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A B S T R A C T   

Plant natural products (PNPs) exhibit a wide range of biological activities and have essential applications in 
various fields such as medicine, agriculture, and flavors. Given their natural limitations, the production of high- 
value PNPs using microbial cell factories has become an effective alternative in recent years. However, host 
metabolic burden caused by its massive accumulation has become one of the main challenges for efficient PNP 
production. Therefore, it is necessary to strengthen the transmembrane transport process of PNPs. This review 
introduces the discovery and mining of PNP transporters to directly mediate PNP transmembrane transportation 
both intracellularly and extracellularly. In addition to transporter engineering, this review also summarizes 
several auxiliary strategies (such as small molecules, environmental changes, and vesicles assisted transport) for 
strengthening PNP transportation. Finally, this review is concluded with the applications and future perspectives 
of transportation engineering in the construction and optimization of PNP microbial cell factories.   

1. Introduction 

Plant natural products (PNPs) represent a class of functional sec-
ondary metabolites, mainly including terpenes, alkaloids, and flavo-
noids [1]. These compounds endow plants with stress resistance and 
exhibit a wide range of pharmacological and biological activities, such 
as anti-oxidation, immune enhancement, and anti-cancer properties. 
The market demand for PNPs is steadily rising, prompting large-scale 
production through plant extraction or chemical synthesis due to limi-
tations in natural plant growth and the low content of PNPs. However, 
both methods present challenges. Plant extraction requires substantial 
amounts of plant raw materials, posing the risk of vegetation destruc-
tion. In addition, the intricate structure of PNPs, often containing mul-
tiple chiral carbon atoms, results in a relatively low selective yield for 
chemical synthesis. In response to these limitations, researchers have 
recently explored hetero-biosynthesis of PNPs in microbial cell factories. 
Notable PNPs, such as artemisinic acid, amorphadiene [2], vinblastine 

[3], vindoline, catharanthine [4], nootkatone [5], and santalol [6], have 
been successfully synthesized in Escherichia coli, Saccharomyces cer-
evisiae, Pichia pastoris, and other chassis cells. 

Despite these advancements, challenges persist in maximizing PNP 
yield [7]. Most PNPs encounter difficulty in efficient transport out of 
cells, leading to product accumulation within cells and subcellular or-
ganelles. Product accumulation imposes a significant metabolic burden, 
detrimentally affecting normal cell growth and product formation of 
host cells, thereby impeding efficient synthesis and practical applica-
tions of PNPs [8,9]. Therefore, it is particularly important to strengthen 
the transmembrane transport process of PNPs. In addition, the intricate 
PNP biosynthetic pathways generally involve multiple organelles and 
tissues in plants. The lack of transports for metabolite transportation 
between intracellular compartments impedes efficient biosynthesis and 
accumulation of the desired products in microbial cell factories [10,11]. 
Therefore, the exploration of suitable transporters from plants and mi-
croorganisms to overcome challenges associated with PNP 
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transportation is expected to provide new ideas for the design of mi-
crobial cell factories for efficient production of value-added PNPs [12]. 

This review summarizes the strategies and applications of enhancing 
transmembrane transportation in PNP biosynthesis, including 1) trans-
membrane transport between intracellular organelles; 2) direct efflux 
facilitated by transporters; and 3) small molecule and low temperature- 
assisted efflux. The review is concluded with future perspectives in the 
mining of PNP transporters, new strategies to enhance PNP trans-
portation, and the applications of transporter engineering in microbial 
cell factories. 

2. Discovery and classification of PNP transporters 

2.1. ATP binding cassette (ABC) transporters 

The systematic and precise regulation of PNP secretion often in-
volves the pivotal role of ABC transporters, representing the most widely 
used protein family. Most ABC transporters can transport substrates 
directly using the energy released from ATP hydrolysis. The structural 
representation of an ABC transporter is shown in Fig. 1, which generally 
contains two domains: the nucleotide binding domain (NBD) and the 
transmembrane domain (TMD). TMD generally contains 4–6 α-helices, 
forming transmembrane channels. NBD consists of WalkerA box [GX4GK 
(ST)], WalkerB box [(RK)X3GX3L (hydrophobic)3], and characteristic 
motif [(LIVMFY) S (SG) GX3 (RKA) (LIVMYA) X (LIVMF) (AG)] [13,14]. 

According to the homology and domain organization, ABC trans-
porters in higher plants can be divided into 8 subfamilies (ABCA-I, 
except ABCH). There are three subfamilies of common full-molecular 
ABC transporters: 1) multidrug resistance (MDR) subfamily, 2) pleio-
tropic drug resistance (PDR) subfamily, and 3) multidrug resistance- 
associated protein (MRP) subfamily. The difference among these sub-
families lies in the sequence arrangement of TMDs and NBDs (Fig. 1A 
and B). The MDR and MRP subfamilies are arranged in positive orders, 
while the PDR subfamily is arranged in reverse orders [15] (Fig. 1C). 

As a model organism, Arabidopsis thaliana serves as a reservoir for the 
identification of numerous plant ABC transporters. The first reported 

ABC transporter, AtPGP1 [16,17], belongs to the A. thaliana phospho-
glycoprotein family and is involved in the transmembrane transport of 
auxin. Subsequent findings revealed that ABCC1, ABCC2 [18], and 
ABCB subfamily were also involved in auxin transport, collectively 
regulating stem tissue lignification. Additional plant ABC transporters 
have been identified, such as the PDR subfamily SpTUR2 [19] from the 
aquatic plant Spirodella polyrhiza, playing a role in plant stress resis-
tance, especially cold resistance and salt tolerance. Noteworthy exam-
ples also include the MDR subfamily transporter CrMDR1 (associated 
with terpenoids and alkaloids) [20] and the ABCG subfamily transporter 
CrTPT2 (involved in the production of the anticancer drug precursor 
catharanthine) [21] from Catharanthux roseus. 

In Coptis japonica, several ABC transporters have been characterized. 
ABCB subfamily transporters CjABCB1 and CjABCB2 [22] are involved 
in the intracellular accumulation of the alkaloid berberine. Additionally, 
a PDR subfamily of transporter, AaPDR3 [23], has been identified in the 
hairy roots of Artemisia annua, facilitating the transport of β-car-
yophyllene, a sesquiterpene compound used in anesthesia. Another PDR 
subfamily transporter, PDR12, has also been found in tobacco plants, 
playing a key role in transporting the alkaloid nicotine accumulated in 
root tissues to vacuoles, conferring resistance against diseases and insect 
pests. 

2.2. Multidrug and toxic compound extrusion (MATE) transporters 

MATE transporters, initially identified as drug-resistant bacterial 
efflux pumps, have emerged as crucial players in various biological 
processes, including plant nutrient absorption, PNP transportation, and 
detoxification of harmful substances. For example, the absorption of 
chloride ions by plants is involved in the detoxification of aluminum and 
the regulation of iron homeostasis [24]. Most MATE transporters consist 
of 12 transmembrane helices with approximately 363–1141 amino acid 
residues, featuring a typical MATE conserved domain (Fig. 1D). The 
potential energy of the transport process is provided by ATP hydrolysis, 
and the MATE transporter is fueled by H+ or Na+. Three-dimensional 
structure predictions of the MATE transporters indicate the 

Fig. 1. The structure of ABC transporters and MATE transporters in plants. (A) The structure of plant ABC transporters, featuring positively arranged two TMDs 
and two NBDs in MDR subfamily and MRP subfamily transporters. (B) The structure of plant ABC transporter PDR subfamily, displaying two TMDs and two NBDs 
arranged in reverse. (C) The structure of a small number of MRP subfamily transporters in plant ABC transporters, characterized by five α-helices at the N-terminal. 
(D) The structure of a typical plant MATE transporter. ABC: ATP binding cassette; MATE: multidrug and toxic compound extrusion; TMD: transmembrane domain; 
NBD: nucleotide-binding domain; MDR: multidrug resistance; MRP: multidrug resistance-associated protein; PDR: pleiotropic drug resistance. 
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dependence of the transport process on protonation-induced confor-
mational change. 

MATE transporters have been found in a variety of plants for the 
transport and storage of PNPs. The MATE family transporter AtDTX41, 
also known as TT12, is located on the vacuole membrane of A. thaliana 
seed coat. Heterologous expression in yeast revealed that TT12 specif-
ically transported epicatechin 3′-O-glucoside and cyanidin 3-O-gluco-
side, contributing to the formation of proanthocyanidins. Homologous 
proteins of TT12 in many higher plants, such as BnTT12-1 and BnTT12-2 
in Brassica napus [25], exhibited similar characteristics in terms of 
subcellular localization, transmembrane helices, and phosphorylation 
sites. In grapevines, transcriptomic sequencing uncovered two MATE 
family transporters, VvAM1 and VvAM3 [26], involved in anthocyanin 
transport and located in the vacuole membrane, exhibiting hydrogen 
ion-dependent acylated vacuole anthocyanin transport properties [27]. 
Comparative genomics identified MdMATE1 and MdMATE2 in apples, 
functioning similarly to A. thaliana MATE genes, encoding vacuole fla-
vonoid/H+ antiporters that facilitate flavonoid accumulation in apple 
fruit [28]. In addition, MATE transporters MtMATE1 [29] and 
MtMATE2 [30] from Medicago truncatula and FaTT12-1 [31] from Fra-
garia ananassa were involved in the transport and accumulation of 
flavonoids. 

Some alkaloids with cytotoxicity should be excreted from cells or 
transported to vacuoles for detoxification, facilitated by vesicular 
transport or MATE transporter-mediated transportation processes [32]. 

On one hand, many vacuolar membrane-localized MATE transporters 
have been identified to contribute to the accumulation of alkaloids in 
vacuoles. The MATE transporters NtMATE1 [33] and NtJAT2 [32] are 
both involved in alkaloid transport and play tissue-specific roles. 
NtMATE1 is specifically expressed in the root of tobacco and is 
responsible for transporting alkaloids synthesized in the root to vacuoles 
for storage. NtJAT2 is specifically expressed in leaf tissues and is 
responsible for nicotine transport. Takanashi et al. [34] found that 
MATE protein CjMATE1 was preferably expressed in the rhizome and 
localized in the vacuole membrane to participate in the transport of 
berberine. On the other hand, some plasma membrane-localized MATE 
transporters have been reported to transport alkaloids out of cells. 
Dobrizsch et al. [35] overexpressed A. thaliana MATE transporter gene 
AtDTX18 in Solanum tuberosum led to the accumulation of a significant 
amount of hydroxy-cinnamic acid amide with antibacterial activity in 
the extracellular space, which could inhibit the germination of potato 
late blight spores and prevent the pathogen infection on the surface of 
leaves. The membrane-localized MATE transporter CrMATE1 is impli-
cated in the transport of tryptamine, contributing to the accumulation of 
vindoline and vinblastine in the leaves of C. roseus. The transport of 
value-added PNPs mediated by these transporters provides valuable 
insights for biosynthesis and drug development. Understanding the 
relationship between transporters and specific substrates paves the way 
for innovative approaches in chassis cell engineering. 

Table 1 
Summary of several types of PNPs transporters.  

PNPs Transporters Location Transporter 
type 

Source Effects Reference 

Terpenoids Glycyrrhetinic acid BPT1 Vacuole 
membrane 

ABCB S. cerevisiae Increase glycyrrhetinic acid production by 
1.23-fold 

[36] 

Crocins CsABCC4a; 
CsABCC2 

Vacuole 
membrane 

ABCC C. sativus Crucial for crocin accumulation in C. sativus 
stigmas 

[52] 

Cucurbitacin B CmMATE1; 
ClMATE1 

Plasma 
membrane 

MATE C. melo; 
C. lanatus 

Potential cucurbitacin transporters [51] 

β-Carotene SNQ2 Plasma 
membrane 

ABCG S. cerevisiae Best endogenous transporter for β-carotene 
efflux 

[56] 

Rubusoside PDR11 Plasma 
membrane 

ABCG S. cerevisiae Increase rubusoside production by 129.8 % [8] 

Amorphadiene AcrB; TolC Plasma 
membrane 

RND E. coli Increase amorphadiene production of by 63 
% 

[40,41] 

Kaurene AcrA; AcrB; 
TolC 

Plasma 
membrane 

RND E. coli Increase kaurene production by 82 % [40,41] 

α-Bisabolene ABC-G1 Plasma 
membrane 

ABCG E. coli Decrease cytotoxicity and increase 
α-bisabolene production by 88 % 

[42] 

(− )-α-Bisabolol PDR15 Plasma 
membrane 

ABCC S. cerevisiae Increase extracellular (− )-α-bisabolol 
production by 138.9 % 

[43] 

Tocotrienol PDR11; 
YOL075C 

Plasma 
membrane 

ABCG S. cerevisiae Increase extracellular tocotrienol by 1.34- 
and 1.36-fold 

[44] 

Alkaloids Reticuline AtDTX1 Plasma 
membrane 

MATE A. thaliana Increase reticuline secretion by 11-fold [45] 

Dopamine; (S)- 
reticuline; codeine 

BUP1 Plasma 
membrane 

BUP P. somniferum Improve the uptake of dopamine, reticuline, 
and codeine by 300-, 10-, and 30-fold 

[46] 

Betaxanthins QDR1; QDR2 Plasma 
membrane 

MFS S. cerevisiae Increase the intracellular proportion of 
betaxanthins 

[54] 

Caffeine SNQ2; PDR5 Plasma 
membrane 

ABCG; ABCC S. cerevisiae Involve in caffeine efflux transport [55] 

Coclurine SNQ2; PDR5 Plasma 
membrane 

ABCG; ABCC S. cerevisiae Increase tetrahydropapaverine titer by 15- 
fold 

[47] 

Tropine NtJAT1; 
NtMATE2 

Vacuole 
membrane 

MATE N. tabacum Facilitate tropine import into vacuoles [11] 

Littorin AbPUP1 Vacuole 
membrane 

PUP A. belladonna Facilitate littorine from vacuoles to the 
cytosol 

[11] 

Flavonoids Resveratrol AraE Plasma 
membrane 

– E. coli Increase resveratrol production by 2.44-fold [49] 

p-Coumaric acid PDR12 Plasma 
membrane 

ABCG S. cerevisiae Decrease intracellular accumulation of p- 
coumaric acid 

[48] 

Phenylpropanoids Caffeic acid YcjP Plasma 
membrane 

ABC E. coli Be identified as a caffeic acid transporter [57] 

Others Cannabigerolic acid BPT1 Vacuole 
membrane 

ABCB S. cerevisiae Facilitate cannabigerolic acid import to 
vacuoles 

[38]  
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3. Transporter-mediated intracellular and extracellular 
transportation of PNPs 

3.1. Engineering of intracellular PNP transportation 

PNP biosynthesis in plants is intricate and involves multiple organ-
elles and tissues. When employing engineered unicellular hosts, the 
absence of an efficient transport mechanism can significantly impede 
metabolite transport for biocatalysis and corresponding to the accu-
mulation of the desired products. Some typical PNP transporters are 
summarized in Table 1. 

The reconstruction of metabolic transport strategies between or-
ganelles is crucial. For example, tropane alkaloids (TAs), found in 
nightshade plants (Solanaceae), are neurotransmitter inhibitors with 

therapeutic potential for neuromuscular diseases. The biosynthesis of 
TAs involves various intracellular compartments, including the cytosol, 
mitochondria, chloroplasts, peroxisomes, endoplasmic reticulum (ER), 
and vacuoles. Srinivasan and Smolke [10,11] engineered a yeast strain 
for tropane alkaloid production, utilizing Nicotiana tabacum MATE 
transporters (NtJAT1 and NtMATE2) to facilitate tropine import into 
vacuoles. The introduction of NtJAT1 resulted in 74 % and 18 % in-
crease in the production of hyoscyamine and scopolamine, respectively. 
However, exporting the synthesized littorine from vacuoles to the 
cytosol posed a grand challenge. To overcome this, the authors identi-
fied two transporters AbPUP1 and AbLP1 from Atropa belladonna, 
located on the vacuole membrane, to alleviate littorine transport limi-
tations. Specifically, AbPUP1 overexpression increased the accumula-
tion of hyoscyamine and scopolamine by 2.4-fold and 1.5-fold, while 

Fig. 2. Intracellular and extracellular transport process of PNPs. The figure illustrates typical transport processes of PNPs in eukaryotic cells and sub-cellular 
organelles. Arrows indicate the direction of PNPs transfer. BUP1: BIA uptake permease; PDR5/11/12/15: pleiotropic drug resistance transporter 5/11/12/15; 
YOL075C: an endogenous ABC transporter of S. cerevisiae; CmMATE1: C. melo MATE transporter 1; ClMATE1: C. lanatus MATE transporter 1; QDR1/2: quinidine 
resistance transporter 1/2; SNQ2: sensitivity to 4-nitroquinoline-N-oxide transporter 2; ABC-G1: G. clavigera ABC transporter; AtDTX1: A. thaliana detoxification 1; 
BPT1: bile pigment transporter 1; AbPUP1: A. belladonna purine uptake permease-like transporter 1; NtJAT1: N. tabacum jasmonate-inducible alkaloid transporter 1; 
NtMATE2: N. tabacum MATE transporter 2; CsABCC2/4a: C. sativus stigma ABC transporter 2/4a. 
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AbLP1 overexpression increased the production of these products by 
2.0-fold and 1.3-fold, respectively. 

In addition to the introduction of plant-derived PNP transporters, 
endogenous transporters can also be employed to enhance PNP trans-
portation. For example, in the yeast genome, there are more than 30 ABC 
transporters with diverse functions and subcellular localizations. 
Alkhadrawi et al. [36] investigated the involvement of vacuolar ABC 
transporters in glycyrrhetinic acid (GA) production. Molecular docking 
studies with GA and its precursors revealed the crucial role of vacuolar 
ABC transporters, particularly bile pigment transporter BPT1 and 
vacuolar multidrug resistance transporter VMR1. Overexpression of 
BPT1 increased GA production by 1.23-fold, may be associated with 
detoxification mechanisms under nutritional stress, highlighting their 
essential role in engineered S. cerevisiae. Cannabidiol (CBD) from 
Cannabis sativa, known for its various pharmacological activities, was 
successfully synthesized in yeast [37]. However, low titer and physical 
barrier between substrates (cytoplasmic localization of cannabigerolic 
acid, CBGA) and enzymes (vacuolar localization of cannabidiol acid 
synthase, CBDAS) impeded CBGA catalysis. Thus, Qiu et al. [38] over-
expressed ABC transporters and enhanced the CBD titer by 159.6 %. 
Specifically, BPT1, located in the vacuole membrane of S. cerevisiae, 
facilitated CBGA transportation from cytoplasm to vacuoles, eliminating 
physical barriers and providing insights for the construction of 
high-yield CBD strains. 

3.2. Transporter engineering for enhanced efflux of PNPs 

In addition to facilitate intracellular transport of intermediates, a 
more potent application of transporter engineering is to pump PNPs out 
of the producing cells. While extensive pathway optimization strategies 
have been established to maximize PNP yields [7], inefficient efflux of 
most PNPs result in product accumulation within cells and subcellular 
organelles. Intracellular product accumulation exerts not only signifi-
cant metabolic burdens and cytotoxicity, but also feedback inhibition of 
the biosynthetic pathways [8]. Therefore, transporter engineering is 
crucial to achieve efficient biosynthesis and practical applications of 
PNPs. Some typical intracellular and extracellular PNP transport pro-
cesses are summarized in Fig. 2. 

Widely distributed in nature, terpenoids serve as key components in 
the flavors, resins, and pigments of various plants and exhibit a wide 
array of biological activities, including cough suppressants, insect re-
pellents, and analgesics [39]. While most terpenoids are highly hydro-
phobic, efflux pumps are crucial for discharging from microbial cell 
factories. With amorphadiene (AD) and kaurene as examples, Wang 
et al. [40] enhanced the efflux pump system of E. coli by adjusting the 
copy number of multidrug-resistant pump encoding genes (such as tolC) 
and the resistance-nodulation cell division (RND) superfamily acrB and 
acrA, which increased the production of amorphadiene and kaurene by 
63 % and 82 %, respectively. Additionally, the authors found the outer 
membrane protein TolC played a critical role in the secretion of arte-
misinin precursor AD in E. coli [41]. Zhao et al. [42] engineered the 
production of α-bisabolene, a sesquiterpene that can be used as a 
fragrance and anticancer drug, in the peroxisome of Yarrowia lipolytica. 
The introduction of Grosmania clavigera ABC transporter family member 
ABC-G1 resulted in the secretion of α-bisabolene, which decreased the 
cytotoxicity and increased the titer by 88 %. Jiang et al. [43] engineered 
a de novo (− )-α-bisabolol biosynthesis strain, with the overexpression of 
PDR15 increased the production of extracellular (− )-α-bisabolol by 
138.9 %. Jiao et al. [44] engineered S. cerevisiae to produce tocotrienol, 
the important component of vitamin E, where the overexpression of 
PDR11 and YOL075C increased extracellular tocotrienol by 1.34- and 
1.36-fold, respectively. 

Alkaloids, a diverse class of nitrogen-containing compounds, find 
applications as anticancer drugs, vascular disorder medications, pain 
relievers, antimalarials, and novel antimicrobial therapies against drug- 
resistant bacteria. Addressing issues with low productivity and 

cytotoxicity, transporter engineering has emerged as a strategy to 
enhance alkaloid biosynthesis. Yamada et al. [45] engineered E. coli to 
produce reticuline, a crucial intermediate in alkaloid synthesis, utilizing 
the MATE transporter AtDTX1 from A. thaliana. AtDTX1 increased the 
secretion of reticuline into the culture medium by 11-fold. Dastmalchi 
et al. [46] investigated benzylisoquinoline alkaloid (BIA) transporters in 
opium poppy (Papaver somniferum). Introducing BIA uptake enzymes 
(BUPs) into cocultured yeast strains significantly improved the uptake of 
early intermediates (300- and 25-fold for dopamine and norcoclaurine), 
central pathway metabolites (10-fold for reticuline), and end products 
(30-fold for codeine). Jamil et al. [47] constructed an engineered yeast 
strain for de novo synthesis of tetrahydropapaverine (THP), an anti-
spasmodic drug. The disruption of MDR transporters sensitivity to 
4-nitroquinoline-N-oxide transporter 2 (SNQ2) and PDR5 increased THP 
titers by 15-fold, revealing their role in exporting the pathway inter-
mediate coclurine from the cytosol to the medium. 

Flavonoids, prominent plant secondary metabolites with diverse 
biological characteristics, including antioxidant, coronary heart disease 
prevention, anticancer, antibacterial, and liver disease prevention 
properties. (2S)-Naringenin, a crucial scaffold for various flavonoid 
subclasses, exhibits beneficial effects on human conditions such as 
obesity, cancer, diabetes, and Alzheimer’s disease. Mao et al. [48] 
adopted a de novo biosynthesis approach for (2S)-naringenin. Unfortu-
nately, the key intermediate p-coumaric acid (p-CA) was mainly accu-
mulated extracellularly, limiting (2S)-naringenin biosynthesis. 
Transporter engineering via PDR12 overexpression decreased p-CA 
accumulation and increased metabolic fluxes towards (2S)-naringenin 
production. Overexpression of PDR12 in two yeast strains with different 
downstream pathway fluxes both significantly increased total 
(2S)-naringenin production, with a slight decrease in extracellular p-CA 
accumulation. 

Resveratrol, a polyphenolic compound with protective effects 
against diseases like Parkinson’s, typically accumulates in plant vacu-
oles. Wang et al. [49] introduced the low-affinity arabinose transporter 
gene araE from E. coli into yeast and increased resveratrol production by 
2.44-fold. Although AraE showed no affinity for resveratrol in import 
and export analyses conducted in Xenopus oocytes, the study suggested 
that, beyond a certain threshold, AraE might enhance resveratrol 
permeability. 

4. Strategies for identifying PNP transporters 

The application of transporter engineering provides a direction to 
debottleneck PNP biosynthesis in microbial cell factories [50]. However, 
the current application of transporter engineering is not mature, mainly 
due to the lack of efficient transporters for specific compounds and 
generally high substrate specificity of transporters, which brings great 
obstacles to the application of transporter engineering. Therefore, it is 
crucial to obtain efficient transporters. Here, we summarize several 
strategies for identifying transporters, with a hope to provide references 
for the application of transporter engineering. 

Mining from plants is the most direct and effective method to obtain 
specific PNP transporters. The most classic strategy is to compare gene 
expression levels in different plant tissues by transcriptomic tools. This 
co-expression method usually uses linear regression or hierarchical 
clustering to screen candidate genes and analyzes the transcriptional 
abundance and similarity of “bait” genes in the eradication pathway to 
mine transporters (Fig. 3A). Zhong et al. [51] used this strategy to 
identify potential cucurbitacin transporters (CmMATE1 and ClMATE1 
from Cucumis melo and Citrullus lanatus, respectively), revealing their 
role in cucurbitacin B (CuB) and cucurbitacin E (CuE) transport in melon 
and watermelon. This strategy also applies to the identification of crocin 
transporters. Crocins, the expensive spice found in Crocus sativus stig-
mas, is known for its potent anti-oxidant activity. Due to the polar na-
ture, crocins in the cytosol should be transported with the aid of one or 
more tonoplast transporters to reach vacuoles for storage. Demurtas 
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Fig. 3. Strategies for identifying PNP transporters. (A) General processes for the mining of PNP transporters, involving the establishment of a suitable screening 
model and bioinformatics analysis to identify specific PNP transporters from different plant tissues. (B) Molecular docking strategies to identify the best transporter 
candidates for a specific substrate. (C) Transportom-wide engineering and high-throughput screening processes for identifying specific PNP transporters. (D) 
Transcriptomic analysis with or without exogenous supplementation of PNPs for the identification of candidate transporters. PDR5/11/12: pleiotropic drug resis-
tance transporter 5/11/12; SNQ2: sensitivity to 4-nitroquinoline-N-oxide transporter 2. 
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et al. [52] employed a methodology based on transcriptomic data, 
heterologous expression in S. cerevisiae, and in vitro transportomic ana-
lyses to identify ABC transporters CsABCC4a and CsABCC2, crucial for 
crocin accumulation in C. sativus stigmas. 

The specific design between transporters and PNP structures is 
another strategy for identifying potential transporters. This method in-
volves molecular docking of potential transporters with the target 
compounds. According to the docking results, some potential trans-
porters for the specific compound were identified, followed by trans-
portation verification via gene knockout or overexpression experiments. 
This strategy has been employed to identify transporters for the 
sweetness-enhancing sterol glycoside rubusoside. Xu et al. [8] engi-
neered S. cerevisiae to produce rubusoside, and the efflux pump PDR11 
was found to be involved in its secretion. The disruption of PDR11 
resulted in decreased rubusoside production, while overexpression 
increased the titer by 129.8 %, indicating the active role of PDR11 in 
rubusoside transportation (Fig. 3B). 

Considering the limited understanding of the interaction between 
transporters and PNPs, genome-scale or transportome-wide engineering 
has been established as a powerful strategy to identify potential PNP 
transporters in a non-intuitive manner [53]. Wang et al. [54] developed 
a CRISPR/Cas9-based genome-wide transporter disruption method, 
combined with metabolite biosensors, to identify transporters affecting 
target metabolite production in yeast (Fig. 3C). This method revealed 
two major facilitator superfamily (MFS) transporters (quinidine resis-
tance transporters QDR1 and QDR2) influencing the production of 
betaxanthins in S. cerevisiae, which increased the intracellular propor-
tion of betaxanthins from 40 % to 70 % and 66 %, respectively. 
Following this concept, further exploration of endogenous transporters 
of S. cerevisiae can be conducted to facilitate the transmembrane trans-
port of PNPs. Nevertheless, it is imperative to acknowledge that 
genome-scale or transportome-wide engineering should be com-
plemented by high-throughput screening methods. Based on the 
assumption that PNP efflux is associated with its detoxification, a more 
general strategy can be established by coupling PNP transportation with 
cell growth under the stress of specific PNP. Tsujimoto et al. [55] 
screened a genome-scale transporter overexpression library with the 
identification of SNQ2 and PDR5 as caffeine resistance genes in 
S. cerevisiae. Further experimental verification demonstrated the 
involvement of SNQ2 and PDR5 in caffeine efflux transportation and 
accordingly caffeine resistance. 

Another popular strategy for identifying PNP-specific transporters in 
host cells is based on transcriptomic analysis of the exogenous added 
specific compounds. The implementation of this strategy requires the 
addition of specific compounds to the culture medium to compare and 
analyze the transcriptome data under stress, followed by experimental 
verification of the candidate genes with significantly up-regulated 
transcription levels (Fig. 3D). For example, Bu et al. [56] discovered 
the substrate-inducing ability of endogenous transporters and identified 
five potential ABC transporters (PDR5, PDR10, SNQ2, YOR1, and 
YOL075C) involved in β-carotene exocytosis in S. cerevisiae. Similarly, 
this strategy is also employed to identify caffeic acid transporters. Caf-
feic acid, a natural phenylpropanoid compound with antioxidant prop-
erties, is employed as an active agent in treating lung cancer and 
promoting hematopoiesis and hemostasis. Wang et al. [57] identified 
YcjP, a sugar ABC transporter permease, as a caffeic acid transporter 
based on transcriptomic data under caffeic acid and ferulic acid stress. 
The overexpression of ycjP, encoding an efflux transporter, extended 
production cycle and increased caffeic acid production by 24.5 % in 
engineered E. coli. 

The use of the above mentioned four PNP transporter identification 
strategies should comprehensively consider the properties of host cells 
and PNPs. Transporter mining from plants is straightforward and 
effective, but this strategy requires the analysis of large amounts of 
genomic and transcriptomic data and the test of candidate genes. On the 
other hand, the identification strategy based on molecular docking can 

focus on a certain type of transporters, which narrows the screening 
scope. Unfortunately, due to the lack of transporter structures, the mo-
lecular docking results are still not satisfying, which directly affects the 
subsequent knockout or overexpression tests. Genome-scale transporter 
library screening is suitable for identifying PNP transporters in chassis 
cells, but only for PNPs with high-throughput screening methods. 
Finally, transcriptome analysis based on exogenously added compounds 
is suitable for PNPs that have a significant effect on cell growth or 
cellular metabolism. 

5. Small molecule and low temperature assisted PNP efflux 

In addition to transporter-mediated direct enhancement of PNP 
transportation, small molecules (such as biocompatible organic sol-
vents) [58] and environmental changes (such as low temperature) [59] 
have also employed as auxiliary strategies to facilitate PNP efflux. Small 
molecule-assisted PNP efflux is a cell culture technique integrating cell 
culture with product separation. This method involves the addition of 
biocompatible organic solvents or adsorptive polymers to the cell cul-
ture system, creating an upper and lower phase based on different dis-
tribution coefficients. The culture system promotes cell growth and 
product synthesis in the aqueous phase, while products are captured and 
accumulated in the organic phase. This approach streamlines upstream 
and downstream processes, optimizing production processes, and gain-
ing popularity in PNP biosynthesis (Fig. 4A). Commonly used 
second-phase liquids include alkanes, organic acids, alcohols, and esters. 

Initially, Kim et al. [60] found that the addition of hexadecane 
significantly increased shikonin synthesis by 7.4-fold. Brennan et al. 
[58] extended this method to engineered bacteria fermentation for PNP 
production, demonstrating that a biphasic system effectively decreased 
terpene toxicity. Various organic solvents, such as isopropyl myristate 
(IPM), n-dodecane, and olive oil, have been employed in fermentation 
production strategies. Depending on the molecular properties of PNPs, 
different organic solvents should be carefully selected. For instance, Lei 
et al. [61] modified E. coli for resveratrol and borneol production, 
achieving 966.55 mg/L resveratrol and 87.20 mg/L borneol using the 
IPM biphasic fermentation strategy. Ye et al. [62] engineered 
S. cerevisiae and combined with IPM biphasic fermentation strategy to 
produce (+)-valencene with a titer of 16.6 g/L. Zuo et al. [63] modified 
P. pastoris combined with n-dodecane biphasic fermentation to obtain 
21.5 g/L α-santalene in 1-L fermenter by fed-batch fermentation. Cheng 
et al. [64] used a biphasic fermentation strategy of n-dodecane to obtain 
1.9 g/L β-elemene in fed-batch fermentation of engineered P. pastoris. 
The combination of physical methods, such as ultrasound, further en-
hances product biphasic extraction efficiency [65]. 

Olive oil and oleyl alcohol are commonly used in biphasic fermen-
tation of phenols and organic acids. Jiao et al. [66] studied δ-tocotrienol 
fermentation in S. cerevisiae, adding 2-hydroxypropyl-β-cyclodextrin 
(β-CD) and olive oil, resulting in 181.12 mg/L production, with 85.6 % 
being extracellular. Combes et al. [67] studied the heterologous syn-
thesis of p-CA in S. cerevisiae, adding oleyl alcohol as a biphase extrac-
tion agent, which significantly improved the production rate of p-CA. In 
addition, to decrease the cost of β-CD for biomanufacturing, Zhu et al. 
[68] designed a β-CD in situ synthesis system using yeast surface display 
technology to realize β-CD assisted β-amyrin efflux in S. cerevisiae. 

While small molecule-assisted PNP efflux strategies have seen 
widespread use, a recent study suggested that altering fermentation 
temperature could also enhance terpenoid secretion and production 
(Fig. 4B). Lower temperature affects the phospholipid bilayer compo-
sition and increases fatty acid chain unsaturation, resulting in 5.5-fold 
higher GA yield in engineered yeast strain at 22 ◦C than that at 30 ◦C 
[59]. Future investigations may explore additional environmental fac-
tors, such as pressure, pH, and light, for their impact on efficient PNP 
efflux and production. 
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6. Conclusions and future perspectives 

In recent years, significant strides have been made in understanding 
the transmembrane transport processes of PNPs, coupled with ad-
vancements in the study of transporters and auxiliary transmembrane 
strategies for bio-manufacturing. Notably, ABC and MATE family 
transporters play pivotal roles in the transmembrane transport of PNPs, 
alongside emerging transporter families like PUP (purine uptake 
permease) and NRT (Nitrate-peptide transporters). Unveiling the spec-
ificity between transporters and PNP structures is crucial for optimizing 
the transmembrane process, fostering large-scale production of scarce 
PNPs using microbial cell factories. 

Despite considerable progress, the research and engineering appli-
cations of transporters are still in their infancy, and the transmembrane 
transport processes of certain PNPs, especially those with medicinal 
significance like artemisinin, vinblastine, sanguinarine, and campto-
thecin, remain elusive [69]. The complexity arises from the multitude of 
transporters in plant genomes, coupled with challenges in characterizing 
the function of transporters linked to specific PNPs. Strategies such as 
bioinformatics and metabolomics analysis can be combined to identify 
potential transporters from plants or the chassis cells. On one hand, it is 
necessary to establish effective high-throughput screening methods for 
specific PNPs, and use high-integration, high-throughput, and auto-
mated devices (such as BioFoundry platforms developed in recent years) 
for large-scale data collection and verification [70]. On the other hand, 
the combination with artificial intelligence and machine learning can 
help to identify the optimal combination of transporter-substrate 

interactions in massive data and predict transporter candidates for 
specific PNPs [71,72]. 

The small-molecule-assisted transmembrane transport process relies 
on the coupling of cell culture and product separation. However, chal-
lenges persist, particularly in finding in-situ extractants for PNP trans-
membrane processes. Currently, the selection of organic phases appears 
to be somewhat arbitrary, with an urgent need to rationally design an 
effective two-phase fermentation system [58]: 1) minimal cytotoxicity 
of the organic phase; 2) ease of product dissolution in the organic phase; 
3) straightforward separation of the two phases; 4) no reactivity be-
tween the organic phase and medium components. The selection of a 
suitable biphasic fermentation system necessitates extensive experi-
mental and cytotoxicity testing, an aspect that is underreported, high-
lighting the need for more in-depth mechanistic research. 

The latest method involves the efflux of PNPs encapsulated in vesi-
cles, akin to the efflux of secreted proteins, although it has only been 
reported for a limited number of PNPs [73]. The accumulation of hy-
drophobic molecules (such as carotenoids) significantly affects chassis 
cell anabolism, and extracellular secretion becomes crucial for efficient 
production in microbial cell factories. While the lipid droplet localiza-
tion strategy effectively stores carotenoids [74], to overcome the upper 
limit of lipid droplet capacity remains challenging. While it has been 
reported that the use of ABC transporter MsbA for the efflux of carot-
enoids [75], the transportation efficiency is very low. Wu et al. [76] 
introduced a novel artificial membrane vesicle transport system 
(AMVTS) in E. coli, resulting in a 24-fold increase in β-carotene secretion 
and a 61 % increase in production, addressing the issue of limited 

Fig. 4. Small molecule and low temperature assisted PNP efflux. (A) Small molecule-assisted PNP efflux, demonstrating the addition of organic solvents or 
adsorptive polymers to the cell culture system. (B) Environmental changes, such as low temperature, for enhanced efflux of PNPs. (C) Vesicular transport of PNPs, 
showcasing the efflux of PNPs encapsulated in vesicles. 
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excretion through the natural transportation system (Fig. 4C). Although 
not widely applied in other chassis cells, this strategy holds promise for 
diverse microbial cell factories producing hydrophobic PNPs. 

In conclusion, approaches combining various methods hold promise 
for exploring transportation candidate genes as potential targets for 
metabolic engineering of high-value PNPs. Enhancing the trans-
membrane transport process of PNPs not only presents an appealing 
platform, but also facilitates efficient production of PNPs in microbial 
cell factories. 
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