R) 12.80±11.78 15.12±5.32 8.22±5.64
CD178 (Fas-L) 0.13±0.22 0.23±0.21 0.25±0.18
CD273 (PD-L2) 50.76±16.75 51.30±25.29 11.48±15.44
CD274 (PD-L1) 12.19±10.55 9.97±6.56 5.07±4.34

B7H4 0.18±0.06 0.63±0.52 0.40±0.28
CD200 0.40±0.29 1.42±1.36 33.37±18.08

Galectin-9 91.98±6.66 97.28±3.45 96.96±5.35
HLA-ABC 41.02±19.48 23.02±8.54 23.46±30.05
HLA-DR 0.09±0.10 0.44±0.46 0.36±0.48
HLA-DQ 0.96±0.34 1.06±0.59 0.93±0.24
HLA-DM 0.22±0.36 0.38±0.38 2.03±1.12

HLA-G 2.03±2.47 4.17±6.64 0.29±0.31

Histocompatibility
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Figure 1. Phenotype analysis of cells derived from different batches of maternal (PLX-PAD R06 and
R08) and fetal (PLX-R18 and hAMSC) placental tissues. Immune phenotype screening of the three
different cell populations. Phenotype was analyzed by flow cytometry and data are presented as
mean ± SD (*** p < 0.001, **** p < 0.0001). Results were obtained from biological replicates obtained
from different experiments (n ≥ 3 individual experiments).

3.2. Maternal and Fetal Cells Differently Impact the Proliferation of T Lymphocytes

We next evaluated the capacity of maternal-derived or fetal-derived placenta cells to inhibit T-cell
proliferation. Approximately 80% of CD4+ (79.5 ± 7.53%; Figure 2, left panel) and CD8+ (81 ± 9.8%,
Figure 2, right panel T cells (range 60–85%, n = 4) proliferated upon stimulation with CD3/CD28 mAbs.
Both CD4+ and CD8+ T-cell proliferation were modestly reduced by maternal cells. In the presence of
a 1:1 ratio of maternal cells, CD4+ T cell proliferation was 67.7 ± 9.6% and CD8+ T cell proliferation
was of 71.46 ± 13.3% (Figure 2). On the other hand, fetal cells significantly reduced T-cell proliferation
triggered through the polyclonal stimulus CD3/CD28 mAbs in a dose-dependent manner (Figure 2).
CD4+ T cell proliferation was significantly reduced by fetal-derived cells (proliferation at 1:1 ratio of
17.17 ± 13.15% for PLX-R18, 36.3 ± 16.1% for hAMSC). Similar results were observed concerning the
proliferation of CD8+ T cells when co-cultured with fetal cell populations (proliferation at 1:1 ratio of
17.17 ± 7.15% for PLX-R18, 40.7 ± 15.5% for hAMSC).
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Figure 2. Effect of placental cells on T lymphocyte proliferation. Allogeneic PBMC (1 × 105)
were stimulated with anti-CD3/CD28 antibodies in the presence of decreasing ratios of maternal
(PLX-PAD)-derived or fetal (PLX-R18 or hAMSC)-derived cells. Cells were cultured for three days,
and proliferation was assessed by Edu (ethynyldeoxyuridine) incorporation added during the final
18 h of culture. Results are presented for both CD4+ and CD8+ T lymphocyte cell subsets and are
expressed as a percentage of cell proliferation. PBMC stimulated with anti-CD3/CD28 mAbs constitute
the positive control while PBMC alone represent the basal level of proliferation. Results are displayed
as mean±SEM (** p < 0.01, *** p < 0.001, **** p < 0.0001 versus control PBMC+ CD3CD28), n ≥ 4
individual experiments.

3.3. Maternal and Fetal Cells Affect T Lymphocyte Functions and Reduce the Expression of
Cytotoxicity Markers

In order to evaluate the ability of maternal and fetal cells to trigger and/or modulate the cytotoxic
activity, we evaluated the expression of cytotoxicity markers CD107a (lysosome-associated membrane
protein 1), Granzyme-B (GrzB), Perforin, and the inflammatory cytokine IFN-γ expressed by CD4+

and CD8+ T cells, and CD3−CD56+ NK cells in PBMC activated by CD3/CD28 mAbs. Since, in our
previous experiments, the lower PBMC:MSC ratio (1:0.1) tested was ineffective to reduce T lymphocyte
proliferation; we excluded this ratio in the subsequent analysis. CD107a was strongly expressed
by CD3/CD28-stimulated PBMC (69.7% ± 6.6 for CD4+, 75.6 ± 18.7 for CD8+, 81.5% ± 8.3 for NK
cells), (Figure 3). At the highest ratio (1:1) tested, PLX-PAD cells were able to significantly reduce
cytotoxic degranulation (evaluated as the inhibition of CD107a surface expression) on CD4+ T cells
(47.7% ± 13.3). A reduction of CD107a was also seen on CD8+ T cells (52.7% ± 15.2), (Figure 3) even
if not statistically significant. Instead, no effects were observed on NK cells (85.9% ± 9.4), (Figure 3).
Moreover, the inflammatory cytokine IFN-γwas inhibited by the PLX-PAD on both CD4+ (15.7%± 11.4)
and CD8+ T cells (26.4% ± 16.3), and also on NK cells (38.7% ± 12.3), (Figure 3). Lastly, the expression
of Granzyme-B and Perforin were not significantly affected by maternal cells, but fetal-derived cells
showed a stronger inhibitory effect on cytotoxic activity of lymphocytes (Figure 3). Both PLX-R18
and hAMSC significantly reduced the expression of CD107a on CD4+ (18.2% ± 3.1 for PLX-R18 and
19.8% ± 4.0 for hAMSC) and CD8+ (26.6% ± 12.2 for PLX-R18 and 8.8% ± 14.9 for hAMSC) T cells
and, in the case of hAMSC, also on NK cells (51.6% ± 14.0). Similar to maternal cells, fetal-derived
cells also inhibited the expression of IFN-γ on both CD4+ (6.5% ± 3.6 for PLX-R18 and 11.5% ± 9.4 for
hAMSC) and CD8+ (15.9% ± 13.4 for PLX-R18 and 20.5% ± 14.4 for hAMSC) T cells, and on NK cells
(22.3% ± 18.2 for PLX-R18 and 21.9% ± 9.0 for hAMSC). In addition, fetal-derived cells also reduced
the expression of Granzyme-B on CD4+ (7.1% ± 6.8 for PLX-R18 and 8.8% ± 7.3 for hAMSC), and CD8+

(16.5% ± 12.2 for PLX-R18 and 22.6% ± 11.6 for hAMSC) T cells, but not on NK cells (Figure 3). Overall,
our results suggest that both maternal and fetal cells can impair the cytotoxic activity of CD4+ and
CD8+ T lymphocytes and NK cells, and the strongest inhibitory effects were obtained with fetal cells.
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B (GrzB+), and Perforin positive cells (Perforin+) within the CD4+, CD8+ T cell, and CD3−CD56+ NK cell 
population was assessed by flow cytometry. PBMC alone or incubated with anti-CD3/CD28 mAbs 
only were used as controls. Results are displayed as mean ± SEM (* p < 0.05, ** p < 0.01, *** p < 0.001, 
**** p < 0.0001 versus control PBMC+ CD3/CD28), n ≥ 4 individual experiments. 

3.4. Maternal and Fetal Cells Inhibit Th1 Priming and Strongly Induce Pro-Regenerative Th22 and T 
Regulatory Cell Subsets 

We have previously demonstrated that hAMSC are able to modulate different lymphocyte 
subsets [45]. Herein, we assessed the effects of maternal and fetal-derived cells on T helper (Th) Th1, 
Th17, Th1/Th17, Th2, Th22, and T regulatory (Treg) subset polarization. 

Upon activation with CD3/CD28 mAbs, control PBMC highly expressed Th1 subset markers 
(CD183+CD196+) (55.6% ± 12.08 gated on CD4+CD45RA− T lymphocyte, Figure 4A). Furthermore, the 
percentage of Treg cells was approximately 1.13% ± 0.53 (Figure 4B). When activated, PBMC were co-
cultured with maternal-derived or fetal-derived cells, there was a strong and significant reduction in 

Figure 3. Cytotoxic activity marker expression by T lymphocytes and NK cells after interaction with
PLX-PAD cells. Allogeneic PBMC were incubated with anti-CD3/CD28 antibodies in the presence of
2 ratios (1:1 and 1:0.5) of maternal (PLX-PAD)-derived or fetal (PLX-R18 or hAMSC)-derived cells. After
two days of culturing, PBMC were activated with PMA+Ionomycin and Golgistop was added 1 h later
and, 4 h later, the cells were collected and stained. The frequency of CD107a, IFN-γ, Granzyme B (GrzB+),
and Perforin positive cells (Perforin+) within the CD4+, CD8+ T cell, and CD3−CD56+ NK cell population
was assessed by flow cytometry. PBMC alone or incubated with anti-CD3/CD28 mAbs only were used as
controls. Results are displayed as mean ± SEM (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 versus
control PBMC+ CD3/CD28), n ≥ 4 individual experiments.

3.4. Maternal and Fetal Cells Inhibit Th1 Priming and Strongly Induce Pro-Regenerative Th22 and T
Regulatory Cell Subsets

We have previously demonstrated that hAMSC are able to modulate different lymphocyte
subsets [45]. Herein, we assessed the effects of maternal and fetal-derived cells on T helper (Th) Th1,
Th17, Th1/Th17, Th2, Th22, and T regulatory (Treg) subset polarization.

Upon activation with CD3/CD28 mAbs, control PBMC highly expressed Th1 subset markers
(CD183+CD196+) (55.6% ± 12.08 gated on CD4+CD45RA− T lymphocyte, Figure 4A). Furthermore, the
percentage of Treg cells was approximately 1.13% ± 0.53 (Figure 4B). When activated, PBMC were
co-cultured with maternal-derived or fetal-derived cells, there was a strong and significant reduction
in Th1 polarization, and more potent effects were observed with maternal cells at both PBMC:MSC
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ratios tested (maternal PLX-PAD MSC 1:1 ratio: 35.5 + 14.02, 1:0.5:14.3 + 7.08 vs. 41.15 + 17.2 for
PBMC:PLX-R18 1:1 and 42.6 + 13.3 for PBMC:hAMSC 1:1), (Figure 4A). We observed that both maternal
and fetal cells trigger Th22 polarization (0.50% ± 0.44 for the control condition to 4.70% ± 3.45 for
PLX-PAD cells and 3.43% ± 1.73 and 4.69 + 2.37 for PLX-R18 and hAMSC, respectively). The percentage
of Treg cells increased (1.13% ± 0.53 for stimulated control PBMC to 8.73% ± 3.3 for co-culturing
with maternal PLX-PAD, 4.83% ± 2.10 with PLX-R18, and 3.51% ± 0.97 with hAMSC), (Figure 4B).
Th1/Th17, Th17, and Th2 polarization was unaffected (Figure 4A). Altogether, these findings suggest
that both maternal and fetal cells reduce polarization toward the inflammatory Th1 cell subset and
trigger polarization toward the pro-regenerative and anti-inflammatory Th22 and Treg cell subset.
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Figure 4. Effect of maternal and fetal derived MSC on Th1/Th2 and Treg polarization. Allogeneic
PBMC were stimulated with anti-CD3/CD28 mAbs and co-cultured with MSC for six days. (A) Th1
(CD183+CD196−), Th1/Th17 (CD183+CD196+), Th22 (CD194+CD161−), Th17 (CD194+CD161+), and
Th2 (CD194+) phenotypes were evaluated by flow cytometry at day 7 and expressed as a percentage of
CD4+CD45RA− gated cells. (B) Induction of Treg was evaluated by flow cytometry after six days of
co-culture and it is displayed as a percentage of CD45RA− CD25hiFoxP3hi cells. Results are represented
as mean±SEM (* p < 0.05, ** p < 0.01, **** p < 0.0001), n≥ 4 individual experiments.

3.5. Maternal and Fetal MSC Affect the Expression of Th-Cytokines

In order to provide further insight and to potentially confirm the ability of maternal and fetal
cells to impact Th subset polarization observed after co-culture with either maternal and fetal cells, we
evaluated a panel of cytokines specifically expressed by different T cell subsets: Th1 (IFN-γ, TNFα),
Th2 (IL-4, IL-5, IL-13), Th17 (IL-17A), Treg (IL-10, TGFβ), and cytotoxic cells (GrzB, GrzA, RANTES),
(Table 1). The amount of cytokines and chemokines produced and released by PLX-PAD, PLX-R18,
and hAMSC alone were also measured (Supplementary Table S1).

We observed that, in the presence of either maternal or fetal cells, the secretion of Th1 inflammatory
cytokines IFN-γ and TNFαwas strongly reduced, which confirms the data previously observed and
indicates the reduction of the Th1 subset polarization.

The analysis of the expression of the canonical Th2 subset cytokines revealed that the expression of
IL-4 was barely detectable. IL-5 decreased in the presence of either maternal and fetal MSC, while IL-13
decreased only with fetal MSC. The expression of Th17-related cytokine IL-17A resulted in a decrease
by maternal PLX-PAD cells while no effect was observed when the co-culture was performed with fetal
derived MSC. The results obtained from the analysis of Treg cell-related cytokines IL-10 demonstrated
no detectable differences between the control (PBMC+ CD3/CD28) and the PBMC co-cultured with
either maternal or fetal MSC. The expression of TGFβ1 was, instead, significantly higher in all the three
co-culture conditions compared to the control, but the results could be due to, at least in part, the high
amount of TGFβ1 produced and released by both maternal and fetal MSC (Supplementary Table S1).
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Lastly, we also analyzed the production of cytotoxic GrzB, GrzA, and RANTES. The production of
GrzB, whose intracellular expression was not down-regulated in the presence of PLX-PAD cells on day
3 (Figure 3), decreased in comparison to the control condition at day 6. Again, fetal cells resulted in
more effective reduction of GrzB production than maternal PLX-PAD. GrzA also showed a trend of
inhibition in PBMC activated in the presence of both fetal and maternal cells. Secretion of RANTES
(regulated upon activation, normal T cell expressed and secreted) was inhibited by fetal cells (both
PLX-R18 and hAMSC) and not by a maternal PLX-PAD.

Table 1. Cytokine and chemokine analysis on the effect of either maternal or fetal MSC on PBMC
stimulated with CD3CD28 mAbs. Allogeneic PBMC were stimulated with CD3CD28 mAbs for six
days and co-cultured or not in the presence of maternal PLX-PAD cells, fetal PLX-R18, or fetal hAMSC
cells at a PBMC:MSC ratio of 1:1. After six days, the supernatant was collected and analyzed for the
expression of a panel of cytokines and chemokines. Data are indicated as mean ± SD (n = 4).

PBMC
CD3CD28

PBMC CD3CD28+
PLX-PAD

PBMC CD3CD28+
PLX-R18

PBMC CD3CD28+
hAMSC

Th1
IFNγ 2521.9 ± 446.2 2021.9 ± 728.2 183.6 ± 91.2 181.2 ± 111.4
TNFα 1076.0 ± 319.6 168.4 ± 132.2 3.8 ± 0.9 6.1 ± 4.8

Th2
IL-4 1.9 ± 0.5 6.4 ± 2.4 1.9 ± 0.7 1.4 ± 0.4
IL-5 775.1 ± 456.7 205.6 ± 100.7 35.5 ± 29.4 30.0 ± 20.9

IL-13 893.6 ± 290.3 992.4 ± 202.6 141.8 ± 79.7 195.9 ± 125.0

Th17 IL-17A 164.9 ± 197.5 60.8 ± 35.3 174.6 ± 111.1 227.6 ± 151.6

Treg IL-10 115.9 ± 14.6 112.8 ± 26.1 96.9 ± 34.6 117.9 ± 37.5
TGFβ1 359.4 ± 98.9 931.0 ± 185.3 938.3 ± 61.8 933.7 ± 126.7

Cytotox
GrzB 5778.0 ± 450.6 3490.1 ± 580.6 2397.2 ± 1429.2 2451.2 ± 528.6
GrzA 1963.5 ± 662.4 1842.7 ± 12.2 1122.5 ± 989.0 640.4 ± 406.5

RANTES 3108.5 ± 822.7 3937.9 ± 424.5 443.7 ± 143.2 377.2 ± 248.7

3.6. Maternal and Fetal Cells Inhibit Monocyte-Derived Antigen Presenting Cell (APC) Differentiation

Next, we analyzed if maternal (PLX-PAD) or fetal-derived cells (PLX-R18 and hAMSC) were able to
directly impact monocyte (Mo) differentiation toward APC. Purified monocytes were differentiated to M1
macrophages or mature DC (mDC) in the absence (control) or presence of maternal and fetal-derived cells
at two different ratios (Mo:MSC = 1:0.4 or 1:0.2). As previously reported [45] and as shown in Figure 5A,B,
during M1 differentiation, monocytes lost the monocytic marker CD14 (6.54% ± 3.12) and acquired the
expression of CD1a (41.85% ± 18.13), the chemokine receptor CCR7 (CD197) (83.7% ± 10.3), and the
co-stimulatory molecule CD80 (38,038 ± 13,357). The expression of CD163 (2.9 ± 0.97) and DC-SIGN
(CD209) (2.44% ± 2.18) was absent. Similar to M1 macrophages, mDC expressed CD1a (83% ± 11.23),
CD197 (90.2% + 6.87), and CD80 (36,353 ± 4392), whereas they lacked CD14 (1.56% ± 0.4) and CD163 (2.8
± 1.36). Moreover, mDC were characterized by the expression of DC-SIGN (CD209) (82.6% ± 4.54), which
is a marker absent on M1 macrophages.

We observed that both maternal (PLX-PAD) and fetal-derived cells (PLX-R18 and hAMSC) strongly
blocked the differentiation of mDC and M1 at both ratios tested (Figure 5 panels A and B, respectively).
There was a reduction in the expression of the differentiation markers CD1a (for mDC: CD1a = 21.3 + 11
for maternal PLX-PAD, 0.3 + 0.4 for PLX-R18, and 2.3 + 2.29 for hAMSC, Figure 5A, for M1 macrophages:
CD1a = 2.09 ± 4.80 for maternal PLX-PAD, 0.3 + 0.51 for PLX-R18, and 4.3 + 8.6 for hAMSC, Figure 5B) and
CD197 (for mDC: CD197 = 17.7 ± 13.13 for maternal PLX-PAD, 3.43 ± 3.7 and 2.6 ± 1.72 for fetal PLX-R18
and hAMSC, respectively, Figure 5A, for M1 macrophages: maternal PLX-PAD = 30.12 ± 14.7, PLX-R18
= 8.43 ± 10.38, hAMSC = 15.85 ± 6.95 for hAMSC, Figure 5B), and the expression of the undifferentiated
monocytic marker CD14 was maintained (for mDC: 86% ± 8.45 for maternal PLX-PAD, 87% ± 13.7 for
PLX-R18 and 82.4% ± 8.3 for hAMSC, for M1 macrophages: maternal PLX-PAD = 86.16 ± 8.45, PLX-R18 =

87 ± 13.71, hAMSC = 82.4 ± 9.33). Furthermore, as previously observed [46], the percentage of CD80+ cells
remained unaltered compared to control mDCs or M1 macrophages, while the intensity of CD80 expression
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changed. The median fluorescence intensity of the co-stimulatory molecule CD80 was reduced (for mDC:
14,793 ± 3246 for maternal PLX-PAD, 12,379 ± 10,836 for PLX-R18, and 7216 ± 6054 for hAMSC, Figure 5A,
for M1 macrophages: maternal PLX-PAD = 19,258 ± 8370, PLX-R18 = 9493 ± 4034, hAMSC = 13,302 ±
3033, Figure 5B). The expression of CD209 was induced during M1 differentiation by fetal cells (maternal
PLX-PAD = 5.12 ± 6.25, PLX-R18 = 30.2 ± 14.77, hAMSC = 24.34 ± 25.65, Figure 5A), and reduced during
mDC differentiation (61.7% ± 20.9 for maternal PLX-PAD, 30.4% ± 3.8 for PLX-R18, and 37.03% ± 11.36,
Figure 5B). In addition, during mDC and M1 differentiation, in the presence of maternal and fetal-derived
cells, we observed the increased expression of CD163 (for mDC: maternal PLX-PAD = 26.46 ± 6.32 and for
the fetal 64.5 ± 21.9, 70.3 ± 20.6 for PLX-R18 and hAMSC, respectively, Figure 5A), (for M1 macrophages:
2.9 ± 0.97, for maternal PLX-PAD = 10.88 ± 5.57 and for the fetal = 18.7 ± 15.39 for PLX-R18 and 38.5 ± 16.6
for hAMSC). The intermediate expression of CD209 and the expression of CD163 indicate that maternal and
fetal cells interfere with the differentiation of monocytes toward M1 macrophages or mDC, and promote
monocyte polarization toward anti-inflammatory M2 macrophage subsets.
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Figure 5. Effect of placental cells on the monocyte to APC differentiation. Phenotypic analysis of
isolated CD14+ monocytes differentiated into (A) mature dendritic cells (mDC) or (B) M1 macrophages
in the absence or presence of maternal (PLX-PAD)-derived or fetal (PLX-R18 or hAMSC)-derived cells.
mDC differentiation was carried out by incubating the cells with GM-CSF+IL-4 for four days followed
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by two days of LPS treatment. (A). M1 macrophages were obtained by incubating CD14+ monocytes
with GM-CSF for four days, which is followed by IFN-γ+LPS for another two days. (B). At the end of
the culture period, expression of CD1a, CD14, CD197, CD163, CD80, and CD209 was evaluated by
flow cytometry. Results are presented as a percentage of expression (except for CD80 where MFI is
displayed), and are shown as mean ± SEM (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 versus
control mDC or M1), n ≥ 4 individual experiments.

3.7. Immunogenicity

Lastly, we investigated the capacity of maternal and fetal cells to induce the proliferation
of allogeneic PBMC in the absence of specific stimuli (herein referred to as immunogenicity).
To demonstrate that the allogeneic PBMC were able to respond efficiently, these cells were also
co-cultured with allogeneic PBMC by performing a mixed lymphocyte reaction (MLR), or with
professional antigen-presenting cells (mDC) (Figure 6). At day 6, we observed that, at higher
concentrations (1:1, 1:0.5), PLX-PAD, PLX-R18, and hAMSC did not induce PBMC proliferation.
However, at the lower concentrations (1:0.25, 1:0.125 and 1:0.0625), maternal cells (and to a lower extent,
fetal-derived cells) induced the proliferation of the responder PBMC comparable to that induced by
allogeneic PBMC in a MLR. This was, however, lower than the proliferation induced by mDC.
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Figure 6. Immunogenicity of PLX-PAD cells. Responder PBMC (1 × 105 cells per well) were plated in a
96-round well plate and co-cultured with gamma irradiated (30Gy) stimulator: allogeneic maternal
and fetal MSC (PLX-PAD, PLX-R18, and hAMSC), PBMC*, and mDC. Responder and stimulator cells
were co-cultured at five different ratios (A = 1:1, B = 1:0.5, C = 1:0.25, D = 1:0.125, and E = 1:0.0625)
and mixed lymphocyte reaction (PBMC*) and mature dendritic cells (mDC) were used as positive
controls of a complete immune response/activation. PBMC proliferation was assessed by H3-thymidine
incorporation and data are expressed as count per minute (cpm) (** p < 0.01, **** p < 0.0001 versus
control PBMC). n ≥ 7 individual experiments.

4. Discussion

To dissect inherent features of MSC originated from distinct placental components, and given the
well-documented ability of placental-derived MSC to modulate the immune response [25], herein, we
compared the immune modulatory properties of MSC derived from maternal and fetal tissues of the
human term placenta and included the systematic analysis of GMP preparations. The present study
brings significant new insights into some of the placental MSC immune-modulatory properties by
demonstrating in vitro that both maternal and fetal MSC (i) down-regulate T lymphocyte proliferation
of PBMC stimulated with anti-CD3/CD28 mAbs, (ii) decrease the expression of cytotoxicity marker
(CD107a, IFN-γ and GrzB) in anti-CD3/CD28-stimulated PBMC, and (iii) favor the differentiation of
CD4+ T cells into subsets co-expressing high levels of CD25 and of FoxP3. In addition, maternal and
fetal MSC affect Th polarization by skewing the T cell compartment towards Th22 cells, and (iv) strongly
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inhibit APC differentiation. Lastly, we observed that maternal and fetal cells did not present differences
in their immunogenicity.

Positive expression of CD73, CD90, and CD105 and low/absent expression of hematopoietic
markers (CD14, CD34, and CD45) have been suggested to define MSC [1,55]. Our data mostly
corroborate these findings. However, in our studies, the positivity for CD73, CD90, and CD105
was lower than the recommended 95%. As reported for MSC from other sources [56], phenotype
heterogeneity of placental-derived cells has been described, which was mainly induced by cell
treatment (e.g., IFN-γ activation), different culture conditions, and the passage number [57,58]. The
expression of CD105 is another variable reported in literature, ranging from low (4%) [59] to high (97%)
expression [25]. Moreover, the expression of CD73, CD90, and CD105 increased during passages, and
usually more than 90% of hAMSC expressed CD73, CD90, and CD105 from P2 to P4 [25,46]. hAMSC
used in this study were from passage 1, which could account for the lower expression of these markers.

We observed that fetal cells possess enhanced anti-proliferative activity when compared to
maternal cells. These results are in line with previous studies that have demonstrated that amnion and
amniotic fluid-derived fetal MSC from second trimester placentas induced stronger anti-proliferative
effects on PHA-activated lymphocytes and in MLR when compared to maternal MSC derived from
the same tissues [32]. Similarly, other studies demonstrated that fetal-derived MSC had a higher
suppressive activity on the proliferative response of PHA-stimulated PBMC when compared to
maternal MSC [33].

Our observations herein expand on these studies whereby we not only demonstrate that
fetal-derived cells have enhanced anti-proliferative properties versus T lymphocytes when compared
to maternal-derived cells, but we also perform a detailed characterization of the immunomodulatory
properties of both maternal and fetal cells by analyzing different T-cell subsets and by analyzing NK
cell activation and monocyte differentiation toward APC.

First, we compared the ability of maternal and fetal derived MSC to modulate the immune
response by evaluating how they impact the activation of T lymphocytes and NK cells through the
analysis of different cytotoxicity markers and the expression of the inflammatory cytokine IFN-γ.
Fetal-derived cells had a stronger ability to decrease the cytotoxic activity of both CD4+ and CD8+ T
cells and, to a lesser extent, also NK cells, as shown by a significant reduction in the expression of the
degranulation marker CD107a and IFN-γ. The ability of fetal-derived MSC, and, more specifically,
hAMSC, to inhibit the cytotoxicity of NK cells against the K562 target has been previously demonstrated,
and this was shown to be accompanied by a reduced expression of NCR (Natural cytotoxicity receptors)
NKp30, NKp44, NKp46, NKG2D, and by the reduction of IFN-γ production [60]. As previously
reported [54], we observed that OX-2 (CD200), which is a membrane glycoprotein that belongs to
the immunoglobulin superfamily, was highly expressed by cells of fetal origin when compared to
maternal-derived cells, and, particularly, by hAMSC. The CD200 receptor is capable of modulating the
cytotoxic activity of NK cells [61,62] and could be one of the mechanisms responsible for the enhanced
ability of fetal-derived MSC to inhibit NK cells when compared to maternal-derived MSC.

In addition, we observed differences between maternal-derived and fetal-derived cells in their
ability to alter/impact T-cell subsets. Maternal-derived cells more strongly enhanced Treg subsets
when compared to fetal-derived cells. Recent reports show that maternal MSC express a high level
of indoleamine 2,3 dioxygenase (IDO) [32,63], which has been reported as one of the main factors
responsible for the induction of Treg polarization [48–50]. Two other cytokines that play a relevant role
in Treg induction are IL-10 [64] and TGFβ1 [65–67]. The low amount of IL-10 detected in hAMSC is in
line with our previously published data [45,68]. Given that there were no relevant differences observed
in the IL-10 production between maternal and fetal cells, this could suggest that IL-10 is likely not
responsible for the different Treg polarization observed between maternal and fetal cells. This could be
also the case for TGFβ1, where, the high expression observed by both maternal and fetal cells cannot
account for the differences observed in the percentage of Treg cells observed.
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Furthermore, we observed that maternal cells more highly expressed CD73, which is an
ectonucleotidase receptor responsible for the production of adenosine. This is known as a strong
immune modulatory molecule involved in the modulation of several immune functions and also
expressed by Treg cells [69]. However, despite the higher expression level of CD73 expressed
by maternal cells, they were less prone to inhibit T lymphocyte proliferation, which suggests the
involvement of other mediators. Many other factors merit investigation. Among this, the expression
of TNF-α-induced gene/protein 6 (TSG-6) has been reported as triggering the M2 skewing [70], the
release of exosome [71], or the mitochondrial transfer [72], which should be taken into consideration.

We observed that maternal cells are able to trigger the polarization of the Th22 subset in a stronger
manner in comparison to fetal MSC. This population has long been held responsible for triggering
inflammatory processes, but more recent articles have indicated the role of Th22 cells in inducing
and modifying reparative processes, such as those in the intestinal epithelium [73]. In addition,
supernatants from Th22 cells were also shown to enhance wound healing in an in vitro injury model,
and this effect was demonstrated to be dependent on IL-22 [74].

We also observed differences between the effects exerted on APC by maternal-derived and
fetal-derived cells. More specifically, we reported how both fetal and maternal cells were able to
block monocyte differentiation. However, fetal-derived cells were more prone to enhance M2 markers
CD163 and CD209, which possibly suggests a different secretion profile between maternal-derived and
fetal-derived cells. Prostanoids, and especially PGE2, are among the factors most frequently reported
as able to interfere with the Mo-APC differentiation by MSC [49,50] and favoring the acquisition
of features that are typical of M2 macrophages such as the increased expression of the M2 marker
CD209 [49,75]. In addition, the higher expression of CD200 and Galectin-9 by fetal MSC could account
for their enhanced ability to induce an M2-like phenotype due to their immune regulatory action on
macrophages [76–78].

Lastly, we studied the capacity of maternal and fetal cells to induce an immunogenic response
when co-cultured with allogeneic PBMC. hAMSC have been reported to be poorly immunogenic,
which is likely due to the absence of co-stimulatory molecules such as CD80 or CD86, and the low
level of HLA-DR, that, together, trigger T lymphocyte activation [79,80]. However, previous data
reported that low doses of MSC are stimulatory in immunogenicity assays, while higher doses were
suppressive [81–83]. Both fetal and maternal cells express HLA-ABC and the co-stimulatory molecule
CD95, which could confer the low antigen-presenting properties observed. Moreover, it was reported
that IFN-γ stimulation augments the expression of HLA-ABC, HLA-DR, and CD40 in hAMSC [84],
and the expression of these immunogenic markers could be responsible for their stimulatory activities,
as observed for MSC from other sources [85,86].

However, when compared to the T-cell stimulation induced by professional APC such as mDC,
induction by both fetal-derived and maternal-derived cells was much lower.

5. Conclusions

The present study provides a detailed understanding and comparison of the immunological
properties of placental maternal-derived and fetal-derived cells. For the first time, we carried out the
comparison using GMP-produced cells, the placental expanded (PLX) cells, specifically designed for
clinical application as evidence by the numerous clinical trials in which these cells are used as reported
in the ClinicalTrials.gov website, available online: https://clinicaltrials.gov/ (accessed on 04/01/2020) A
pitfall of this work could be the reduced number of batches used in this study (one batch of fetal and
two batches of maternal GMP products), but this is overcome by the fact that, in this study, we used
GMP-prepared cells that are manufactured in a fully controlled 3D system. Each batch is released based
on pre-defined release criteria, which allows for consistent and robust cell production. In addition, the
use of standardized cell preparations and GMP products with a verified origin (maternal or fetal) is
significantly relevant due to the certainty of the origin and standardized isolation and preparation
methods. Furthermore, the in vitro efficacy of PLX-R18 was compared with that from 11 preparations

ClinicalTrials.gov
https://clinicaltrials.gov/
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of fetal hAMSC, and we observed very similar results, which further strengthens our observations on
fetal-derived cells.

There is a huge effort to develop potency assays, which should identify the most “functional”
cell for specific applications, including those that evaluate immune features, considering that
immunomodulation is a fundamental mechanism of action of MSC [87,88]. Our extensive analysis
has highlighted the profound differences in the immunomodulatory properties of MSCs isolated from
different sources. We provide evidence that maternal (PLX-PAD) and fetal (PLX-R18) cells had differing
immune modulatory properties whereby fetal-derived cells were able to more strongly inhibit T-cell
proliferation and cytotoxicity, and induce the switch to M2 macrophages, while maternal-derived
cells were more strongly able to induce Treg. Considering these results and the fact that MSC have
been suggested to act principally through a paracrine mechanism of action [89], the screening of the
secretome for selected cytokines and molecules could represent a feasible potency assay to determine
the potential application of cells based on their immune modulatory properties.

Whether or not the immunomodulatory differences observed in vitro could reflect those in vivo
remains to be verified. Actually, both PLX-PAD and PLX-R18 are applied in several clinical trials
(clinicaltrial.gov), but not for the same pathology. A strong characterization of these cells would be
necessary in order to identify which cell typology for which disease. Previously published data by
our group reported that hAMSC can exert a strong immune modulatory effect in a different mouse
model of autoimmune diseases like encephalomyelitis, colitis, and arthritis [90]. Fetal PLX-R18 cells
have many similarities with hAMSC and, thus, these cells could be used in a preclinical model of graft
versus host disease (GVHD), while PLX-PAD cells due to the high release of the pro-angiogenic factors
vascular endothelial growth factor (VEGF) and Angiopoietin have been tested in the animal model of
hind limb ischemia [39,40].

To date, PLX-PAD are used or have been used in clinical trials to treat critical limb-ischemia and
hip fracture, with the aim to stimulate angiogenesis to bring oxygenated blood to ischemic tissue, heal
damaged muscle, and dampen inflammation, which supports tissue regeneration. Instead, PLX-R18
are used to sustain hematopoiesis to treat incomplete recovery of transplanted hematopoietic cells
and acute radiation syndrome. Based on our in vitro results, we could speculate applying the fetal
PLX-R18 cells in inflammatory-based diseases, due to their strong immunomodulatory properties.
PLX-R18 could dampen the inflammatory environment (M1 macrophages and cytotoxic T cells) and
favor inflammation resolution (promoting macrophage polarization to M2) to promote regeneration.

The observed differences underline the importance of the different properties of fetal versus
maternal placenta cells, which are fundamental to guide future applications of maternal-derived and
fetal-derived cells in different regenerative medicinal approaches.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/1/127/s1,
Table S1: Cytokine/chemokine profile of maternal and fetal MSCs.
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