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The prevalence of pulmonary arterial hypertension (PAH) 
is greater in women than in men. Exact reasons for this 

sex-related difference remain unclear although increasing 
evidence suggests that metabolites of 17β-estradiol (estro-
gen) may play a role.1–3 Despite the female predominance 
and pathological implications of estrogens in human PAH, 
some experimental models have shown that exogenous 
estrogen is protective.4 The apparent contradictions may 
be explained by differential effects of estrogen metabolites 

on pulmonary vascular function and right ventricular (RV) 
homeostasis.5,6

Estrogen is metabolized by cytochrome P450 (CYP) 
enzymes7,8 to both proproliferative and antiproliferative 
metabolites.9 CYP 1B1 (CYP1B1) is a P450 enzyme expressed 
in the lung, which catalyses the conversion of estrogens pre-
dominantly to 4-hydroxyestrogens but also to 2-hydroxy 
and 16-hydroxyestrogens,10 and has been implicated in idio-
pathic PAH1 and heritable PAH.3,11,12 16α-hydroxyestrone 
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(16αOHE1) is a biologically active metabolite with estrogenic 
activity. It is more potent than that of estrogen.13 16αOHE1 
stimulates cell proliferation and has been implicated in exper-
imental PAH,1 as well as having genotoxic effects in other 
systems.14 Molecular processes underlying these effects are 
unclear, although reactive oxygen species (ROS) may be 
important because estrogen, through its estrogen receptor 
(ER), and estrogen metabolites have been shown to cause cell 
proliferation through redox-sensitive processes.15

Increased bioavailability of ROS (superoxide anion [∙O
2

−]) 
hydroxyl radical and hydrogen peroxide [H

2
O

2
]) leads to a 

shift in the balance between pro-oxidants and antioxidants and 
has been implicated in the development of various cardiovas-
cular diseases, including PAH.16–18 The nicotinamide adenine 
dinucleotide phosphate oxidase (Nox) family of enzymes is 
the primary source of ROS production in the vasculature, 
where increased expression of Nox isoforms 1 and 4 in the 
pulmonary vasculature has been demonstrated in experimen-
tal models of PAH.16–18

In support of the importance of Noxs in PAH, studies in 
rat models demonstrated that antioxidants, such as resvera-
trol analogs, improved pulmonary hypertension16 and that in 
mice, mitochondria-localized Nox4 activity is increased in the 
early phase of pulmonary hypertension.17 Moreover, in pul-
monary artery smooth muscle cells (PASMCs) isolated from 
monocrotaline-induced pulmonary hypertension, activation of 
Nox1, but not Nox4, was increased and Nox1-dependent sig-
naling pathways were upregulated.18 Counter-regulating pro-
oxidants in vascular cells are antioxidants; many of which are 
controlled by nuclear factor erythroid–related factor 2 (Nrf2), 
a key transcription factor that influences activation of antioxi-
dant genes, such as superoxide dismutase (SOD), catalase, 
and thioredoxin, which protect against oxidative damage.19 
Although oxidative stress may be important in the pathophysi-
ology of PAH, the relationship to estrogen and its metabolites 
and the potential significance in women remain unclear.

We hypothesized that 16αOHE1 stimulates Nox-induced 
ROS generation and proliferative responses in PASMCs and 
that in PAH, Nox dysregulation, and Nrf2 downregulation 
leads to aberrant mitogenic signaling and increased cell pro-
liferation, which are important in vascular remodeling in PAH. 
Because of the preponderance of PAH in women, we focused 
our study on PASMCs from well-characterized female patients. 
To investigate the pathophysiological significance of estrogen–
Nox–dependent processes in PAH, we studied female Nox1−/− 
and Nox4−/− mice with pulmonary hypertension.

Materials and Methods
A detailed Methods section is provided in the online-only Data 
Supplement.

Cell Culture
In vitro studies were performed using primary cultures of human 
PASMCs (hPASMCs) from small distal arteries of the pulmonary 
vasculature from well-characterized female PAH patients (PAH-
hPASMCs) and control subjects without PAH (control hPASMCs; 
provided by N. Morrell, University of Cambridge, Cambridge, 
United Kingdom). Patient details are shown in Table S1 in the online-
only Data Supplement. As comparator cells, in some experiments, 
we also studied human vascular SMCs (hVSMCs) from peripheral 

arteries obtained from gluteal biopsies of healthy women. Cells were 
used between passages 3 and 6 and processed as we described.20 
Experimental procedures using hPASMCs conform to the princi-
ples outlined in the Declaration of Helsinki and were approved by 
Cambridgeshire 1 Research Ethics Committee (REC reference: 08/
H0304/56).

Cell Protocols
Cells were stimulated with estrogen or 16αOHE1 (1 nmol/L; 5 
minutes to 48 hours). In some protocols, cells were pretreated (30 
minutes) with pharmacological inhibitors: 2-acetylphenothiazine 
(ML171; Nox1 inhibitor, 1 µmol/L), GKT137831 (Nox1/4 inhibitor, 
1 µmol/L), gp91ds-tat (Nox2 inhibitory peptide or scrambled con-
trol peptide, 10 µmol/L), 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-
(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride (MPP; 
ERα antagonist, 100 nmol/L), 4-[2-phenyl-5,7-bis(trifluoromethyl)
pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP; ERβ antagonist, 100 
nmol/L), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol; 
SOD mimetic, 10 µmol/L), and 2,3′,4,5′-tetramethoxystilbene (TMS; 
CYP1B1 inhibitor, 100 nmol/L). Doses were based on preliminary 
experiments and published data as detailed in the online-only Data 
Supplement.

Lucigenin-Enhanced Chemiluminescence
Lucigenin-enhanced chemiluminescence was used to determine ROS 
generation in cell lysates as we described.20,21

Amplex Red Assay
H

2
O

2
 was assessed in cell lysates with Amplex Red assay kit accord-

ing to manufacturer’s instructions.

Immunoblotting
Immunoblotting was used to examine protein expression of prolifer-
ating cell nuclear antigen, p27, Nox1 and Nox4, CYP1B1 and activa-
tion of signaling protein, p38mitogen-activated protein kinase, and 
irreversible oxidation of protein tyrosine phosphatases (PTPs).

PTP Oxidation
Irreversible oxidation of PTPs was assessed using an antibody (anti-
Ox-PTP) that specifically recognizes the sulfonic acid form of PTP 
cysteine residues as described.22

Real-Time Polymerase Chain Reaction
Quantitative real-time polymerase chain reaction was used to analyze 
mRNA expression. Total RNA was extracted, and real-time quantita-
tive polymerase chain reaction was carried out using SYBR Green I 
as described.23 Primers used were designed using the software Primer 
3 online (Table S2).

Nrf2 Activity Assay
Nrf2 activity was determined with the TransAM Nrf2 assay following 
manufacturer’s instructions.

5-Bromo-2′-Deoxyuridine Incorporation Assay
Cell proliferation was measured by 5-bromo-2′-deoxyuridine 
incorporation.

Hypoxic-Induced Pulmonary Hypertension in 
Female Nox1−/− and Nox4−/− Mice
All animal procedures conform to the UK Animal Procedures Act 
(1986), ARRIVE Guidelines,24 and the Guide for the Care and Use 
of Laboratory Animals (National Institutes of Health publication 
number, 85-23, revised 1996). Nox1−/− and Nox4−/− mice have pre-
viously been described.25,26 Mice were given free access to regular 
chow diet and water and were maintained on a 12-hour light/dark 
cycle. Development of hypoxic pulmonary hypertension in 18-week-
old female Nox1−/− and Nox4−/− mice and age-matched wild-type 
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(WT) female littermates (strain C57BL/6J) was achieved by 15 days 
exposure to hypobaric hypoxia (10% O

2
; 550 mbar) as described.27 

Mice maintained in normoxic conditions (21% O
2
; 1013 mbar) were 

studied as controls.

In Vivo Assessment of Pulmonary Hypertension
For all in vivo procedures, mice were assessed at 20 weeks of age 
and were anesthetized with inhaled isoflurane (3% in O

2
, induction; 

1.5% in O
2
, maintenance). In vivo pressure–volume loop relation 

measurements were performed to assess hemodynamic alterations in 
anesthetized mice 15 days after exposure to hypoxic conditions. A 
pressure–conductance catheter was inserted in the RV via the right 
jugular vein for right-heart catheterization and via the carotid artery 
for left ventricular catheterization (Millar Instruments, Houston, TX). 
After stabilization, steady-state measurements were recorded. RV 
systolic pressure (RVSP), RV end-systolic pressure, RV end-diastolic 
pressure, left ventricular systolic pressure, mean arterial pressure, 
heart rate, stroke volume, and cardiac output were determined.28–30 
RV hypertrophy (RVH) was assessed by bisecting the heart into the 
RV and left ventricle (LV) plus septum. RV and LV+septum ratio 
were determined (RV/[LV+septum]). Left ventricular hypertrophy 
was determined as left ventricular weight:tibia length.

Lung Immunohistochemistry to Assess Pulmonary 
Vascular Remodeling
Immediately after harvest, the left lung was perfusion fixed via the 
trachea. Lungs were processed into paraffin blocks for sectioning and 
stained for elastin and collagen using Van Gieson and Picrosirius red, 
respectively.27

Statistical Analysis
Mean value±SEM were calculated, and statistical comparisons were 
made with 1-way or 2-way ANOVA followed by Tukey post hoc test 
or 2-tailed Student t test where appropriate. P<0.05 was considered 
statistically significant.

Results

Estrogen and 16αOHE1 Increase ROS Production 
Through Nox
Basal ROS production was higher in PAH-hPASMCs com-
pared with control hPASMCs (Figure  1A). In control 
hPASMCs, estrogen induced a biphasic ROS response, with 
a rapid increase at 5 minutes and a second peak at 4 hours. 
In PAH-hPASMCs, estrogen induced a significant increase 
in ROS generation at 4 hours (Figure 1A). Estrogen-induced 
ROS production was blocked by ML171, a Nox1 inhibitor, 
and GKT137831, a dual Nox1/Nox4 inhibitor and the ROS 
scavenger, tempol (Figure  1B). The specific peptide inhibi-
tor of Nox2, gp91ds-tat, did not inhibit ROS production 
(Figure 1B).

Estrogen can be converted to 16αOHE1 by CYP1B1. 
2,3′,4,5′-tetramethoxystilbene, a selective CYP1B1 inhibitor, 
blocked estrogen- but not 16αOHE1-induced ROS produc-
tion in control hPASMCs and PAH-hPASMCs (Figure  1C; 
Figure S1). 16αOHE1 induced a rapid, but transient, increase 
in ROS generation in control hPASMCs, whereas in PAH-
hPASMCs, effects were sustained (Figure  1D). 16αOHE1-
stimulated ROS formation was inhibited by tempol (SOD 
mimetic), ML171, and GKT137831 (Figure 1E). No effects 
on ROS production were observed with the inhibitors alone 
(data not shown).

Basal H
2
O

2
 levels were reduced in PAH-hPASMCs ver-

sus control hPASMCs. 16αOHE1 decreased H
2
O

2
 production 

in control hPASMCs but markedly increased H
2
O

2
 levels 

in PAH-hPASMCs (Figure 2A). This may be via Nox1 and 
Nox4 as H

2
O

2
 production was inhibited by the Nox inhibitors, 

ML171 and GKT137831 (Figure 2A).
We next investigated the ER receptor subtype, mediat-

ing 16αOHE1 ROS effects. The ERα antagonist, 1,3-bis(4-
hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) 
phenol]-1H-pyrazole dihydrochloride, but not the ERβ antag-
onist, 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]
pyrimidin-3-yl]phenol, inhibited 16αOHE1-induced ROS for-
mation in control and PAH-hPASMCs (Figure S2). No effects 
were observed with the ER antagonists alone (data not shown).

Regulation of Nox Isoforms and Nox Subunits by 
16αOHE1
Basal gene expression of Nox1 and Nox4 was increased in 
PAH-hPASMCs compared with control hPASMCs (Figure 2B 
and 2C). Nox2 transcript expression in both control hPASMCs 
and PAH-hPASMCs was below reliable levels of detection 
(data not shown). 16αOHE1 increased Nox1 expression in 
control hPASMCs to levels observed in PAH-hPASMCs 
(Figure 2B). In control hPASMCs, 16αOHE1 also increased 
gene expression of p47phox, the Nox subunit capable of acti-
vating Nox2 and Nox1 in the hybrid system in lieu of NoxO1, 
and poldip2, a Nox4 regulatory protein (Figure 2D). In PAH-
hPASMCs, 16αOHE1 increased transcript levels of NoxA1, 
NoxO1, and p47phox, subunits that regulate Nox1 (Figure 2E). 
Protein expression of Nox1 and Nox4 was increased in PAH-
hPASMCs compared with control hPASMCs, which is in 
agreement with transcript expression. Nox1, but not Nox4, 
protein levels were further increased after 16αOHE1 treat-
ment in PAH-hPASMCs (Figure S3).

Regulation of Nrf2 and Antioxidant Systems by 
16αOHE1
16αOHE1 had no significant effect on Nrf2 in control 
hPASMCs but reduced Nrf2 activity in PAH-hPASMCs. This 
effect seems to be dependent on conversion of estrogen to 
16αOHE1 as inhibition of CYP1B1, by 2,3′,4,5′-tetrame-
thoxystilbene, normalized Nrf2 activity in PAH-hPASMCs 
(Figure 3A). Expression of Bach1 (BTB and CNC homol-
ogy 1), a Nrf2 transcriptional repressor, was increased by 
16αOHE1 (Figure 3B) in control hPASMCs at 2, 8, and 48 
hours of stimulation. Basal levels of Nrf2-regulated anti-
oxidants, SOD1, catalase, and thioredoxin, were decreased 
in PAH-hPASMCs compared with control hPASMCs. 
16αOHE1 did not further modulate thioredoxin transcript 
levels. However, 16αOHE1 further reduced SOD1 in control 
hPASMCs where catalase was further reduced by 16αOHE1 
in PAH-hPASMCs (Figure 3C and 3E).

16αOHE1 Influences Redox Signaling
One of the most important consequences of oxidative stress 
is oxidation of proteins, particularly redox-sensitive PTPs, 
which regulate phosphorylation of downstream proteins, 
including mitogen-activated protein kinases, such as p38mi-
togen-activated protein kinase. 16αOHE1 significantly 
increased irreversible PTP oxidation in hPASMCs, an effect 
that was inhibited by GKT137831 (Figure  4A). 16αOHE1 
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induced a significant increase in phosphorylation of p38mito-
gen-activated protein kinase in hPASMCs, an effect that was 
attenuated in control hPASMCs pretreated with Nox1 inhibi-
tor, ML171 (Figure 4B).

16αOHE1-Induced Proliferation Involves Nox
16αOHE1 stimulated cell growth, as measured by 5-bromo-
2′-deoxyuridine incorporation in control hPASMCs and PAH-
hPASMCs (Figure 5A). These effects were attenuated by 

Figure 1. Estrogen (E2) and 16α-hydroxyestrone (16αOHE1) increase reactive oxygen species (ROS) production through nicotinamide 
adenine dinucleotide phosphate oxidase (Nox)-dependent mechanisms. Time-dependent increase of ROS production by E2 (1 nmol/L) in 
control human pulmonary artery smooth muscle cells (hPASMCs) and pulmonary arterial hypertension (PAH)-hPASMCs (A). A, hPASMCs 
and PAH-hPASMCs were exposed to E2 for the time of peak ROS production (4 h), in the presence or absence of inhibitors of Nox1 
(ML171, 1 µmol/L), Nox1/4 (GKT137831, 1 µmol/L), and Nox2 (gp91ds-tat or peptide control scrambled gp91ds-tat control peptide [Scr], 
10 µmol/L). B, Cells were also exposed to the superoxide dismutase mimetic tempol (10 µmol/L). C, E2-induced ROS production in the 
presence of cytochrome P450 1B1 inhibitor, 2,3′,4,5′-tetramethoxystilbene (TMS; 100 nmol/L). D, Time-dependent increase of ROS 
production by 16αOHE1. E, 16αOHE1-induced ROS production at peak time point, 30 minutes, in the presence or absence of tempol, 
ML171, GKT137831, or gp91ds-tat in control hPASMCs and PAH-hPASMCs. Data are expressed as relative light units (RLUs)/µg protein, 
expressed as percentage of vehicle (V) control conditions. Results are presented as mean±SEM of 6 to 7 experiments in triplicate. 
*P<0.05 and ***P<0.001 vs vehicle control hPASMCs; †P<0.05 and ††P<0.01 vs treated control hPASMCs; ‡P<0.05 and ‡‡‡P<0.001 vs 
vehicle PAH-hPASMCs; §P<0.05 and §§P<0.01 vs treated PAH-hPASMCs determined by ANOVA with Tukey post hoc test.
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GKT137831 and ML171 but not by gp91ds-tat. In addition, 
expression of DNA polymerase accessory factor and prolifer-
ation marker proliferating cell nuclear antigen was increased 
by 16αOHE1 at 2 hours (Figure 5B). Cyclin-dependent kinase 
inhibitor, p27, is able to bind to a broad spectrum of cyclin/
cyclin-dependent kinase complexes, inhibiting their activi-
ties, and as such can inhibit progression at every cell cycle 
phase. Therefore, decreased p27 levels have been associated 
with increased cell proliferation.31 Consistent with effects on 
proliferating cell nuclear antigen, 16αOHE1 decreased p27 
protein expression at 24 hours of stimulation (Figure 5C).

Effects of Estrogen and 16αOHE1 Are Specific  
to hPASMCs
To evaluate whether redox and proliferative effects of 
16αOHE1 are generalized phenomena or specific for 
hPASMCs, we also studied hVSMCs from peripheral arteries. 
16αOHE1 increased ∙O

2
− production in control hPASMCs but 

not in hVSMCs (Figure S4A). 16αOHE1 did not affect cell 
proliferation in hVSMCs (Figure S4B). Estrogen decreased 
ROS production in hVSMCs at 2 hours (Figure S5A). This 
had no effect on subsequent 5-bromo-2′-deoxyuridine incor-
poration in hVSMCs (Figure S5B).

Figure 2. Effect of 16α-hydroxyestrone (16αOHE1) on hydrogen peroxide (H2O2) production and nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase isoform expression. A, H2O2 production from cell lysates was measured by using Amplex Red assay in 
cells exposed to 16αOHE1 for 30 minutes in the presence or absence of ML171 and GKT137831. Data are expressed as relative light 
units (RLUs)/µg protein corrected to standard curve and expressed as percentage of vehicle (V) control conditions. Transcript levels of 
nicotinamide adenine dinucleotide phosphate oxidase (Nox)-1 (B) and Nox4 (C) and NADPH oxidase regulatory proteins in response 
to 16αOHE1 (4 h) in control human pulmonary artery smooth muscle cells (hPASMCs) (D) and pulmonary arterial hypertension (PAH)-
hPASMCs (E). Results are presented as mean±SEM of 6 experiments in triplicate. Graphs represent mRNA expression relative to GAPDH. 
*P<0.05, **P<0.01, and ***P<0.001 vs vehicle control hPASMCs; ‡P<0.05, ‡‡P<0.01, and ‡‡‡P<0.001 vs vehicle PAH-hPASMCs; 
§§P<0.01 vs 16αOHE1-treated PAH-hPASMCs, determined by ANOVA with Tukey post hoc test.
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Genetic Ablation of Nox1 and Nox4 Attenuates 
Development of Pulmonary Hypertension  
in Female Mice
To evaluate the pathophysiological significance of our in vitro 
findings, we extended our studies to an estrogen-dependent 
mouse model of pulmonary hypertension by examining female 
Nox1−/− and Nox4−/− mice exposed to hypoxic conditions. 
Under normoxic conditions, RVSP and RVH were not different 

between WT and Nox1−/− mice. Under hypoxic conditions, 
RVSP, RVH, RV end-diastolic pressure, and RV end-systolic 
pressure (Figure 6A through 6D) were increased in WT controls, 
responses that were attenuated in hypoxic Nox1−/− mice (Figure 
6). Similarly, vascular thickening (remodeling), as assessed by 
histological analysis, was increased in hypoxic compared with 
normoxic WT mice. No significant effects on vascular remod-
eling were observed in normoxic WT versus Nox1−/− mice. 

Figure 3. Effect of 16α-hydroxyestrone (16αOHE1) on nuclear factor E2–related factor 2 (Nrf2) activation and antioxidant gene expression. 
Nuclear translocation of Nrf2 by 16αOHE1 at 1 h was assessed as an indicator of Nrf2 activity, in the presence of cytochrome P450 1B1 
inhibitor, 2,3′,4,5′-tetramethoxystilbene (TMS). Data are expressed as relative light units (RLUs)/µg protein expressed as percentage of 
vehicle control conditions. A, Results are presented as mean±SEM of 6 experiments in triplicate. Effects of 16αOHE1 (2–48 h) on protein 
expression of Nrf2 transcriptional repressor, Bach1 (BTB and CNC homology 1). B, Protein expression is relative to β-actin. Antioxidant 
responses were assessed by investigating antioxidant gene expression downstream of Nrf2: superoxide dismutase-1 (SOD1) (C), catalase 
(D), and thioredoxin (TRDX) (E). Values are presented as mean±SEM of 6 experiments in triplicate and represent the mRNA expression 
relative to GAPDH. *P<0.05 vs vehicle control human pulmonary artery smooth muscle cells (hPASMCs); ‡P<0.05 vs vehicle (V) pulmonary 
arterial hypertension (PAH)-hPASMCs determined by ANOVA with Tukey post hoc test.
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However, under hypoxic conditions, Nox1−/− mice exhibited 
reduced vascular remodeling compared with hypoxic WT mice 
(Figure 6E). Cardiac output was decreased in hypoxic WT 
compared with normoxic WT mice (Figure S6A). Mean arterial 
pressure, stroke volume, left ventricular systolic pressure, left 
ventricular hypertrophy, and heart rate were unchanged across 
experimental groups (Figure S6B through S6F).

As shown in Figure 7A, in WT mice, hypoxia increased 
RVSP, and this was attenuated in hypoxic Nox4−/− mice (Figure 
7A). Hypoxic WT mice also showed increases in RVH, RV 
end-diastolic pressure, RV end-systolic pressure, pulmonary 
vascular remodeling (Figure 7B through 7E); with decreased 
cardiac output (Figure S7A), hallmarks of pulmonary hyper-
tension. However, these effects remained similar in Nox4−/− 
mice. No changes in mean arterial pressure, stroke volume, 
left ventricular systolic pressure, left ventricular hypertrophy, 
or heart rate were observed across the study groups (Figure 
S7B through S7F).

Expression of CYP1B1 in Female Mice With 
Pulmonary Hypertension
To evaluate indirectly whether estrogen metabolism in pul-
monary arteries may be altered in mice deficient in Nox, we 
assessed expression of CYP1B1, which catalyses estrogen to 
its metabolites, in pulmonary arteries of normoxic and hypoxic 
WT Nox1−/− and Nox4−/− mice. Expression of CYP1B1, at the 
protein and mRNA levels, was increased in hypoxic WT and 
Nox4−/− mice but not in hypoxic Nox1−/− mice (Figure S8).

Discussion
Major findings from our study show that in PASMCs from 
female subjects, the estrogen metabolite 16αOHE1 induces 
ROS production, downregulates the protective antioxidant 
effects of Nrf2, stimulates redox signaling, and promotes cell 
growth (Figure 8). Processes underlying these actions involve 
primarily Nox1 and ERα. 16αOHE1 effects are amplified in 
hPASMCs from female patients with PAH. In support of the 

Figure 4. 16α-hydroxyestrone (16αOHE1)–induced phosphorylation of p38MAPK and oxidation of protein tyrosine phosphatases (PTP). 
Irreversible oxidation of PTPs using the oxPTP antibody (A) and p38mitogen-activated protein kinase (p38MAPK) phosphorylation  
(B) were assessed after 16αOHE1 stimulation (1 h) in the presence or absence of ML171 and GKT137831. Results are representative of 
5 experiments where protein expression is relative to β-actin. **P<0.01 vs vehicle control human pulmonary artery smooth muscle cells 
(hPASMCs); †P<0.05 vs 16αOHE1-treated control hPASMCs, determined by ANOVA with Tukey post hoc test.
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importance of Nox1 in vascular processes associated with 
pulmonary hypertension, our in vivo studies showed that 
hypoxia-induced pulmonary hypertension and arterial remod-
eling were ameliorated in Nox1−/− mice but not in Nox4−/− 
mice. Nox1−/− mice also had reduced pulmonary artery 
content of the estrogen-metabolizing enzyme CYP1B1. Our 
study provides new molecular insights through Nox1/ROS 
and Nrf2 whereby 16αOHE1 influences hPASMC function, 
which when upregulated may contribute to vascular injury and 
remodeling in PAH, particularly important in women.

Studies have linked hormone replacement therapy and the 
contraceptive pill to the increased incidence of PAH32 giving 
rise to the hypothesis that estrogen and its metabolites play 
a role in the pathobiology of PAH. A metabolic shift toward 
the formation of proproliferative estrogen metabolites, includ-
ing 16αOHE1, by altered expression of CYP1B1, is associ-
ated with the development and progression of PAH.1 Although 

CYP1B1 expression is low under basal conditions, expression 
is upregulated in PAH. Relatedly, inhibition or loss-of-func-
tion of CYP1B1 is protective in preclinical PAH models, thus 
demonstrating that CYP1B1 is involved in the pathogenesis of 
PAH.1 In support of this, a CYP1B1 single nucleotide poly-
morphism has been associated with PAH and oncogenesis, 
and these pathways are thought to underpin sexual dimor-
phism in RV failure.12 In addition, 16αOHE1 upregulates 
MicroRNA-29, which alters molecular and functional indices 
of energy metabolism, contributing to PAH.33 Other pathways, 
involving ROS, have also been suggested in PAH and seem to 
be regulated by 16αOHE1 as we demonstrate here.

The ability of estrogen to induce ROS in hPASMCs 
was dependent on CYP1B1 activity and likely the produc-
tion of estrogen metabolites because pharmacological inhi-
bition of CYP1B1 prevented estrogen-induced, but not 
16αOHE1-induced, ROS production. Estrogens exert their 

Figure 5. Role of nicotinamide adenine dinucleotide phosphate oxidase (Nox) in 16α-hydroxyestrone (16αOHE1)–mediated cell 
proliferation. To test if 16αOHE1 regulates proliferation in a Nox/reactive oxygen species–dependent manner, 5-bromo-2′-deoxyuridine 
(BrdU) incorporation was assessed in control human pulmonary artery smooth muscle cells (hPASMCs) and pulmonary arterial 
hypertension (PAH)-hPASMCs cultured for 24 h in the presence or absence of ML171, GKT137831, or gp91ds-tat (A). Results are 
representative of 6 experiments, in triplicate, where data are expressed relative to vehicle control conditions. Protein expression of 
cell growth marker proliferating cell nuclear antigen (PCNA) in response to 16αOHE1 (B) and cyclin-dependent kinase p27 (C) were 
determined by immunoblotting. Results are expressed as mean±SEM of 5 experiments where protein expression is relative to β-actin. 
*P<0.05 and **P<0.01 vs vehicle control hPASMCs; †P<0.05 and ††P<0.01 vs 16αOHE1-treated control hPASMCs; ‡P<0.05 vs vehicle 
PAH-hPASMCs; §P<0.05 vs 16αOHE1-treated PAH-hPASMCs determined by ANOVA with Tukey post hoc test.
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cellular actions by activating their receptors, ERα, ERβ, and 
G-protein–coupled ER.34 In PAH, opposing roles of ERα and 
ERβ are described where increased pulmonary ERα expres-
sion has been associated with proliferation of PASMCs in 
human and experimental PAH.35,36 Inhibition of ERα reverses 
PAH in female mice but not in male hypoxic mice.35,36 
Protective actions of estrogen on cell proliferation are medi-
ated predominantly via ERβ signaling.37 In our studies and 
in line with others, we observed that 16αOHE1-induced ROS 
generation is mediated through ERα because 16αOHE1-
mediated effects were blocked by 1,3-bis(4-hydroxyphenyl)-
4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole 
dihydrochloride (ERα antagonist) but not by 4-[2-phenyl-
5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phe-
nol (ERβ antagonist).

Hydroxyestrogens have also been shown to induce DNA 
damage either directly, through formation of DNA adducts, 
or indirectly, through redox cycling and generation of ROS.38 
This further strengthens the concept that the deleterious actions 
of estrogen may be dependent on the conversion to 16αOHE1 
where results of our study implicated the generation of ROS as 
a mediator of these deleterious actions. Exact mechanisms of 
ROS production, especially with respect to estrogen/16αOHE1, 
are poorly understood. However, growing evidence implicates 
a role for Noxs, particularly Nox1 and Nox4, in the devel-
opment and progression of PAH.39,40 We found increased 
basal levels of Nox1 and Nox4 in PAH-hPASMCs compared 
with control hPASMCs in agreement with other studies.18,40 
16αOHE1 induced an increase in expression of Nox1 and Nox 
subunits associated with Nox1 activation, whereas Nox4 and 

Figure 6. Effects of Nox1−/− on hypoxia-
induced pulmonary hypertension in female 
mice. Pressure–volume loop was used to 
assess hemodynamic parameters to evaluate 
the development of pulmonary hypertension 
in Nox1−/− mice. Effects of Nox1−/− on right 
ventricular (RV) systolic pressure (RVSP) (A) 
and RV hypertrophy, calculated as RV weight/
left ventricular+septum weight (B). RV end-
diastolic pressure (RVEDP) (C), RV end-systolic 
pressure (RVESP) (D). Percentage of pulmonary 
vascular remodeling in distal pulmonary arteries 
in normoxic and hypoxic mice with representative 
images of pulmonary arteries (elastin Van Gieson 
stain; scale bar, 50 µm) (E). Data are presented 
as mean±SEM; n=8 to 10 per group. *P<0.05, 
**P<0.01, and ***P<0.001 vs wild-type (WT) 
normoxic; †P<0.05 and ††P<0.01 vs WT hypoxic, 
determined by 2-way ANOVA with Tukey post 
hoc test. ns indicates not significant.
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its regulator poldip2 were not significantly modified in PAH-
hPASMCs. These findings emphasize the preferential impor-
tance of Nox1 versus Nox4 in PAH. Despite a role for Nox2 
being reported by Liu et al,41 we were unable to delineate a role 
for Nox2 in our study. This may be related to the fact that Nox2 
was almost undetectable in hPASMCs in our study.

Although Nox1 primarily produces ∙O
2
− and is reported to 

have deleterious effects in various components of the cardiovas-
cular system, a protective role of Nox4, which primarily produces 
H

2
O

2
, has been suggested.42 As such, Nox1 and Nox4 may exert 

opposing effects within the same tissue because of the difference 
in the reactive species produced. In our study, basal levels of H

2
O

2
 

in PAH-hPASMCs were reduced, whereas 16αOHE1 was asso-
ciated with excessive production of H

2
O

2
 in PAH-hPASMCs. It 

is well established that high concentrations of ROS can trigger 

the oxidation of downstream signaling molecules, such as PTPs, 
resulting in the loss of function as a phosphate acceptor.43 In 
association with excessive ROS production by 16αOHE1, we 
found an increase in irreversibly oxidized PTPs and enhanced 
phosphorylation of p38mitogen-activated protein kinase, which 
is downstream of PTP. Our findings support the notion that 
PTP inhibition is important in PAH, and we suggest that 
16αOHE1-induced ROS may be important in this process.

Our data indicate that in addition to regulating ROS produc-
tion, 16αOHE1 influences antioxidant systems in hPASMCs. 
In PAH-hPASMCs, 16αOHE1 increased ROS production 
and decreased Nrf2 activation, suggesting overall ROS accu-
mulation and oxidative stress. This effect was dependent on 
CYP1B1, suggesting a role for estrogen to 16αOHE1 conver-
sion in Nrf2 dysfunction in PAH-hPASMCs. Previous studies 

Figure 7. Effects of Nox4−/− on hypoxia-induced 
pulmonary hypertension in female mice. Pressure–
volume loop was used to assess hemodynamic 
parameters to evaluate development of 
pulmonary hypertension female Nox4−/− mice. 
Effects of Nox4−/− on right ventricular (RV) 
systolic pressure (RVSP) (A) and RV hypertrophy, 
calculated as RV weight/left ventricular+septum 
weight (B). RV end-diastolic pressure (RVEDP) 
(C) and RV end-systolic pressure (RVESP) (D). 
Percentage of pulmonary vascular remodeling in 
distal pulmonary arteries in normoxic and hypoxic 
mice with representative images of pulmonary 
arteries (Elastin Van Giesen stain; scale bar, 50 
µm) (E). Data are presented mean±SEM; n=8 to 
10 per group. *P<0.05, **P<0.01, and ***P<0.001 
vs wild-type (WT) normoxic; †P<0.05 vs WT 
hypoxic, determined by 2-way ANOVA with Tukey 
post hoc test. ns indicates not significant.
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have reported Nox-derived ROS activating Nrf2 nuclear trans-
location in physiological states; however, in conditions of oxi-
dative stress and systemic vascular pathology, Nrf2 activation 
by Nox-derived ROS is dysregulated.19 Our data suggest that 
similar dysregulation of Nrf2 may occur in pathophysiologi-
cal conditions of the pulmonary vasculature.

In addition, we observed a decrease in the H
2
O

2
-reducing 

enzymes, catalase, and thioredoxin in PAH-hPASMCs com-
pared with control hPASMCs, where effects on catalase were 
further reduced in 16αOHE1-treated PAH-hPASMCs. This 
may be indicative of increased production and accumulation 
of H

2
O

2
 in PAH, potentiated by 16αOHE1. To better under-

stand the functional significance of 16αOHE1-induced oxi-
dative stress, we studied effects on proliferation, a hallmark 
of pulmonary vascular remodeling. 16αOHE1 stimulated 
ROS production in hPASMCs, expression of proliferating cell 
nuclear antigen and cell cycle inhibitors, and increased prolif-
eration, effects that were blocked by inhibitors of Nox1.

Taken together, our cell-based studies demonstrate that in 
hPASMCs, 16αOHE1 stimulates ROS production through ERα–
Nox–dependent processes. In PAH-increased Nox1 expression, 
oxidative stress and downregulation of the antioxidant Nrf2 
system lead to increased PTP oxidation, aberrant redox signal-
ing, and cell proliferation, as summarized in Figure 8. Because 
hPASMCs were derived from younger women than the patient 
cohort from whom we obtained PAH-hPASMCs cells, we cannot 

exclude the possibility that aging or menopausal state may play 
a role. However, the differences observed in our study are likely 
independent of changes in ER status because vascular protein 
expression of ER does not change significantly with aging.44 The 
cellular phenomena observed in our study seem to be specific 
for hPASMCs because hVSMCs from other vascular beds 
failed to respond to estrogen and 16αOHE1.

To further test the pathophysiological significance of our 
findings, we performed in vivo studies in Nox1−/− and Nox4−/− 
mice exposed to hypoxia. WT mice exhibited features of pul-
monary hypertension when exposed to hypoxic conditions as 
evidenced by increased RVSP, RV end-systolic pressure, RV 
end-diastolic pressure and RVH, processes that were attenu-
ated in Nox1−/− mice. Associated with pulmonary hypertensive 
changes, pulmonary arteries displayed significant remodeling, 
which was reduced in Nox1−/− mice but not in Nox4−/− mice. 
A role for 16αOHE1 may be implicated here through the 
absence of hypoxia-induced increases in CYP1B1 expression 
in Nox1−/− mice. Only modest protective effects on RVSP were 
evident in hypoxic PH Nox4−/− mice; this is in alignment with 
a previous study using a small-molecule Nox4 inhibitor, show-
ing some effects on RVH and vascular remodeling.45 As such, 
the important role for Nox1 in mediating PAH phenotypes that 
were observed in vitro were paralleled in vivo where Nox1−/− 
mice were protected from hypoxia-induced vascular injury.

In conclusion, using hPASMCs from patients we show 
that the estrogen metabolite 16αOHE1 increases Nox-
dependent ROS generation and decreases Nrf2–antioxidant 
systems that contribute to oxidative damage and redox-
sensitive proliferation of hPASMCs (represented schemati-
cally in Figure 8), processes critically involved in PAH. We 
identify Nox1 as being particularly important in hypoxia-
induced pulmonary hypertension and in 16αOHE1-mediated 
vascular effects in PAH. Our study provides new molecular 
insights through Nox1/ROS and Nrf2 whereby 16αOHE1 
influences pulmonary artery VSMC function, which when 
upregulated may contribute to vascular injury and remodel-
ing in PAH. Such phenomena may be especially important 
in female mice.

Perspectives
Metabolites of estrogen, including 16αOHE1, participate in many 
physiological processes implicated in cardiovascular complica-
tions associated with PAH. Current advances in the understanding 
of estrogen metabolism have provided insights into mechanisms 
involved in cardiopulmonary diseases. Our results identify Nox-
dependent redox signaling of 16αOHE1 as an important player in 
the molecular and cellular processes associated with PAH. Nox1 
is identified as a major player in 16αOHE1 effects.

Acknowledgments
We thank Professor C. Yabe-Nishimura (Kyoto Prefectural University 
of Medicine, Japan) for providing Nox1−/− mice and Dr K. Schröder 
(Goethe University of Frankfurt, Germany) for providing Nox4−/− 
mice. We are grateful to Professor Nicholas W. Morrell (University 
of Cambridge, United Kingdom) for the supply of human pulmonary 
artery smooth muscle cells. Dr Anne Katrine Johansen (Hubrecht 
Institute, The Netherlands) for assistance with experimental design 
and Carol Jenkins for the technical support. We thank Genkyotex for 
supplying GKT137831.

Figure 8. Schematic of putative role of 16α-hydroxyestrone 
(16αOHE1) in human pulmonary artery smooth muscle cells 
(PASMCs). The actions of 16αOHE1 and estrogen (E2) are 
mediated not only via the E2 receptors but also involve the 
activation of nicotinamide adenine dinucleotide phosphate 
oxidases (Noxs), which leads to ∙O2

− and hydrogen peroxide 
(H2O2) production. Excessive reactive oxygen species 
production coupled with impaired antioxidant mechanisms 
in response to 16αOHE1 may promote oxidation of protein 
tyrosine phosphatases (PTP) and enhanced signaling through 
p38mitogen-activated protein kinase (p38MAPK) and proteins 
involved in cell cycle regulation, leading to deleterious oxidative 
stress and pulmonary vascular proliferation. + indicates 
activation; and −, inhibition.



Hood et al    Estrogen, Nox, and Pulmonary Hypertension    807

Sources of Funding
This study was funded by grants from the British Heart Foundation 
(R.M. Touyz: CH/12/4/29762 and RG/13/7/30099 and M.R. 
MacLean: RG/11/7/28916). K.Y. Hood was supported by a PhD 
studentship from Biotechnology and Biological Sciences Research 
Council (2012/168760-01).

Disclosures
None.

References
	 1.	 White K, Johansen AK, Nilsen M, Ciuclan L, Wallace E, Paton L, 

Campbell A, Morecroft I, Loughlin L, McClure JD, Thomas M, Mair 
KM, MacLean MR. Activity of the estrogen-metabolizing enzyme 
cytochrome P450 1B1 influences the development of pulmonary arte-
rial hypertension. Circulation. 2012;126:1087–1098. doi: 10.1161/
CIRCULATIONAHA.111.062927.

	 2.	 Mair KM, Yang XD, Long L, White K, Wallace E, Ewart MA, Docherty CK, 
Morrell NW, MacLean MR. Sex affects bone morphogenetic protein type 
II receptor signaling in pulmonary artery smooth muscle cells. Am J Respir 
Crit Care Med. 2015;191:693–703. doi: 10.1164/rccm.201410-1802OC.

	 3.	 Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP, 
Wheeler LA, Parl FF, Loyd JE, Phillips JA. Alterations in oestrogen 
metabolism: implications for higher penetrance of familial pulmonary 
arterial hypertension in females. Eur Respir J. 2009;34:1093–1099. doi: 
10.1183/09031936.00010409.

	 4.	 Lahm T, Albrecht M, Fisher AJ, Selej M, Patel NG, Brown JA, Justice 
MJ, Brown MB, Van Demark M, Trulock KM, Dieudonne D, Reddy JG, 
Presson RG, Petrache I. 17β-Estradiol attenuates hypoxic pulmonary 
hypertension via estrogen receptor-mediated effects. Am J Respir Crit 
Care Med. 2012;185:965–980. doi: 10.1164/rccm.201107-1293OC.

	 5.	 Frump AL, Goss KN, Vayl A, Albrecht M, Fisher A, Tursunova R, Fierst 
J, Whitson J, Cucci AR, Brown MB, Lahm T. Estradiol improves right 
ventricular function in rats with severe angioproliferative pulmonary 
hypertension: effects of endogenous and exogenous sex hormones. Am 
J Physiol Lung Cell Mol Physiol. 2015;308:L873–L890. doi: 10.1152/
ajplung.00006.2015.

	 6.	 Tofovic SP. Estrogens and development of pulmonary hypertension: interac-
tion of estradiol metabolism and pulmonary vascular disease. J Cardiovasc 
Pharmacol. 2010;56:696–708. doi: 10.1097/FJC.0b013e3181f9ea8d.

	 7.	 Dubey RK, Jackson EK, Gillespie DG, Rosselli M, Barchiesi F, Krust 
A, Keller H, Zacharia LC, Imthurn B. Cytochromes 1A1/1B1- and cate-
chol-O-methyltransferase-derived metabolites mediate estradiol-induced 
antimitogenesis in human cardiac fibroblast. J Clin Endocrinol Metab. 
2005;90:247–255. doi: 10.1210/jc.2003-032154.

	 8.	 Napoli N, Rini GB, Serber D, Giri T, Yarramaneni J, Bucchieri S, Camarda 
L, Di Fede G, Camarda MR, Jain S, Mumm S, Armamento-Villareal R. 
The Val432Leu polymorphism of the CYP1B1 gene is associated with 
differences in estrogen metabolism and bone density. Bone. 2009;44:442–
448. doi: 10.1016/j.bone.2008.09.018.

	 9.	 Bradlow HL, Telang NT, Sepkovic DW, Osborne MP. 2-hydroxyestrone: 
the ‘good’ estrogen. J Endocrinol. 1996;150(suppl):S259–S265.

	10.	 Badawi AF, Cavalieri EL, Rogan EG. Role of human cytochrome P450 1A1, 
1A2, 1B1, and 3A4 in the 2-, 4-, and 16alpha-hydroxylation of 17beta-estra-
diol. Metabolism. 2001;50:1001–1003. doi: 10.1053/meta.2001.25592.

	11.	 West J, Cogan J, Geraci M, Robinson L, Newman J, Phillips JA, Lane K, 
Meyrick B, Loyd J. Gene expression in BMPR2 mutation carriers with 
and without evidence of pulmonary arterial hypertension suggests path-
ways relevant to disease penetrance. BMC Med Genomics. 2008;1:45. doi: 
10.1186/1755-8794-1-45.

	12.	 Ventetuolo CE, Mitra N, Wan F, Manichaikul A, Barr RG, Johnson C, Bluemke 
DA, Lima JA, Tandri H, Ouyang P, Kawut SM. Oestradiol metabolism and 
androgen receptor genotypes are associated with right ventricular function. 
Eur Respir J. 2016;47:553–563. doi: 10.1183/13993003.01083-2015.

	13.	 Mueck AO, Seeger H, Lippert TH. Estradiol metabolism and malignant 
disease. Maturitas. 2002;43:1–10.

	14.	 Telang NT, Suto A, Wong GY, Osborne MP, Bradlow HL. Induction by 
estrogen metabolite 16 alpha-hydroxyestrone of genotoxic damage and 
aberrant proliferation in mouse mammary epithelial cells. J Natl Cancer 
Inst. 1992;84:634–638.

	15.	 Johar R, Sharma R, Kaur A, Mukherjee TK. Role of reactive oxygen spe-
cies in estrogen dependant breast cancer complication. Anticancer Agents 
Med Chem. 2015;16:190–199.

	16.	 Liu B, Luo XJ, Yang ZB, Zhang JJ, Li TB, Zhang XJ, Ma QL, Zhang GG, 
Hu CP, Peng J. Inhibition of NOX/VPO1 pathway and inflammatory reac-
tion by trimethoxystilbene in prevention of cardiovascular remodeling in 
hypoxia-induced pulmonary hypertensive rats. J Cardiovasc Pharmacol. 
2014;63:567–576. doi: 10.1097/FJC.0000000000000082.

	17.	 Frazziano G, Al Ghouleh I, Baust J, Shiva S, Champion HC, Pagano PJ. Nox-
derived ROS are acutely activated in pressure overload pulmonary hyperten-
sion: indications for a seminal role for mitochondrial Nox4. Am J Physiol Heart 
Circ Physiol. 2014;306:H197–H205. doi: 10.1152/ajpheart.00977.2012.

	18.	 Veit F, Pak O, Egemnazarov B, Roth M, Kosanovic D, Seimetz M, Sommer 
N, Ghofrani HA, Seeger W, Grimminger F, Brandes RP, Schermuly RT, 
Weissmann N. Function of NADPH oxidase 1 in pulmonary arterial smooth 
muscle cells after monocrotaline-induced pulmonary vascular remodeling. 
Antioxid Redox Signal. 2013;19:2213–2231. doi: 10.1089/ars.2012.4904.

	19.	 Lopes RA, Neves KB, Tostes RC, Montezano AC, Touyz RM. 
Downregulation of nuclear factor erythroid 2-related factor and associ-
ated antioxidant genes contributes to redox-sensitive vascular dysfunc-
tion in hypertension. Hypertension. 2015;66:1240–1250. doi: 10.1161/
HYPERTENSIONAHA.115.06163.

	20.	 Touyz R, Schiffrin E. Ang II-stimulated generation of vascular smooth 
muscle cell reactive oxygen species is increased in human hypertension: 
role of phospholipase d. Circulation. 1999;100:479–479.

	21.	 Touyz RM, Yao G, Viel E, Amiri F, Schiffrin EL. Angiotensin II and endothe-
lin-1 regulate MAP kinases through different redox-dependent mechanisms 
in human vascular smooth muscle cells. J Hypertens. 2004;22:1141–1149.

	22.	 Persson C, Kappert K, Engström U, Ostman A, Sjöblom T. An antibody-
based method for monitoring in vivo oxidation of protein tyrosine phos-
phatases. Methods. 2005;35:37–43. doi: 10.1016/j.ymeth.2004.07.006.

	23.	 Chignalia AZ, Schuldt EZ, Camargo LL, Montezano AC, Callera GE, 
Laurindo FR, Lopes LR, Avellar MC, Carvalho MH, Fortes ZB, Touyz 
RM, Tostes RC. Testosterone induces vascular smooth muscle cell migra-
tion by NADPH oxidase and c-Src-dependent pathways. Hypertension. 
2012;59:1263–1271. doi: 10.1161/HYPERTENSIONAHA.111.180620.

	24.	 McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright 
CL. Guidelines for reporting experiments involving animals: the 
ARRIVE guidelines. Br J Pharmacol. 2010;160:1573–1576. doi: 
10.1111/j.1476-5381.2010.00873.x.

	25.	 Schröder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, 
Kruse C, Luedike P, Michaelis UR, Weissmann N, Dimmeler S, Shah 
AM, Brandes RP. Nox4 is a protective reactive oxygen species generating 
vascular NADPH oxidase. Circ Res. 2012;110:1217–1225. doi: 10.1161/
CIRCRESAHA.112.267054.

	26.	 Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, 
Takai S, Yamanishi K, Miyazaki M, Matsubara H, Yabe-Nishimura C. 
Nox1 is involved in angiotensin II-mediated hypertension: a study in 
Nox1-deficient mice. Circulation. 2005;112:2677–2685. doi: 10.1161/
CIRCULATIONAHA.105.573709.

	27.	 Keegan A, Morecroft I, Smillie D, Hicks MN, MacLean MR. Contribution of 
the 5-HT(1B) receptor to hypoxia-induced pulmonary hypertension: converg-
ing evidence using 5-HT(1B)-receptor knockout mice and the 5-HT(1B/1D)-
receptor antagonist GR127935. Circ Res. 2001;89:1231–1239.

	28.	 Lawrie A, Hameed AG, Chamberlain J, Arnold N, Kennerley A, Hopkinson 
K, Pickworth J, Kiely DG, Crossman DC, Francis SE. Paigen diet-fed 
apolipoprotein E knockout mice develop severe pulmonary hypertension 
in an interleukin-1-dependent manner. Am J Pathol. 2011;179:1693–1705. 
doi: 10.1016/j.ajpath.2011.06.037.

	29.	 Hameed AG, Arnold ND, Chamberlain J, Pickworth JA, Paiva C, Dawson 
S, Cross S, Long L, Zhao L, Morrell NW, Crossman DC, Newman CM, 
Kiely DG, Francis SE, Lawrie A. Inhibition of tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) reverses experimental pul-
monary hypertension. J Exp Med. 2012;209:1919–1935. doi: 10.1084/
jem.20112716.

	30.	 Van den Bergh A, Flameng W, Herijgers P. Parameters of ventricular con-
tractility in mice: influence of load and sensitivity to changes in inotropic 
state. Pflugers Arch. 2008;455:987–994. doi: 10.1007/s00424-007-0362-8.

	31.	 Bretones G, Delgado MD, León J. Myc and cell cycle control. Biochim 
Biophys Acta. 2015;1849:506–516. doi: 10.1016/j.bbagrm.2014.03.013.

	32.	 Sweeney L, Voelkel NF. Estrogen exposure, obesity and thyroid dis-
ease in women with severe pulmonary hypertension. Eur J Med Res. 
2009;14:433–442.

	33.	 Chen X, Talati M, Fessel JP, Hemnes AR, Gladson S, French J, Shay 
S, Trammell A, Phillips JA, Hamid R, Cogan JD, Dawson EP, Womble 
KE, Hedges LK, Martinez EG, Wheeler LA, Loyd JE, Majka SJ, West 
J, Austin ED. Estrogen metabolite 16alpha-hydroxyestrone exacerbates 
bone morphogenetic protein receptor type II-associated pulmonary 



808    Hypertension    September 2016

arterial hypertension through microRNA-29-mediated modulation 
of cellular metabolism. Circulation. 2016;133:82–97. doi: 10.1161/
CIRCULATIONAHA.115.016133.

	34.	 Nilsson S, Gustafsson JÅ. Estrogen receptors: therapies targeted to 
receptor subtypes. Clin Pharmacol Ther. 2011;89:44–55. doi: 10.1038/
clpt.2010.226.

	35.	 Wright AF, Ewart MA, Mair K, Nilsen M, Dempsie Y, Loughlin L, 
Maclean MR. Oestrogen receptor alpha in pulmonary hypertension. 
Cardiovasc Res. 2015;106:206–216. doi: 10.1093/cvr/cvv106.

	36.	 Mair KM, Johansen AK, Wright AF, Wallace E, MacLean MR. Pulmonary 
arterial hypertension: basis of sex differences in incidence and treatment 
response. Br J Pharmacol. 2014;171:567–579. doi: 10.1111/bph.12281.

	37.	 Umar S, Iorga A, Matori H, Nadadur RD, Li J, Maltese F, van der Laarse 
A, Eghbali M. Estrogen rescues preexisting severe pulmonary hyperten-
sion in rats. Am J Respir Crit Care Med. 2011;184:715–723. doi: 10.1164/
rccm.201101-0078OC.

	38.	 Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. 
Annu Rev Pharmacol Toxicol. 1996;36:203–232. doi: 10.1146/annurev.
pa.36.040196.001223.

	39.	 Mittal M, Roth M, König P, et al. Hypoxia-dependent regulation of non-
phagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. 
Circ Res. 2007;101:258–267. doi: 10.1161/CIRCRESAHA.107.148015.

	40.	 Dennis KE, Aschner JL, Milatovic D, Schmidt JW, Aschner M, Kaplowitz 
MR, Zhang Y, Fike CD. NADPH oxidases and reactive oxygen species at 

different stages of chronic hypoxia-induced pulmonary hypertension in 
newborn piglets. Am J Physiol Lung Cell Mol Physiol. 2009;297:L596–
L607. doi: 10.1152/ajplung.90568.2008.

	41.	 Liu JQ, Zelko IN, Erbynn EM, Sham JS, Folz RJ. Hypoxic pulmonary 
hypertension: role of superoxide and NADPH oxidase (gp91phox). 
Am J Physiol Lung Cell Mol Physiol. 2006;290:L2–10. doi: 10.1152/
ajplung.00135.2005.

	42.	 Gray SP, Di Marco E, Kennedy K, Chew P, Okabe J, El-Osta A, Calkin 
AC, Biessen EA, Touyz RM, Cooper ME, Schmidt HH, Jandeleit-
Dahm KA. Reactive oxygen species can provide atheroprotection via 
Nox4-dependent inhibition of inflammation and vascular remodel-
ing. Arterioscler Thromb Vasc Biol. 2016;36:295–307. doi: 10.1161/
ATVBAHA.115.307012.

	43.	 Frijhoff J, Dagnell M, Godfrey R, Ostman A. Regulation of protein tyro-
sine phosphatase oxidation in cell adhesion and migration. Antioxid Redox 
Signal. 2014;20:1994–2010. doi: 10.1089/ars.2013.5643.

	44.	 Bowling MR, Xing D, Kapadia A, Chen YF, Szalai AJ, Oparil S, Hage 
FG. Estrogen effects on vascular inflammation are age dependent: role of 
estrogen receptors. Arterioscler Thromb Vasc Biol. 2014;34:1477–1485. 
doi: 10.1161/ATVBAHA.114.303629.

	45.	 Green DE, Murphy TC, Kang BY, Kleinhenz JM, Szyndralewiez C, 
Page P, Sutliff RL, Hart CM. The Nox4 inhibitor GKT137831 attenuates 
hypoxia-induced pulmonary vascular cell proliferation. Am J Respir Cell 

Mol Biol. 2012;47:718–726. doi: 10.1165/rcmb.2011-0418OC.

What Is New?
•	This study demonstrates that 16α-hydroxyestrone plays an important 

role in molecular and cellular processes associated with vascular injury 
and dysfunction through reactive oxygen species generation in pulmo-
nary hypertension.

What Is Relevant?
•	 Female mice develop pulmonary arterial hypertension more frequently 

than male mice. Estrogen metabolites, such as 16α-hydroxyestrone, 
and alterations in estrogen metabolism have also been implicated in the 
pathobiology of pulmonary arterial hypertension.

•	16α-hydroxyestrone stimulates nicotinamide adenine dinucleotide phos-
phate oxidase–derived reactive oxygen species generation, downregulates 
nuclear factor estrogen–related factor 2 and antioxidant systems, and induc-
es proliferation, effects that are specific to pulmonary artery smooth muscle 
cells. 16α-hydroxyestrone stimulates pulmonary artery smooth muscle cell 
reactive oxygen species production through estrogen receptor-α.

•	These data may contribute to a better understanding of cardiovascular 
complications in conditions associated with altered metabolism of estro-
gen, such as in pulmonary hypertension.

Summary

Increased levels of 16α-hydroxyestrone production have been 
implicated in pulmonary arterial hypertension, yet the underlying 
mechanisms remain elusive. Here, we describe a mechanism of 
action for 16α-hydroxyestrone and suggest that conversion of 
estrogen to 16α-hydroxyestrone leads to increased nicotinamide 
adenine dinucleotide phosphate oxidase-1– and nicotinamide ad-
enine dinucleotide phosphate oxidase-4–dependent reactive oxy-
gen species production, disrupted redox-sensitive protein tyrosine 
phosphatase and mitogen-activated protein kinase signaling, and 
decreased antioxidants, which contribute to oxidative damage and 
proliferation of pulmonary artery smooth muscle cells.

Novelty and Significance




