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genotype groups reflected alterations in task processing. 
Furthermore, we demonstrated that the rDLPFC region 
showed significant volumetric overlap with the rDLPFC 
which had previously been reported to be altered during 
task processing for patients with SZ.  Conclusions:  The find-
ings support an association between rs1344706 and alter-
ations in DLPFC activity during WM for faces. We further 
 suggest that WM for faces may be a useful intermediate 
 phenotype in the investigation of genetic susceptibility to 
psychosis.  Copyright © 2013 S. Karger AG, Basel 

 Introduction 

 Genome-wide association studies have identified a lo-
cus on the  ZNF804A  (rs1344706) as a well-supported risk 
variant for schizophrenia (SZ) and a broader spectrum of 
clinical phenotypes  [1–5] . In order to quantify the poten-
tial functional effects of variants of genome-wide asso-
ciation studies such as  ZNF804A , functional magnetic 
resonance imaging (fMRI) is used to study how genetic 
architecture contributes to neural systems. This method 
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 Abstract 

  Background:  Genetic susceptibility to schizophrenia (SZ) 
has been suggested to influence the cortical systems sup-
porting working memory (WM) and face processing. Genet-
ic imaging studies link the SZ risk variant rs1344706 on the 
 ZNF804A  gene to psychosis via alterations in functional brain 
connectivity during WM, but no work has looked at   the ef-
fects of  ZNF804A  on WM with face-processing components. 
 Methods:  We therefore investigated healthy controls that 
were genotyped for rs1344706 with a face WM task during 
functional magnetic resonance imaging. We suggested that 
variation at the rs1344706 locus would be associated with 
similar alterations as patients previously tested using the 
same WM task for faces.  Results:  The rs1344706 risk allele 
was indeed associated with altered activation in the right 
dorsolateral prefrontal (rDLPFC) cortex. We established that 
the rDLPFC was activated in a task-dependent manner, sug-
gesting that the differences in activation between rs1344706 
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may help to establish how risk variants may modify the 
neurobiological pathways that are disrupted in psychiat-
ric populations  [6, 7] .

  Working memory (WM) and facial processing are 
recognised as heritable deficits in SZ  [8, 9] . WM and face 
processing are also implicated as the biological basis for 
neuropsychiatric symptomatology  [10–13] . Patients with 
SZ show alterations in task processing for WM and emo-
tional faces as revealed by functional neuroimaging  [14, 
15] . Relatives of SZ patients (familial high-risk groups) 
also display similar alterations  [16–18] . The   rs1344706 
genotype (T = risk allele) is associated with alterations in 
functional connectivity between prefrontal and inter-
hemispheric prefrontal/hippocampal networks in healthy 
controls during WM  [19–21] , face processing and resting 
state  [22] . The functional effects of the rs134407 variant 
may extend to a broad range of cognitive phenotypes such 
as social cognition  [23, 24]  and attentional networks  [25, 
26] . ZNF804A may influence cell adhesion  [27]  and regu-
late expression of other genes  [28] , whereas the rs1344706 
variant may have a functional role in the transcription of 
the  ZNF804A  gene  [29] . However, it is not understood 
how the rs1344706 variant influences complex neurocog-
nitive phenotypes, with emerging evidence suggesting 
the variant has little/no effect on macroscopic cortical 
structure  [30–32] .

  The rs1344706   variant may modulate prefrontal corti-
cal functional connectivity implicated in the WM pro-
cess  [19, 20] . However, the robust alterations in prefrontal 
neural activation during WM observed in schizophrenic 
patients  [33–35]  and first-degree relatives  [16–18, 36]  were 
not associated with the rs1344706 allele in SZ patients, 
first-degree relatives or healthy controls  [21] . That said, 
both heritability (twin studies) and SZ-related genetic 

risk score (cumulative total of SZ risk alleles) are both 
significant predictors of neural activity in the dorsolat-
eral prefrontal cortex (DLPFC) during WM  [37, 38] .

  In order to further explore the effects of the rs1344706 
genotype on the WM network, we added a face-process-
ing component to a WM task. We suggest that the addi-
tion of face processing to WM items will recruit a spe-
cific neural network and a novel context to probe for 
functional effects of the rs1344706 variant. Studies using 
affective WM stimuli reveal that SZ patients have rela-
tively intact limbic function (amygdala activity) in re-
sponse to emotionally valenced items, but show altered 
activity in the DLPFC  [39]  that may reflect a deficit in 
emotion recognition  [40] . During WM for faces, SZ pa-
tients failed to utilise conventional neural resources (hy-
poactivation in the right PFC) and, instead, recruited a 
contralateral homologue (hyperactivation in the left PFC 
and sensory cortical regions) to manage the WM de-
mands  [41] .

  In the present study, we test the hypothesis that the 
rs1344706 risk variant on the  ZNF804A  gene will modu-
late brain activation during face WM in healthy controls. 
We use the same WM task using faces (previously
described  [41–43] ) to probe for the neural effects of 
rs1344706 on WM for faces in healthy individuals. We 
suggest that the specific cortical architecture involved in 
face WM  [41, 42, 44]  may provide increased sensitivity 
and specificity. More specifically, we predict that the  
 rs1344706 variant will modulate WM processing for fac-
es in a manner that reflects the alterations first observed 
in schizophrenic patients  [39, 41] .

  Materials and Methods 

 Participants 
 Forty-three healthy subjects of European Caucasian descent 

with no family history of neurological or psychiatric illness where 
recruited for the study. Participants provided written consent pri-
or to the study, which was approved by the School’s Ethics Com-
mittee. Participants from each rs1344706 genotype group did not 
differ in education, age, sex and handedness or WM capacity ( ta-
ble 1 ), all of which had normal or corrected vision. Data were from 
a subsample of participants from a larger genetic imaging study 
 [45] , for which  ZNF804A  rs1344706 genotype data were available.

  ZNF804A Genotyping 
 Subjects were genotyped for the  ZNF804A  rs1344706 G/T 

SNP. Genomic DNA was extracted from venous EDTA samples 
[Invisorb �  Blood Giga (Invitek GmbH, Germany)]. Amplification 
of the target sequence on the  ZNF804A  gene was carried out using 
PCR ( ZNF804A  forward: 5 � -CCACTAGCAACAACTCCCTCA-
3 � , ZNF804A  reverse: 5 � -TCTAGAGTCATGCAGGCACA-3 � ). The 

Table 1. D istribution of demographic characteristics

r s1344706 genotype

GG GT TT p

Gender, male/female 6/5 9/12 9/2 0.12a

Handedness, right/left 9/2 18/3 10/1 0.39a

Age, years 29.5810.3 34.288.8 31.45810.1 0.82b

Education, years 14.881.2 14.583 14.482.2 0.47b

WM, Cowan’s K 1.5880.1 1.5480.07 1.4280.1 0.49c

ZNF 804A genotype groups described by gender, handedness, 
age and education. Statistical significance (p) given for a  �2 test, 
b ANOVA and c repeated-measures ANOVA.
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following PCR protocol was used: 10 min at 95   °   C, followed by 35 
cycles of 94   °   C for 30 s, 60   °   C for 30 s and 72   °   C for 30 s, and by 
72   °   C for 2 min. The amplicon was visualised on a 2% agarose gel 
stained with SYBRsafe (Invitrogen, UK) under UV light, follow-
ing separation at 100 V in Tris-borate electrophoresis buffer. The 
PCR product was digested with the BfuCI restriction endonucle-
ase (New England Biolabs, UK) and reaction buffers at 37   °   C for 
16 h. The resulting digested samples (TT genotype = 216- and 
186-bp fragments, GG genotype = 186-, 154- and 62-bp frag-
ments) were separated on a 2% agarose gel as previously described 
and scored for genotypes (GG = 11, GT = 21 and TT = 11). Hardy-
Weinberg equilibrium was checked with  �  2  = 2.63, p  1  0.1.

  Stimuli 
 Six adult, male greyscale Ekman face images each displaying 

happy, neutral or angry expressions were used. Each image cov-
ered approximately 1.43°  !  1.36°. Scrambled greyscale face im-
ages selected at random were displayed to cover the face locations 
when participants encoded less than 4 faces. All stimuli used were 
evaluated for appropriate emotional valence/expression  [43] .

  WM for Face Paradigm 
 In an event-related design, we investigated visual WM for fac-

es and task-related brain activity through manipulation of facial 
expression (happy, neutral and angry) and number of faces to be 
remembered (load 1, 2, 3 and 4). Faces were presented at random-
ly alternating locations in a 2  !  2 array in the center of the screen, 
and the center of each image within the matrix was positioned at 
a visual angle of approximately 1.271 o  from fixation to ensure that 
the face display was in direct line of sight ( fig. 1 ). Each of the 12 

conditions consisted of 16 trials divided into 8 match and 8 non-
match trials. Participants indicated whether the single probe face 
presented after the array was ‘absent’ or ‘present’. Facial expres-
sion and number of faces varied randomly between trials and face 
expression was kept constant for each individual trial. All trials 
started with a fixation (2,000 ms) towards a central cross that 
served as a baseline predictor. This was followed by a 2-second 
presentation of the face array, a 1-second delay and the probe face, 
where participants had to indicate either a match or non-match 
response. There were 192 trials distributed over 4 runs of 48 trials 
to minimise fatigue effects. Trials lasted less than 14 s (343 vol-
umes, 2 s TR, WM sessions were 686 s, covering all 48 trials). The 
task was generated and responses were recorded using E-Prime 
software (version 1.1; Psychology Software Tools, Inc., USA). WM 
capacity for faces was measured by individual Cowan’s K values 
for each emotion and load condition [Cowan’s K values = array 
size  !  (hits – FA)], where FA = false alarms  [46] .

  Imaging Procedure 
 We acquired fMRI data (T2 * -weighted echo planar imaging 

sequence; TR = 2,000 ms; TE = 40 ms; matrix size = 96  !  96; 
 FOV = 256  !  256 mm; voxel size = 3  !  3  !  3 mm; 90° flip angle; 
20 axial slices; 5 mm slice thickness) on a 1.5-tesla Philips whole-
body MR scanner. Imaging data analysis was performed using
the BrainVoyager 1.9.10 software (Braininnovation, The Nether-
lands). Functional images were co-registered with the structural 
3D image, spatially normalised to the Talairach system  [47]  and 
resampled at a voxel size of 1  !  1  !  1 mm. Functional images 
were scan time corrected using sinc interpolation, 3D motion cor-
rected using trilinear interpolation, spatially smoothed (8-mm 
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  Fig. 1.  The emotional face WM paradigm. 
Dynamic of the trial and session structure. 
After a jittered fixation interval, partici-
pants were given 2 s to encoding emotion-
al faces (1–4 faces, empty array compo-
nents were replaced with scrambled faces). 
Participants then experienced a 1-second 
delay followed by a 2-second interval in 
which to respond. 
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gaussian kernel) and filtered into the time domain using high-
pass filter (3 cycles per time course; 0.0044 Hz). Each WM session 
acquired 343 volumes, the first two of which were discarded to 
reduce potential T1 saturation effects. The 43 participants each 
completed 4 WM sessions. The resulting 172 single-subject design 
matrix files were incorporated into a general linear model (GLM) 
analysis with 20 predictors, including fixation (1), conditions for 
all correct trials (12), all error trials (1) and predictors derived 
from the head motion correction for each subject (6). All but the 
motion predictors were convolved with a two- �  haemodynamic 
reference function. The predictors from all 4 sessions were con-
catenated into a single predictor per subject. At the first level, we 
estimated  �  values for the remaining 14 predictors [12 conditions: 
3 emotions (happy, neutral and angry)  !  4 WM loads] and sepa-
rate predictors for modelling baseline activity (1) and all error tri-
als (1) for each participant with the least-square estimate of the 
GLM. The estimated  �  values were entered into a random-effect 
GLM to test for potential effects of the rs1344706 genotype.

  Analysis of Neuroimaging Main Effects (Emotion, Load and 
rs1344706) 
  ZNF804A  rs1344706 effects were tested with a 3  !  4  !  3 ran-

dom-effect ANCOVA with the factors emotion (happy, neutral 
and angry) and load (1, 2, 3, 4) as within-subject factors and 
rs1344706 (GG, GT and TT) as between-subject factor. Main ef-
fects and interactions were computed separately for each factor. 
Cluster thresholds for all analysis (emotion valence, WM load and 
rs1344706 genotype) were calculated with BrainVoyager QX clus-
ter-level statistical threshold estimated based on a Monte Carlo 
simulation with 1,000 iterations [whole brain corrected p  !  0.05 
(p  !  0.0001, 4 voxels)]. This threshold technique utilised a level of 
stringency similar to family-wise error that is needed to control 

for false-positive results in imaging genetics  [48] . In a whole-brain 
analysis,  �  values were extracted within clusters that showed sig-
nificant main effects of emotion for faces, WM load, rs1344706 
genotype and potential interactions. Individual  �  values were ex-
tracted as averages for each of the 12 task conditions for all sig-
nificant voxels.

  Results 

 Main Effects of Emotion, Load and rs134476 
Genotype (Behaviour) 
 A repeated-measure ANOVA showed a main effect of 

face valence on WM capacity (F (2,84)  = 5.187, p = 0.008), 
where capacity for emotional faces was higher than for 
neutral faces (t (42)  = 4.527, p  !  0.001). There was also a 
significant main effect of load on WM capacity (F (3,120)  = 
40.38, p  !  0.001). There were no main effects of the 
rs1344706 genotype on WM capacity for faces ( table 1 ) 
and no significant interactions (genotype  !  emotion 
and genotype  !  load; p  1  0.5 in both cases).

  Main Effects of Emotion, Load and rs134476 Genotype 
(Neuroimaging) 
 Main effects of emotion are documented ( table 2 ). Post 

hoc tests show these regions are driven by increased ac-
tivity for emotional faces (p  !  0.001 in all cases). Main 

Brain region BA Voxels X Y Z F(2,80) p

Right inferior frontal gyrus 46 174 47 28 12 14.31 <0.00001
Left inferior frontal gyrus 47 138 –28 7 –16 13.80 <0.00001

Brain region BA Voxels X Y Z F(3,120) p

Superior temporal gyrus 39 395 53 –57 27 11.49 <0.00001
Right medial frontal gyrus 8 394 2 37 42 11.34 <0.00001
Right lingual gyrus 18 147 2 –80 6 10.63 <0.00001
Right lingual gyrus 18 142 8 –71 –3 9.79 <0.00001
Right inferior parietal gyrus 40 96 60 –32 33 10.39 <0.00001

Brain region BA Voxels X Y Z F(2,40) p

Right inferior frontal gyrus 44 45 56 7 21 14.4 0.000019

Table 2. B rodmann area (BA), voxel 
cluster sizes (mm3), peak Talairach 
coordinates for the main effect of 
emotional face valence

Table 3. B rodmann area (BA), voxel 
cluster sizes (mm3), peak Talairach 
coordinates for the main effect of WM 
load

Table 4. B rodmann area (BA), voxel 
cluster sizes (mm3), peak Talairach 
coordinates for the main effect of 
rs1344706 genotype
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effect of WM load implicates regions where activation is 
higher for multiple faces compared to singles faces ( ta-
ble 3 ). Post hoc analysis revealed a linear increase in neu-
ral activity in these regions, as WM load (p  !  0.001 in all 
cases). All regions showing a main effect of load and/or 
emotion are in line with those previously reported on a 
subset of the present data  [42] .

  There were no significant interactions between
 ZNF804A  genotype and WM load or emotion. How-
ever, there was a significant main effect of  ZNF804A  ge-
notype on neural activation in the rostral region of the 
right inferior frontal gyrus (rDLPFC;  fig.  2 a). Post hoc 
analysis revealed significant rs1334706 allele differences 
in rDLPFC during the WM task for faces (GG vs. TT and 
GT vs. TT; p  !  0.01, corrected) but no differences between 
(GG vs. GT; p  1  0.5;  fig. 2 b;  table 4 ).

  In post hoc analysis, we discovered that maximum ca-
pacity for WM (K max )  [46]  significantly correlated with 
the parameter estimates of the rDLPFC voxel cluster (r = 
0.32, p = 0.037), suggesting the cortical region was re-
cruited in order to deal with task-relevant information 
( fig. 3 ).

  At this point, it is noteworthy that this region was 
also significantly under-activated in patients diagnosed 
with SZ during the same WM task for faces  [41] . To help 
validate alterations in the rDLPFC during WM for faces 
as a potential intermediate phenotype for SZ, we con-
ducted an exploratory investigation using the rDLPFC 
cluster ( table 2 ) that was modulated by rs1344706 ( fig. 2 ) 
in an ROI (region of interest) analysis. Using the time 
series from a random-effect GLM on 16 individuals (8 
healthy controls and 8 cognitively spared patients with 
SZ), participants met specific inclusion criteria and 

completed identical methodological protocols. The SZ 
sample did not significantly differ from the healthy
control sample in age, ethnicity, handedness, education 
and face WM performance  [41] . We extracted the  �  
means for all 12 conditions in the rDLPFC ROI and 
found a significant main effect of SZ diagnosis on acti-
vation in the cluster (post hoc). In this analysis, SZ pa-
tients showed a reduced activation compared to healthy 
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  Fig. 3.  Relationship between rDLPFC parameter estimates
( �  means across task) and maximum WM capacity (K max ) for 
emotional faces in 43 healthy controls (HC).     

  Fig. 2.   a  ZNF804A rs1344706 genotype ef-
fects on the rostral portion of the right in-
ferior frontal gyrus (rDLPFC) during WM 
for faces in 43 healthy participants.  b  Pa-
rameter estimates for mean neural activity 
averaged across all 12 conditions in the 
tasks and separated into rs1344706 geno-
type groups in 43 healthy controls (TT = 
risk allele). 
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controls: F (1,15)  = 18.06, p  !  0.0005. Please note that the 
ROI time series extracted was from a previous study  [41]  
and is purely illustrative in this investigation. It serves 
to demonstrate the potential that altered activation in 
the rDLPFC may be an intermediate phenotype for SZ 
during WM for faces.

  Discussion 

 The critical finding of the present study was the main 
effect of the rs1344706 variant on the ZNF804A gene in 
the rDLPFC. Neuroimaging methods have identified ab-
normalities in this cortical region during WM in patients 
with SZ  [49] , high-genetic-risk individuals  [17, 36]  and 
healthy rs1344706 risk allele carriers  [19–22] . These stud-
ies have not found an effect of the  ZNF804A  genotype on 
neural activation during WM. However, we suggest that 
the addition of face processing and/or higher WM loads 
may reveal significant deficits in WM in SZ patients and 
healthy carriers of SZ-associated loci  [41, 45] . This is the 
first study to identify alterations in neural activity in 
  ZNF804A  risk allele carriers during WM. This novel dis-
covery may be due to the introduction of face processing 
during WM and/or additional WM demand. The inclu-
sion of complex stimuli such as faces may recruit a wider 
and more complex network of neural resources during 
WM  [39, 44, 50] . Specifically, the rDLPFC has been im-
plicated in the regulation/attenuation of emotional re-
sponses and a neural basis for modulating emotional ex-
perience through interpreting and labelling of emotional 
face expressions  [51] . We suggest that the inclusion of the 
faces in the WM task is responsible for attenuating the 
effects that  ZNF804A  has on this cortical region. This 
correlation between maximum WM capacity and neural 
activity in the rDLPFC supports the notion that differ-
ences between rs1344706 allele groups may be attribut-
able to the face-processing component of the WM task. 
However, we cannot rule out the possibility that the
addition of social content to WM stimuli drove the 
rs1344706 genotype effects. WM for faces may be a po-
tential neurobiological mechanism through which the 
risk genotype affects a key cognitive function and ulti-
mately may contribute to psychopathology.

  It is a subject of ongoing debate what neural processes 
cause the variability between SZ patients and controls in 
prefrontal activation during WM  [14] . It has been sug-
gested that increased activation can represent neural in-
efficiencies and the compensatory recruitment of extra-
cortical resources to deal with WM tasks in SZ patients 

 [49] . Patients with SZ may fail to recruit the DLPFC dur-
ing the WM tasks  [52] , which may reflect poor integra-
tion of neural networks or individual differences in per-
formance and/or motivation  [53] . Many confounding 
factors, such as medication and disease chronicity/dura-
tion  [52, 54, 55] , may also influence neural alterations in 
WM processing in SZ patients; therefore, it is important 
to consider that genetic variability in healthy individuals 
may not always reflect the same pathological process as 
in clinical cases  [54] .

  Nevertheless, alterations in the DLPFC have remained 
a constant observation in neuroimaging studies aiming 
to quantify the neural correlates of reduced WM capacity 
in SZ patients. The rDLPFC is also a frequently impli-
cated cortical structure in the putative effects of the 
  ZNF804A  variant in healthy controls  [19–22] . The face 
WM paradigm we have previously used reliably recruits 
the rDLPFC as a component of WM-related architecture 
 [42, 44] . It is suggested that DLPFC is implicated in emo-
tional WM by modulating the emotional salience of WM 
content in order to guide behavioural performance  [39] . 
The previous patient study showed reduced activation in 
the rDLPFC as key component of aberrant neural activa-
tion in SZ patients  [41] . We, therefore, presented the ef-
fects of the  ZNF804A  risk allele in comparison with the 
patient data in order to demonstrate that, at least for the 
rDLPFC activation to this paradigm, the effect of SZ risk 
is uniform in the direction of hypoactivation. It is cer-
tainly encouraging that the prefrontal hypoactivation in 
the rs1344706-associated cluster was also hypoactive for 
SZ patients. The results may also help to elucidate clinical 
impairments associated with rDLPFC dysfunction, such 
as negative symptoms  [13]  and social anhedonia  [10–13, 
39] . Direct comparison of patient data is important in or-
der to determine whether effects observed in individuals 
at genetic risk for a disorder reflect this risk, or rather the 
resilience of the unaffected individuals.

  Our results conform to neurobiological models of 
functional abnormalities in SZ patients and high-risk 
groups, which have widely documented changes in the 
DLPFC. Our data provide preliminary evidence that the 
 ZNF804A  risk carriers may fail to maintain a prefrontal 
network during the WM task in a similar manner to SZ 
patients. It could be argued that this novel finding was 
due to the encoding, maintenance and/or retrieval of fac-
es, which will have to be unravelled further in future 
studies.

  Although the mechanisms that mediate rs1344706
effects on WM networks are unknown, sensitive tech-
niques such as functional imaging can thus allow us to 
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trace subclinical effects potentially mediated by variants 
discovered by genome-wide association studies. The ef-
fects of genetic variation are more readily observed in 
neuroimaging phenotypes compared to behaviour  [56, 
57] . Although the sample size of the present study is with-
in an estimated range needed to observe genetic effects 
on memory  [58] , a larger sample may have made the ap-
proach more sensitive to additional measures such as 
  ZNF804A  genotype  !  load or emotion interactions. 
However, it is of importance to consider that stringent 
multiple comparison correction measures were used, 
suggesting robust findings for the identified region.

  Our study adds to the increasing body of evidence for 
altered rDLPFC function in carriers of the  ZNF804A  psy-
chosis risk variant. Linking altered brain activation with 
behavioural and ultimately clinical measures is still a chal-

lenge, but will be an important enterprise in order to iden-
tify the mechanisms that lead from the gene to the disease 
and fulfil the main hope of psychiatric genetics that it will 
elucidate new target pathways for clinical interventions.
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