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Abstract

Localization microscopy is an imaging technique in which the positions of individual point 

emitters (e.g. fluorescent molecules) are precisely determined from their images. This is a key 

ingredient in single/multiple-particle-tracking and super-resolution microscopy. Localization in 

three-dimensions (3D) can be performed by modifying the image that a point-source creates on the 

camera, namely, the point-spread function (PSF). The PSF is engineered to vary distinctively with 

emitter depth, using additional optical elements. However, localizing multiple adjacent emitters in 

3D poses a significant algorithmic challenge, due to the lateral overlap of their PSFs. Here, we 

train a neural network to localize multiple emitters with densely overlapping PSFs over a large 

axial range. Furthermore, we then use the network to design the optimal PSF for the multi-emitter 

case. We demonstrate our approach experimentally with super-resolution reconstructions of 

mitochondria and volumetric imaging of fluorescently labeled telomeres in cells.

1 Introduction

Determining the nanoscale positions of point emitters forms the basis of localization 

microscopy techniques such as single particle tracking [1, 2], (fluorescence) photoactivated 

localization microscopy (f)PALM [3, 4], stochastic optical reconstruction microscopy 

(STORM) [5], and related single molecule localization microscopy (SMLM) methods. These 
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techniques have revolutionized biological imaging, revealing cellular processes and 

structures at the nanoscale [6]. Notably, most samples of interest extend in three dimensions, 

necessitating three-dimensional (3D) localization microscopy [7].

In a standard microscope, the precise z position of an emitter is difficult to ascertain because 

the change of the point-spread function (PSF) near the focus is approximately symmetric. 

Furthermore, outside of this focal range (≈ ± 350 nm for a high numerical aperture imaging 

system), the rapid defocusing of the PSF reduces the signal-to-noise ratio causing the 

localization precision to quickly degrade. One method to extend the useful z-range and 

explicitly encode the z position is PSF engineering [8–10]. Here, an additional optical 

element, e.g. a phase mask, is placed in the emission path of the microscope, modifying the 

image formed on the detector [11] (Fig. 1a); the axial position can then be recovered via 

image processing using a theoretical or experimentally-calibrated PSF model [10, 12–15].

In practically all applications, it is desirable to be able to localize nearby emitters 

simultaneously. For example, in super-resolution SMLM experiments, the number of 

emitters localized per frame determines the temporal resolution. In tracking applications, 

PSF overlap from multiple emitters often precludes localization, potentially biasing results 

in emitter-dense regions. The problem is that localizing overlapping emitters poses a 

significant algorithmic challenge even in 2D localization, and much more so in 3D. 

Specifically, encoding the axial position of an emitter over large axial ranges (>3 μm) 

requires the use of laterally large PSFs, e.g. the Tetrapod [10, 16] (Fig. 1b), increasing the 

possibility of overlap. Consequently, while a variety of methods have been developed to 

cope with overlapping emitters for the in-focus, standard-PSF [17–19], the performance in 

high-density 3D localization situations is far from satisfactory [20].

Deep learning has proven to be adept at analyzing microscopic data [21–29], especially for 

single-molecule localization, handling dense fields of emitters over small axial ranges (<1.5 

μm) [19, 30–37] or sparse emitters spread over larger ranges [38]. Moreover, an emerging 

application is to jointly design the optical system alongside the data processing algorithm, 

enabling end-to-end optimization of both components [36, 39–46]. Here we present 

DeepSTORM3D, consisting of two fundamental contributions to high-density 3D 

localization microscopy over large axial ranges. First, we employ a convolutional neural 

network (CNN) for analyzing dense fields of overlapping emitters with engineered PSFs, 

demonstrated with the large-axial-range Tetrapod PSF [10, 16]. Second, we design an 

optimal PSF for 3D localization of dense emitters over a large axial range of 4 μm. By 

incorporating a physical-simulation layer in the CNN with an adjustable phase modulation, 

we jointly learn the optimal PSF (encoding) and associated localization algorithm 

(decoding). This approach is highly flexible and easily adapted for any 3D SMLM dataset 

parameters, i.e. emitter density, SNRs, and z-range. We quantify the performance of the 

method by simulation, and demonstrate the applicability to 3D biological samples, i.e. 

mitochondria and telomere.
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2 Results

Dense 3D localization with DeepSTORM3D

To solve the high-density localization problem in 3D, we trained a CNN that receives a 2D 

image of overlapping Tetrapod PSFs spanning an axial range of 4 μm, and outputs a 3D grid 

with a voxel-size of 27.5 × 27.5 × 33 nm 3 (Fig. 1c). For architecture details and learning 

hyper-parameters see Supplementary Notes 2.1 and 4. To compile a list of localizations, we 

apply simple thresholding, local maximum finding, and local averaging on the output 3D 

grid (Supplementary Note 5).

We compare our method to a fit-and-subtract based Matching Pursuit (MP) approach [47] 

(see Supplementary Note 7) as we are unaware of any other methods capable of localizing 

overlapping Tetrapod PSFs. To quantitatively compare our method with MP solely in terms 

of density, we simulated emitters with high signal-to-noise ratio (30K signal counts, 150 

background counts per pixel) at 10 different densities ranging from 1 to 75 emitters per 13 × 

13 μm 2 field-of-view (for the definition of density see Supplementary Note 1). The results 

are shown in Fig. 2. As evident in both the Jaccard index [20] (see Supplementary Note 6) 

and the lateral/axial RMSE (Fig. 2a), the CNN achieves remarkable performance in 

localizing high-density Tetrapods. In the single-emitter (very low density) case, where the 

performance of the CNN is bounded by the discretization on the 3D grid, the RMSE of the 

MP localization is lower (better). This is because for a single-emitter, MP is equivalent to a 

continuous Maximum Likelihood Estimator (MLE) (Supplementary Note 7), which is 

asymptotically optimal [48], whereas the CNN’s precision is bounded by pixilation of the 

grid (i.e. half voxel of 13.75 nm in xy and 16.5 nm in z). However, quickly beyond the 

single-emitter case, the CNN drastically outperforms MP at both high and low SNR (see 

Supplementary Note 7.3). A similar result was obtained when compared to a leading single-

emitter fitting method [14] applicable also for the multiple emitter case [20] (see 

Supplementary Note 8.2). Furthermore, to put our method in context with other existing 

approaches, we tested DeepSTORM3D on the EPFL Double Helix (DH) high density 

challenge [20], and got favorable results (see Supplementary Note 8.1).

Next, we validated our method for super-resolution imaging of fluorescently labeled 

mitochondria in COS7 cells (Fig. 3 and Supplementary Videos 1-3). We acquired 20K 

diffraction limited frames of a 50 × 30 μm 2 FOV and localized them using the CNN in 

about ≈3h 20m, resulting in ≈360K localizations. The Tetrapod PSF was implemented using 

a fabricated fused-silica phase-mask (see Supplementary Note 9.1), and the CNN was 

trained solely on simulations matching the experimental conditions (see Supplementary 

Note 4.1). The estimated resolution was ≈40 nm in xy, and ≈ 50 nm in z (see Supplementary 

Note 9.3). To visually evaluate localization performance in a single frame (Fig. 3a top), we 

regenerated the corresponding 2D low-resolution image, and overlayed the recovered image 

with a uniform photons scaling on top of the experimental frame (Fig. 3a bottom and 

Supplementary Video 1). As seen in the overlay image, the emitter PSFs (3D positions) are 

faithfully recovered by the CNN. Moreover, emitters with extremely low number of signal 

photons were ignored. For further acceleration in acquisition time see Supplementary Note 

9.2.
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Optimal PSF design for dense 3D imaging

The Tetrapod is a special PSF that has been optimized for the single emitter case by Fisher 

information maximization [10, 16]. However, when considering the multiple-emitter case, an 

intriguing question arises: What is the optimal PSF for high density 3D localization over a 

large axial range? To answer this question we need to rethink the design metric; extending 

the Fisher information criterion [10] to account for emitter density is not-trivial, and while it 

is intuitive that a smaller-footprint PSF would be preferable for dense emitters, it is not clear 

how to mathematically balance this demand with the requirement for high localization 

precision per emitter.

Our PSF-design logic is based on the following: since we have already established that a 

CNN yields superior reconstruction for high-density 3D localization, we are interested in a 
PSF (encoder) that would be optimally localized by a CNN (decoder). Therefore, in contrast 

to a sequential paradigm where the PSF and the localization algorithm are optimized 

separately, we adopt a co-design approach (Fig. 4a). To jointly optimize the PSF and the 

localization CNN, we introduce a differentiable physical simulation layer, which is 

parametrized by a phase mask that dictates the microscope’s PSF. This layer encodes 3D 

point sources to their respective low-resolution 2D image (see Supplementary Note 3). This 

image is then fed to the localization CNN which decodes it and recovers the underlying 3D 

source positions. During training, the net is presented with simulated point sources at 

random locations (projected on a fine grid) and, using the difference between the CNN 

recovery and the simulated 3D positions quantified by our loss function (see Supplementary 

Note 4.2), we optimize both the phase mask and the localization CNN parameters in an end-

to-end fashion using the backpropagation algorithm [49] (see Supplementary Note 3.3 and 

Supplementary Video 4). The learned PSF (Fig. 4b) has a small lateral footprint, which is 

critical for minimizing overlap at high densities. Moreover, the learned phase mask twists in 

a spiral trajectory causing the PSF to rapidly rotate throughout the axial range, a trait that 

was previously shown to be valuable for encoding depth [8].

To quantify the improvement introduced by our new PSF, we first compare it to the Tetrapod 

PSF in simulations. Specifically, we train a similar reconstruction net for both the Tetrapod 

and the learned PSF using a matching training set composed of simulated continuous 3D 

positions along with their corresponding 2D low-resolution images. The learned PSF 

performs similar to the Tetrapod PSF for low emitter densities (Fig. 4d-f). However, as the 

density goes up (higher than ≈0.2 emitters
μm2 ) the learned PSF outperforms the Tetrapod PSF 

in both localization precision (Fig. 4e,f) and in emitter detectability (Jaccard index) (Fig. 

4d). This result is not surprising, as the learned PSF has a smaller spatial footprint, and 

hence it is less likely to overlap than the Tetrapod (Fig. 4c). For further analysis of the 

learned PSF see Supplementary Note 10.

Volumetric telomere imaging and tracking

Next, we demonstrate the superiority of the new PSF experimentally by imaging 

fluorescently labeled telomeres (DsRed-hTRF1) in fixed U2OS cells. The cell contains tens 

of telomeres squeezed in the volume of a nucleus with ≈ 20 μm diameter (Fig. 5a, b). From a 
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single snapshot focused inside the nucleus, the CNN outputs a list of 3D positions of 

telomeres spanning an axial range of ≈ 3 μm. Using the Tetrapod PSF snapshot, the 

Tetrapod-trained CNN was able to recover 49 out of 62 telomeres with a single false 

positive, yielding a Jaccard index of 0.77 (Fig. 5d). In comparison, using the learned PSF 

snapshot, the corresponding CNN was able to recover 57 out of the 62 telomeres with only 2 

false positives, yielding a Jaccard index of 0.89 (Fig. 5e). The recovered positions were 

compared to approximated ground-truth 3D positions (Fig. 5c), obtained by axial scanning 

and 3D fitting (see Supplementary Note 12 and Supplementary Video 5). The precision of 

both PSFs was calibrated experimentally using a z-scan of a fluorescent micro-sphere (see 

Supplementary Note 10.4 and Supplementary Video 6).

To qualitatively compare the recovered list of localizations to the acquired snapshot, we fed 

this list to the physical simulation layer and generated the matching 2D low-resolution 

image (Fig. 5d,e). As verified by the regenerated images, the 3D positions of the telomeres 

are faithfully recovered by the CNNs. Moreover, the misses in both snapshots were either 

due to local aberrations and/or an extremely low number of signal photons (see 

Supplementary Note 13.1 for more experimental results).

Finally, a great advantage facilitated by our scan-free learned PSF is increased volumetric 

temporal resolution. To demonstrate the full capability of our method for dense multi-

particle localization, we simultaneously track 48 telomeres diffusing within the volume of a 

live MEF cell, at 10 Hz over 50 seconds (Fig. 6). Such a measurement can provide 

information on 3D nuclear rotation (Fig. 6a and Supplementary Video 7) and heterogeneity 

in motion-type (Fig. 6b-d), at time-scales that are typically unexplored by volumetric 

localization microscopy [50].

3 Discussion

In this work we demonstrated 3D localization of dense emitters over a large axial range both 

numerically and experimentally. The described network architecture exhibits excellent 

flexibility in dealing with various experimental challenges, e.g. low signal-to-noise ratios 

and optical aberrations. This versatility is facilitated in three ways: (1) the net was trained 

solely on simulated data, thus producing sufficiently large datasets for optimization; (2) the 

phase mask which governs the PSF was optimized with respect to the implementation in the 

imaging system, i.e. the pixels of the spatial light modular, rather than over a smaller 

subspace, e.g. Zernike polynomials [10]; (3) the CNN localization algorithm was designed 

in coordination with the development of the PSF, thus the system was optimized for the 

desired output [36] rather than a proxy.

Attaining a sufficiently large training dataset has thus far been a major limitation for most 

applications of CNNs. With this limitation in mind, the application of CNNs to single-

molecule localization would seemingly be an ideal one, since each emitter’s behavior should 

be approximately the same. This uniformity is broken, however, by spatially-varying 

background, sample density, and variable emitter size in biological samples (Supplementary 

Note 4.1), all of which diversify datasets and necessitate relevant training data. By 

implementing an accurate simulator, we have shown that it is possible to build a robust 
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network entirely in silico, generating arbitrarily large, realistic datasets with a known ground 

truth to optimize the nets. This aligns with our previous work in 2D SMLM [19].

For super-resolution reconstructions using the Tetrapod PSF, the simulator was particularly 

important due to the highly variable SNR of emitters in the sample. Here, our net was able to 

selectively localize the emitters even in very dense regions by focusing on those with a high 

SNR (Fig. 3). To optimize a PSF while simultaneously training the net, the simulator was 

also essential, as it would be prohibitively time consuming to experimentally vary the PSF, 

while recording and analyzing images to train the net.

An intriguing aspect of our optimization approach is that the optimized PSF is found by 

continuously varying the pixels of an initialized mask while evaluating the output of the 

localization net, thus the final result represents a local minimum (Fig. 4). By changing the 

initialization conditions, we have recognized several patterns that indicate how the optimal 

PSF varies with the experimental conditions: namely, density, axial range, and SNR (see 

Supplementary Note 2.2). Some of the recurrent features are intuitive: for example, in dense 

fields of emitters with limited SNR, the optimized PSFs have a small footprint over the 

designed axial range, enabling high density and compacting precious signal photons into as 

few pixels as possible. What distinguishes the net PSFs over predetermined designs is the 

utilization of multiple types of depth encoding; namely, simultaneously employing 

astigmatism, rotation, and side lobe movement (Fig. 4), all of which have been conceived of 

and implemented previously, but never simultaneously!

This work, therefore, triggers many possible questions and research directions regarding its 

capabilities and limitations. For example, how globally-optimal is the resulting PSF? 

Similarly, how sensitive is the resulting PSF and its performance to different loss functions, 

CNN architectures, initializations (e.g. with an existing phase mask), and the sampled 

training set of locations? Currently, it is unclear how each of these components affects the 

learning process although we began to partially answer them in simulations (see 

Supplementary Notes 2.2 and 10). Finally, the co-design approach employed here paves the 

way to a wide variety of interesting applications in microscopy where imaging systems have 

traditionally been designed separately from the processing algorithm.

Methods

Sample preparation

COS7 cells were grown for 24 hr on cleaned 22 × 22 mm, 170 μm thick coverslips in 6-well 

plate in Dulbecco’s Modified Eagle Medium (DMEM) With 1g/l D-Glucose (Low Glucose), 

supplemented with Fetal bovine serum, Penicillin-Streptomycin and glutamine, at 37°C, and 

5%CO 2. The cells were fixed with 4% paraformaldehyde and 0.2% glutaraldehyde in PBS, 

pH 6.2, for 45 min, washed and incubated in 0.3M glycine/PBS solution for 10 minutes. The 

coverslips were transferred into a clean 6-well plate and incubated in a blocking solution for 

2 hr (10% goat serum, 3% BSA, 2.2% glycine, and 0.1% Triton-X in PBS, filtered with 0.45 

μm PVDF filter unit, Millex). The cells were then immunostained overnight with anti 

TOMM20-AF647 (Abcam, ab209606) 1:230 diluted in the blocking buffer, and washed X5 

with PBS. Cover glasses (22 × 22 mm, 170 μm thick) were cleaned in an ultrasonic bath 
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with 5% Decon90 at 60°C for 30 min, then washed with water, incubated in ethanol absolute 

for 30 min and sterilized with 70% filtered ethanol for 30 min.

U2OS cells were grown on cleaned 0.18 μm coverslips in 12-well plate in Dulbecco’s 

Modified Eagle Medium (DMEM) With 1g/l D-Glucose (Low Glucose), supplemented with 

Fetal bovine serum, Penicillin-Streptomycin and glutamine, at 37°C, and 5%CO 2. The day 

after cells were transfected with a plasmid encoding the fluorescently-tagged telomeric 

repeat binding factor 1 (DsRed-hTRF1) [50] using Lipofectamine 3000 reagent. 24 hr after 

transfection cells were fixed with 4% paraformaldehyde for 20 minutes, washed 3 times with 

PBS and attached to a slide together with mounting medium.

Lamin A double knockout (lmna-/-) Mouse Embryonic Fibroblasts (MEFs) were cultured in 

phenol red-free DMEM/F-12 media (Gibco, Thermo-fisher Scientific), which was 

supplemented with 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin solution 

(Biological industries, Bet Ha-emek, Israel). Two days prior to imaging, cells were 

transferred to 15 mm coverglass-bottom culture plates (Nest scientific). After 24 hours, cells 

were transfected with a plasmid encoding DsRed-hTRF1. The transfection mix was prepared 

by diluting 8 μg of the plasmid in 50 μl of serum-free DMEM/F-12 and separately diluting 

24 μl of transfection reagent Polyjet™ (SignaGen Laboratories, USA) in 26 μl of serum-free 

DMEM/F-12, then immediately adding the diluted Polyjet solution to the DNA mixture and 

incubating at room temperature for 20 minutes. The 100 μl DNA-Polyjet mix was then 

added dropwise to the cell plates. Imaging experiments were conducted about 26 hours after 

transfection and lasted for 1-2 hours.

Optical setup

Imaging experiments were performed on the experimental system shown schematically in 

Fig. 1b. The 4f optical processing system was built alongside the side-port of a Nikon 

Eclipse Ti inverted fluorescence microscope, with a × 100/1.45 numerical aperture (NA) oil-

immersion objective lens (Plan Apo × 100/1.45 NA, Nikon).

STORM imaging

For super-resolution imaging, a PDMS chamber was attached to a glass coverslip containing 

fixed COS7 cells. Blinking buffer (100 mM β-mercaptoethylamine hydrochloride, 20% 

sodium lactate, and 3% OxyFluor (Sigma, SAE0059), modified from [51], was then added 

and a glass coverslip was placed on top to prevent evaporation. Low-intensity illumination 

for recording diffraction-limited images was applied using a Topica laser (640 nm), on the 

Nikon TI imaging setup described previously, and recorded with an EMCCD (iXon, Andor) 

in a standard imaging setup. For super-resolution blinking using the Tetrapod PSF, high-

intensity (1W at the back of the objective lens) 640 nm light was applied using a 638 nm 

2000 mW red dot laser module, whose beam shape was cleaned using a 25 μm pinhole 

(Thorlabs) in coordination with low-intensity (<5mW) 405 nm light. Emission light was 

filtered through a 500 nm Long pass dichroic and a 650 nm long pass (Chroma), projected 

through a 4f system containing the dielectric Tetrapod phase mask (see Supplementary Note 

9.1), and imaged on a Prime95b Photometrics camera.
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Super-resolution image rendering

Prior to rendering the super-resolved image (Fig. 3b), we first corrected for sample drift 

using the ThunderSTORM [52] ImageJ [53] plugin. Afterwards, we rendered the 3D 

localizations as a 2D average shifted histogram, with color encoding the z position.

Telomere imaging

For telomere imaging in fixed cells, the 4f system consisted of two f=15 cm lenses 

(Thorlabs), a linear polarizer (Thorlabs) to filter out the light that is polarized in the 

unmodulated direction of the LC-SLM, a 1920 × 1080 pixel LC-SLM (PLUTO-VIS, 

Holoeye) and a mirror for beam-steering. A sCMOS camera (Prime95B, Photometrics) was 

used to record the data. The sample was illuminated with 561 nm fiber-coupled laser-light 

source (iChrome MLE, Toptica). The excitation light was reflected up through the 

microscope objective by a multibandpass dichroic filter (TRF89902-EM - ET - 

405/488/561/647 nm Laser Quad Band Set, Chroma). Emission light was filtered by the 

same dichroic and also filtered by another 617 nm band pass filter (FF02-617/73 Semrock).

For volumetric telomere tracking in live cells, images were recorded with an EMCCD 

camera (Andor iXON), exposure time 100 ms and EM-gain 170. The sample was 

illuminated at ≈2 kW/cm2 with 561 nm light from a fiber-coupled laser (iChrome MLE, 

Toptica). All movies were recorded for 50 s (500 frames).

CNN Architecture

In a nutshell, our localization CNN architecture is composed of 3 main modules. First, a 

multi-scale context aggregation module process the input 2D low-resolution image and 

extracts features with a growing receptive field using dilated convolutions [54]. Second, an 

up-sampling module increase the lateral resolution of the predicted volume by a factor of x4. 

Finally, the last module refines the depth and lateral position of the emitters and outputs the 

predicted vacancy-grid. For more details regarding the architecture see Supplementary Note 

2.

Statistics and reproducibility

The STORM experiment was repeated independently for n = 3 cells, twice analyzing 20K 

frames and once analyzing 10K frames all leading to similar performance. The fixed 

telomere experiment was repeated independently for n = 10 U2OS cells all showing similar 

characteristics and performance. The live telomere experiment was repeated independently 

for n = 10 MEF cells all showing similar characteristics and performance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Optical setup and approach overview.
a The light emitted from a fluorescent microscopic particle is collected by the objective and 

focused through the tube lens into an image at the intermediate image-plane. This plane is 

extended using a 4f system with a phase mask placed at the Fourier plane in between the two 

4f lenses. b The implemented phase mask (using either a Liquid Crystal Spatial Light 

Modulator (LC-SLM) or fabricated fused-silica) dictates the shape of the PSF as function of 

the emitter’s axial position. c After training, our CNN receives a 2D low resolution image of 

overlapping PSFs and outputs a 3D high-resolution volume which is translated to a list of 3D 

Nehme et al. Page 12

Nat Methods. Author manuscript; available in PMC 2021 March 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



localizations. Blue empty spheres denote simulated GT positions along the surface of an 

ellipsoid. Red spheres denote CNN detections. The Tetrapod PSF is depicted here, however 

the approach is applicable to any PSF, including those optimized by the net itself (Fig. 4). 

Scale bars are 3 μm.
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Figure 2. Comparison to MP.
a Performance comparison of a trained CNN (black) and the matching pursuit approach 

(red) in both detectability (Jaccard index) and in precision (Lateral\Axial RMSE). Matching 

of points was computed with a threshold distance of 150 nm using the Hungarian algorithm. 

Each data point is an average of n = 100 simulated images. Average standard deviation in 

Jaccard index was ≈ 6% for both methods, and average standard deviation in precision was 

≈ 6 nm for the CNN, and ≈ 15 nm for MP. b Example of a simulated frame of density 0.124 
emitters

μm2  alongside 3D comparisons of the recovered positions by MP (middle) and by the 

CNN (right). Scale bar is 2 μm.
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Figure 3. Super-resolution 3D imaging over a 4 μm z-range.
a Representative experimental frame (top), and rendered frame from the 3D recovered 

positions by the CNN overlaid on top (bottom). Scale bar is 5 μm. b Superresolved image of 

mitochondria spanning a ≈4 μm z-range rendered as a 2D histogram where z is encoded by 

color. Scale bar is 5 μm. c Zoom-in on white rectangle (i) in b. Scale bar is 0.5 μm. d 
Relative intensity averaged along the shorter side of the white rectangle in c. e XZ cross-

section of white rectangle (ii) in b. Scale bar is 0.5 μm. f Relative intensity along the dashed 

white line in e. The experiment was repeated independently for n = 3 cells, twice analyzing 

20K frames and once analyzing 10K frames all leading to similar performance.
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Figure 4. PSF learning for high density 3D imaging.
a Simulated 3D emitter positions are fed to the image formation model to simulate their low 

resolution CCD image (Encoding). Next, this image is fed to a CNN that tries to recover the 

simulated emitter positions (Decoding). The difference between the simulated positions and 

the positions recovered by the CNN is used to jointly optimize the phase mask at the Fourier 

plane, and the recovery CNN parameters. b Simulation of the learned PSF as function of the 

emitter axial position (left). 3D isosurface rendering of the learned PSF (right). c Example 

frame of density 0.197 emitters
μm2  with the same simulated emitter positions, using the 

Tetrapod (left) and the learned PSF (right). d Jaccard index comparison between two CNNs 

with the same architecture, one trained to recover 3D positions from 2D images of Tetrapod 

PSF (black), and the second trained to recover 3D positions from 2D images of the learned 

PSF (orange). Each data point is an average of n = 100 simulated images. Average standard 

deviation was ≈ 6% for both PSFs. e-f Lateral and axial RMSE comparison between the 
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same two CNNs from d. Average standard deviation was ≈ 6 nm for both PSFs. Scale bars 

are 3 μm.
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Figure 5. Three dimensional imaging of telomeres in a single-snapshot.
a Schematic of imaging fixed U2OS cells with fluorescently labeled telomeres inside their 

nucleus. b Focus slice with the standard PSF inside a U2OS cell nucleus, obtained via a z-

scan. The yellow rectangles mark the same emitter in all three orthogonal planes. c Example 

fit of the mean intensity in sequential axial slices used to estimate the approximate emitter 

axial position. d Experimental snapshot with the Tetrapod PSF (left), rendered image from 

the 3D recovered positions by the Tetrapod CNN (middle), and a 3D comparison of the 

recovered positions and the approximate experimental ground truth (right). e Experimental 

snapshot with the learned PSF (left), rendered image from the 3D recovered positions by the 

learned PSF CNN (middle), and a 3D comparison of the recovered positions and the 

approximate experimental ground truth (right). Scale bars are 3 μm. The experiment was 

repeated independently for n = 10 U2OS cells all showing similar characteristics and 

performance.
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Figure 6. Volumetric tracking of telomeres in live MEF cells.
a 3D trajectories of tracked teloemres on top of the first experimental snapshot. White sticks 

mark the starting point, and color encodes time. XZ and YZ projections are plotted in gray. 

Scale bar is 2 μm. b Example trajectory of a telomere (white box in a) with a large mean 

displacement. c Example trajectory of a telomere (white box in a) with a small mean 

displacement. d Mean Squared Displacement (MSD) of the trajectories in b and c. Shaded 

area marks one standard deviation. The experiment was repeated independently for n =10 

MEF cells all showing similar characteristics and performance.
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