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ABSTRACT

Recent chromosome conformation capture (3C) de-
rived techniques have revealed that topologically as-
sociating domain (TAD) is a pervasive element in
chromatin three-dimensional (3D) organization. How-
ever, there is currently no parameter to quantitatively
measure the structural characteristics of TADs, thus
obscuring our understanding on the structural and
functional differences among TADs. Based on our
finding that there exist intrinsic chromatin interac-
tion patterns in TADs, we define a theoretical param-
eter, called aggregation preference (AP), to charac-
terize TAD structures by capturing the interaction
aggregation degree. Applying this defined param-
eter to 11 Hi-C data sets generated by both tradi-
tional and in situ Hi-C experimental pipelines, our
analyses reveal that heterogeneous structures exist
among TADs, and this structural heterogeneity is sig-
nificantly correlated to DNA sequences, epigenomic
signals and gene expressions. Although TADs can be
stable in genomic positions across cell lines, struc-
tural comparisons show that a considerable num-
ber of stable TADs undergo significantly structural
rearrangements during cell changes. Moreover, the
structural change of TAD is tightly associated with
its transcription remodeling. Altogether, the theoret-
ical parameter defined in this work provides a quan-
titative method to link structural characteristics and
biological functions of TADs, and this linkage implies
that chromatin interaction pattern has the potential to
mark transcription activity in TADs.

INTRODUCTION

Recent chromosome conformation capture (3C) derived
techniques (1,2), especially Hi-C (3), have revealed that
chromatins are partitioned into topologically associating

domains (TADs), also called topological domains, in which
the intra-domain chromatin interactions are significantly
stronger than inter-domain interactions. Remarkably, TAD
acts as a pervasive, or at least in part, structural element
of chromatin three-dimensional (3D) organization across
species, including Caulobacter crescentus (4), Plasmodium
falciparum (5), Arabidopsis (6,7), yeast (8), drosophila (9),
mouse (10,11) and human (11). Comparative analysis fur-
ther shows that the genomic positions of TADs appear
to be stable across cell types and conserved across species
in mammals (11). Besides chromatin organization, TAD
provides structural basis for chromatin regulation. It was
found that most identified enhancer-promoter interactions
were located in the same TADs (12). The study on mouse
revealed that the limb development was regulated by the
switch of two neighbor TADs (13). A recent work on bacte-
ria C. crescentus provided the direct evidence that disrupting
TADs leads to the change of gene expressions (4).

Given the importance of TADs, it is critical to interpret
the structural characteristics of TADs and their associa-
tion with biological functions. Previous works (4,9–11) an-
notated the TADs by integrating transcription factor (TF)
binding and epigenomic signals, revealing that TADs could
be different in biological functions. However, integrative
annotation cannot reveal the structural characteristics of
TADs. Thus, it is hard to build the linkage between struc-
ture and function in this way. To bridge the gap, the interac-
tion frequency together with principle component analysis
were previously used to identify open and close structures
of chromatin regions at the genome-wide scale (3,6). Never-
theless, using this calculation to distinguish domain struc-
tures in the same class is difficult since specific chromatin
interaction patterns are not considered. To our knowledge,
there is currently no parameter to quantitatively measure
the chromatin interaction patterns of TADs.

Inspired by our finding that TADs exhibit specific chro-
matin interaction patterns, we define a theoretical pa-
rameter, called aggregation preference (AP), to represent
the structural characteristics of TAD and then build its
association with biological functions. First, the locally
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high-frequency chromatin interactions violating distance-
dependence decay are selected from TAD. Then a density-
based algorithm DBSCAN (14) is used to cluster the se-
lected chromatin interactions into groups according to their
spatial aggregation. Finally, the weighted density of clus-
tered groups is defined as AP to represent the interaction ag-
gregation degree. This defined parameter is next used to in-
vestigate 11 chromatin interaction data sets on human and
mouse cell types generated by traditional Hi-C and in situ
Hi-C, a so-called improved pipeline published very recently
(15). The Hi-C data on other species are excluded from this
work because their domain sizes are too small at current
resolution. Statistical analyses show that TADs are quite
different in chromatin interaction patterns and these struc-
tural characteristics are significantly correlated to DNA se-
quence, epigenomic signals and transcription activity. Inter-
cell-line comparison further reveals that the detailed struc-
tures of TADs can be significantly rearranged across cell
lines although these domains are stable in genomic posi-
tions. Furthermore, the structural rearrangement is tightly
associated with epigenomic remodeling and transcriptional
regulation. Altogether, we define a theoretical parameter to
build linkage between structural characteristics and biolog-
ical functions of TADs.

MATERIALS AND METHODS

Hi-C data sources and processing

For traditional Hi-C experiments, the data sets of human
cell line hESC and two mouse cell lines (mESC and Cor-
tex) were downloaded from NCBI with accession num-
ber GSE35156 (11), and the data sets on human cell
lines IMR90 and GM12878 were downloaded from NCBI
with accession numbers GSE43070 (16) and GSE48592
(17), respectively. The in situ Hi-C data sets of human
cell lines GM12878, IMR90, K562, HMEC, HUVEC and
NHEK were downloaded from NCBI with accession num-
ber GSE63525 (15). Only the data sets generated by MboI
restriction enzyme in the original work are used in this
work, and the data sets on human (KBM7) and mouse
(CH12-LX) cell lines are eliminated due to lack of epige-
nomic data.

The pipeline of Hi-C data processing follows a previ-
ous procedure (18) by using hg19 and mm10 as human
and mouse reference genomes. Briefly, pair-end reads are
mapped to the genome using an iterative mapping scheme,
in which each read is truncated to 25 bp first and extended
by 5 bp iteratively until the mapping with maximum read
length is achieved. The uniquely mapped pair-end reads
are used for the next analysis. To maintain data reliabil-
ity, different types of noisy reads are removed from data
sets, including the reads originated from polymerase-chain-
reaction duplication, the reads started within 5 bp of the
restriction site or located in the same restriction fragments,
the reads located on very large (100 kb) or small (100 bp)
fragments, the so-called random-break reads, and the reads
that face towards each other and are separated by less than
the library length. Fragments with the top 0.5% number of
reads are also eliminated from data sets. The summary of
Hi-C data is provided in Supplementary Table S1.

Chromatin representation and TAD identification

Chromatin is partitioned into bins (or beads) at given reso-
lution, and the kept reads are assigned to these beads to gen-
erate the observed interaction matrix (Oi j )N×N for each Hi-
C data set, where N is the number of beads in the chromatin
and Oi j is the observed interaction frequency between beads
i and j. The gap regions arising from DNA repeat elements
or the absence of enzyme restriction sites are eliminated
from the observed interaction matrix to facilitate next cal-
culations (19). To remove experimental biases, interaction
matrix is corrected by using hiclib package (18) with default
relative error (10%). The corrected matrix ( fi j )N×N is used
as input to perform TAD identification by using direction-
ality index (DI) based hidden Markov model (HMM) (11).

Chromatin interaction parameter calculation

The statistically significant chromatin interactions are
selected by considering both distance-dependent decay
and local interaction background (15). Specifically, the
averaged interaction frequency at given genomic distance
k in a n-beads TAD is calculated by f (k) = 1

n−k

∑
|i− j |=k

fi j .

Then B-Spline is used to approximate the curve be-
tween f (k) and k to obtain the smoothed interaction
frequency S(k). Generally, the smoothed curve will fluc-
tuate after the first turning point kr due to the shortage
of super long-range chromatin interactions in the TAD.
To solve this problem, the averaged interaction fre-

quency is finally set to Ei, j =
{

S(|i − j |), |i − j | ≤ kr
S(kr ), |i − j | > kr

,

where (i, j ) represents given chromatin interaction
in the TAD. Besides genomic distance, the expected
interaction frequency of chromatin interaction (i, j )
is calculated by using square windows to further
take local interaction background into consideration:

where 2p + 1 and 2w + 1 specify the widths of two square
windows centered at (i, j ) with p < w. Then the P-value
for observing interaction frequency f loor ( fi j ) is calcu-
lated based on the Poisson process with expected value
λi j = E∗

i j . To further reduce noisy chromatin interactions,
the chromatin interactions with low windowed interaction

frequency Ci j =
i+p∑

m=i−p

j+p∑
n= j−p

fmn are eliminated from next

interaction selection (around 30% in this work to account
for low sequencing depths in some data sets). Then ∼5% of
chromatin interactions with highest statistical significance
in the TAD are selected for next analysis. By following
previous work (15), the window parameters p and w are set
to 4 and 7 respectively at 5 kb resolution, 2 and 5 at 10 kb
resolution, and 1 and 3 at 20 kb resolution.

The selected chromatin interactions are clustered into
spatially neighbored groups Gi , called interaction blocks
in this work, by using the density-based algorithm DB-
SCAN (14). This algorithm utilizes the fact that the clus-
tered points tend to have high local density and the isolated
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points tend to have low local density. In the calculation, the
point density is defined to be the number of points located in
the spatial sphere at a given radius. Two parameters, i.e. the
minimum number of points and the spatial radius, are in-
volved in this calculation. Previous work (20) has discussed
how to set these two parameters, and our calculation follows
this procedure.

The convex hull Hi is calculated from interaction block
Gi by using QuickHull algorithm (21). The so-called core-
point p j in DBSCAN is defined as the point surrounded
by at least n p points (aforementioned minimum number of
points) in convex hull Hi , and its local density is calculated

by dp j = n p

/ n p∑
m=1

dist(p j , pm), where pm is the mth closest

point to target point p j , and dist() denotes the squared dis-
tance between two points. The interaction density of con-
vex hull Hi is calculated by di = ∑

p j ∈Hi

dp j/cpt(Hi ), where

cpt(Hi ) is the number of core-points in the convex hull Hi .
The density of isolated convex hull is set to zero. Finally,
chromatin interaction aggregation preference of this do-
main is defined as the weighted density: d = ∑

i

pts(Hi )
pts(T AD) di ,

where pts(Hi ) and pts(T AD) mean the numbers of selected
interactions in the convex hull Hi and TAD, respectively. It
is worth noting that other parameters may also be devel-
oped to characterize TAD structures by using these signifi-
cant interactions.

TAD annotation and comparison

The DNA sequence features, such as transcription start sites
(TSSs), short interspersed nuclear elements (SINEs) and
long interspersed nuclear elements (LINEs), were down-
loaded from ENCODE (22). LaminB1-associated binding
signals in mESC were obtained from the reference (23),
in which the nucleotides have already been processed to
be binding or unbinding ones. The ChIP-Seq, including
TF binding and epigenomic signals, and processed RNA-
Seq reads were downloaded from ENCODE (22). The
ChIP-Seq signals were uniformly normalized by using the
align2rawsignal software (A. Kundaje, http://code.google.
com/p/align2rawsignal/). When calculating Pearson corre-
lation between AP and given annotation signal, the pro-
cessed signal in the domain are summed and then averaged
by domain length to represent signal strength of TAD. To
reduce the negative impact of confounding factors, such as
GC-composition of the genome, in computing P-value for
correlation coefficient, the Pearson correlation between AP
and randomly shuffled annotation signal (less than 1 Mb in-
dependently for different chromosomes) is calculated. This
shuffled correlation is repeated 500 times independently,
and the final P-value is computed by testing the difference
between original correlation coefficient and shuffled corre-
lation average under Fisher’s z transformation (24).

TAD stability is measured by using the boundary over-
lap in genomic positions between two cell lines or between
two experimental pipelines on the same cell line. The num-
ber of stable TADs decreases as stricter criterion is used
(Supplementary Figure S1). To compromise between TAD
number and stability, TADs sharing similar boundaries (less

than 5 bins in both left and right ones) in genomic posi-
tions are considered to be stable. The overlapped block re-
gions of two stable TADs are divided by total blocks in each
cell line, and the averaged overlap percentage is used to cal-
culate Pearson correlation between AP change and block
overlap. By using the biological replicates sharing similar
intra-chromosomal interaction reads in different cell lines,
statistical analysis shows that the stable TADs consistently
exhibit higher structural variations arising from cell lines
than those arising from biological replicates (Supplemen-
tary Figure S2). To simplify the TAD selection when per-
forming structural comparisons across cell lines in diverse
cases, quantile regression is used to select stable TADs with
top AP change by accounting for the difference in structural
variations (25,26). Finally, around 20% of stable TADs are
selected to perform structural comparisons in detail (Sup-
plementary Figure S3). When investigating the association
between parameter AP and annotation signals in TADs, the
Wilcoxon signed rank test is used to calculate the P-value
for each investigated signal.

RESULTS

Parameter calculation from Hi-C chromatin interactions

Five traditional Hi-C maps are denoted as hESC-T,
GM12878-T, IMR90-T, mESC-T and Cortex-T to repre-
sent three human cell lines and two mouse cell lines, while
six in situ Hi-C maps are denoted as GM12878-I, IMR90-
I, K562-I, HMEC-I, HUVEC-I and NHEK-I to represent
corresponding human cell lines. To compromise between
higher resolution and limited sequencing depth, TADs were
identified at 20 kb resolution for traditional Hi-C data sets
and at 10 kb resolution for in situ Hi-C data sets by using DI
based HMM proposed by a previously work (11). For three
deepest sequencing data sets (GM12878-I, IMR90-I and
K562-I), additional TAD identifications were performed at
5 kb resolution. The validity of TAD identification at given
resolutions has already been evaluated in both traditional
and in situ Hi-C data sets elsewhere (11,15). Finally thou-
sands of TADs were generated in each cell line (Supplemen-
tary Figure S4). Since different kinds of structural charac-
teristics can be obtained at different resolutions due to hi-
erarchical chromatin architecture (27), the TADs identified
from different resolutions are not directly compared in this
work.

Thorough inspection revealed the nonrandom distribu-
tion of those high-frequency chromatin interactions, which
tend to form different types of spatial clusters (Figure 1).
Inspired by this finding, we defined a novel parameter,
called aggregation preference (AP), to represent the struc-
tural characteristics of TADs by calculating the aggregation
degree of high-frequency chromatin interactions. First, the
statistical significance of observing each chromatin interac-
tion was calculated by considering both the genomic dis-
tance and local interaction background. Second, the chro-
matin interactions were sorted by calculated P-values, and
∼5% of top significant ones with locally high interaction
frequencies were selected for next analysis. Third, the se-
lected chromatin interactions were clustered into spatial
groups, called interaction blocks in this work, by using a

http://code.google.com/p/align2rawsignal/
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Figure 1. The computational pipeline of parameter AP. The first triangle represent the interaction heat map colored by interaction frequency. For given
point (star) in the second heat map, square windows show the local interaction background when calculating the P-value (3.1e-4). The third heat map is
colored by calculated P-values, in which circles are the selected significant interactions and the points in gray color are eliminated from interaction selection
because of window sizes. In the bottom heat map, convex hulls denote the clustered chromatin interactions, i.e. interaction blocks, and corresponding
individual densities. Black points are the isolated blocks.

density-based algorithm DBSCAN (14). Finally, the pa-
rameter AP was defined as the weighted density of interac-
tion blocks in each TAD (Materials and Methods). It can
be expected that the parameter AP defined from selected
interactions captures the structural characteristics of TAD
based on the fluorescence in situ hybridization (FISH) ob-
servations that statistically significant interactions are of-
ten physically preferred contacts (6,8–10,12,15,28), despite
essential difference between these two concepts due to the
complicated nature of chromatin interactions (29).

Pearson correlations between biological replicates show
that the defined parameter AP is highly reproducible in both
traditional and in situ Hi-C data sets (Supplementary Fig-

ure S5). The cell lines hESC-T, HUVEC-I and NHEK-I are
eliminated from reproducibility evaluation, either because
significant difference exists in sequencing depth between
two replicates or because there are no biological replicates.
AP values calculated from merged replicates are used for
next analysis in all cell lines. We next performed TAD iden-
tification and AP calculation for GM12878-I and IMR90-
I at 20 kb resolution to further evaluate the robustness of
parameter AP between two experimental pipelines in the
same human cell lines. To reduce the impact of differences
in sequencing depth and data quality, only the stable TADs
shared by both Hi-C pipelines were used to calculate the
reproducibility of parameter AP. Our result shows that the
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parameter AP is quite reproducible between two experimen-
tal pipelines (Supplementary Figure S6). Finally, these two
kinds of reproducibility analyses together indicate the ro-
bustness of our defined parameter.

Structural heterogeneity and functional implications of TADs

We explored the structural characteristics of TADs by using
interaction blocks and corresponding parameter AP. Mean-
while, domain structure was functionally annotated by us-
ing DNA sequences, epigenomic signals and transcription
activity. Among these signals, SINEs are often found in
gene-rich regions (30) and LINEs are generally located in
heterochromatin (31). Lamina-associated bindings are gen-
erally heterochromatin signals. H3K4me3 and H3K4me1
are promoter and enhancer markers, respectively. H3K27ac
generally reflects that the enhancer and promoter are active
or not. RNAPII binding and H3K36me3 reflect the tran-
scription activity, and RNA sequence (RNASeq) directly
represents transcription level (32).

The interaction blocks generated from selected chro-
matin interactions are the structural and functional bases
to distinguish TADs. Though previous works (16,33) have
identified functional chromatin interactions on the same
cell lines, our interaction selection is different from those
works in terms of scientific purpose. Moreover, our method
further utilizes the clustering patterns of locally high-
frequency chromatin interactions to distinguish TADs. Fig-
ure 2A illustrates that TADs exhibit different types of inter-
action blocks. The chromatin interactions are dispersedly
distributed to form low-density interaction blocks in the left
domain, but the selected chromatin interactions are greatly
aggregated to form high-density interaction blocks in the
right domain. This structural difference is well captured by
the defined parameter AP. The annotation signals show that
the domain with high-density blocks is more enriched in ac-
tive signals, such as SINEs, active epigenomic signals and
RNA expression, implying that the structural characteris-
tics of TAD is correlated to biological function. The same
situation can also be observed in traditional Hi-C data sets
(Supplementary Figure S7).

Statistical analysis was performed to systematically in-
vestigate the relationship between structure and function
in TADs. The wide distributions of AP values suggest that
TAD structures are heterogeneous in all cell lines (Sup-
plementary Figure S8). Some domains have high AP val-
ues, indicating that the selected chromatin interactions are
aggregated to form high-density and small-size interac-
tion blocks. By contrast, the domains exhibiting low AP
values own the dispersedly distributed chromatin interac-
tions. Nevertheless, the widely distributed values suggest the
mixed situations in most domains. Consistent with Figure
2A, the parameter AP also shows significant correlation to
active signals and anti-correlation to inactive signals (LINE
and LaminB1-association binding) in both traditional and
in situ Hi-C data sets (Figure 2B). These results suggest that
TADs with highly aggregated interactions are generally lo-
cated in active regions but TADs with disperse interactions
are generally located in inactive regions. However, most do-
mains contain both active and inactive regions with diverse
biological functions.

Structural rearrangements of TADs across cell lines

We next investigated the structural rearrangements of
TADs across cell lines by using the parameter AP. Our anal-
ysis showed that TADs could be stable in genomic positions
across cell lines, consistent with previous study (11). We
then calculated the Pearson correlation between AP change
and block overlap on these stable TADs, obtaining consid-
erably negative coefficients (Supplementary Table S2). This
result shows that AP change can indicate the overlap degree
of interaction blocks between stable TADs, but the relation-
ship is a little complicated. Therefore, quantile regression
was used to select different types of stable TADs with sig-
nificant AP change to perform structural comparisons in
detail (Supplementary Figure S3).

There exist different kinds of structural changes across
cell lines, which can be captured by interaction blocks and
corresponding AP values. Figure 3 illustrates that TAD
can undergo block split when comparing human cell lines
GM12878-I with IMR90-I. Intuitively, the statistically sig-
nificant chromatin interactions in cell line GM12878-I are
more dispersedly distributed compared with those in cell
line IMR90-I, which is accurately captured by interaction
blocks and the parameter AP. Together with aforemen-
tioned functional annotation, the structural change indi-
cates that this TAD is activated in cell line IMR90. Con-
sistently, the increase of active epigenomic and transcrip-
tion signals (H3K4me1, H3K4me3, H3K27ac, H3K36mes,
RNAPII and RNASeq) validates the increased transcrip-
tion activity in cell line IMR90-I (Figure 3). In addition, the
reverse direction of structural change, block merging, is also
captured by our defined parameter (Supplementary Fig-
ure S9). Generally, the structural rearrangements of TADs
are rather complicated, such as concurrent appearance, dis-
appearance, split and merging of interaction blocks (Sup-
plementary Figure S10), and thus the relationship between
individual block change and functional change should be
complex. However, the parameter AP can capture the over-
all structural and functional changes in various cases. The
similar situations can be observed in traditional Hi-C data
sets (Supplementary Figures S11 and S12).

Genome-wide comparisons on the parameter AP re-
vealed that a considerable number of TADs undergo struc-
tural changes in both human and mouse cell lines (Supple-
mentary Figure S3). Some domains become more aggre-
gated in chromatin interactions, and some domains tran-
sit to disperse chromatin interaction patterns. To statisti-
cally analyze the association between structural change and
transcription remodeling, the selected TADs were paired by
AP values, and Wilcoxon signed rank test was performed
on epigenomic and transcription signals (Materials and
Methods). Figure 4 shows that structural change is signif-
icantly associated with the remodeling of transcription ac-
tivity in both traditional and in situ Hi-C cell lines, indicat-
ing that most TADs becoming interaction-aggregated are
activated and those becoming interaction-dispersed are re-
pressed in regulatory activity. The observed exceptions are
partly caused by the complicated nature of structural vari-
ations and biological functions of TADs. These results sug-
gest that chromatin interaction pattern captured by param-
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Figure 2. Structural characteristics and biological functions of TADs. (A) Structures and functions of two TADs from chromatin region (Chr1:180,470,000-
181,145,000) in cell line GM12878-I at 5 kb resolution. The two-dimensional interaction heat map, epigenomic signals, RNA expression, DNA repeats
and reference genes are shown. Arrow indicates the boundary position between two TADs. In DNA repeats, red and blue colors denote SINEs and LINEs,
respectively. (B) Pearson correlation coefficients between AP value and annotation signals. Blank entries indicate the absence of annotation signals. P-values
are shown in the brackets.
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Figure 3. Structural rearrangement across human cell lines GM12878-I and IMR90-I. The TAD region and bidirectional extensions (Chr2: 175,410,000-
176,195,000) are shown, including interaction heat maps at 5 kb resolution, clustered interaction blocks, epigeomic signals, RNA expression, DNA repeats
and reference genes. The presentation scheme is the same as Figure 2A.

eter AP has the potential to mark regulatory functions at
genome-wide scale in mammalian genomes.

DISCUSSION

Previous methods only focused on identifying functional
chromatin interactions based on different purposes (16,33),
but neglected the aggregation patterns of these chromatin

interactions. In this paper, we utilize the intrinsic chromatin
interaction pattern of TAD to define a novel parameter.
By using this chromatin interaction parameter, we system-
atically investigate the structural characteristics of TADs
and its association with biological functions in human and
mouse cell lines, thus providing insights into chromatin 3D
structure and functions in mammalian genomes.
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Figure 4. Statistical analysis on the association between structural rearrangement and functional signals. In each two-cell-line comparison, the participated
cell lines and corresponding Hi-C resolution are shown in first column, and P-values in the first and second rows were calculated from selected TADs colored
in orange and blue respectively in Supplementary Figure S3.
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Heterogeneous structures exist among TADs and this
structural heterogeneity is probably encoded by DNA se-
quences and corresponding regulatory activities. Previous
studies have shown that TAD is a pervasive element in chro-
matin 3D organization (4–11), but the structural difference
among domains is not well understood. Statistical analysis
on the defined feature reveals that the aggregation degree
of chromatin interactions can be widely distributed among
TADs, indicating the existence of diverse domain structures
at high resolution. Integrative analysis further shows that
euchromatin TADs have statistically higher chromatin in-
teraction aggregation than heterochromatin TADs. This re-
sult can be partly explained by the fact that euchromatin re-
gions are rich in genes and regulatory elements, which pro-
vide greater potential to form promoter-enhancer interac-
tion clusters (34). Thus, the DNA sequence and regulatory
activity may have resulted in the structural heterogeneity
and functional diversity of TADs.

Chromatin interaction pattern has the potential to mark
gene regulation and transcription activity, at least in TADs.
Several recent works explored the relationship between
chromatin interactions and biological functions. McCord et
al. showed that the progress of Hutchinson–Gilford proge-
ria syndrome was related to the reorganization of chromatin
compartments (35). Rousseau et al. showed that chromatin
conformation data in HOXA locus could be used to clas-
sify leukemia types, with better performance than RNA-
Seq data (36). By combining polymer model with RNA-
FISH, Giorgetti et al. revealed that transcription activities
were coupled with chromatin conformation fluctuations in
X-inactivation center (28). In this work, our systematical
comparisons further show that structural change of TAD is
significantly associated with its transcription remodeling in
genome-wide scale. These results imply that chromatin in-
teraction pattern has the potential to mark biological func-
tions in mammalian genomes.

In summary, we define a parameter, the aggregation pref-
erence of statistically significant chromatin interactions, to
represent the structural characteristics of TADs in this
work, allowing us to systematically investigate domain
structures and their association with biological functions.
Statistical analysis shows that TADs are different in chro-
matin 3D structure, and this structural difference may be
encoded in DNA sequences and corresponding regulatory
activities. TADs can also undergo significant structural re-
arrangements across cell lines though they may preserve the
domain positions in the genome. Moreover, this structural
change is tightly associated with transcription remodeling.
With the rapid expansion of Hi-C data, the chromatin inter-
action parameter defined in this work can provide a useful
tool to explore the biological functions underlying the struc-
tural characteristics of TADs, especially when the epige-
nomic and TF binding signals are poor.
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