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Abstract

Childhood obesity is an undeniable reality that has rapidly increased in many countries.

Obesity at an early age not only increases the risks of chronic diseases but also produces a

problem for the whole healthcare system. One way to alleviate this problem is to provide

each patient with an appropriate menu that is defined by a mathematical model. Existing

mathematical models only partially address the objective and constraints of childhood

obesity; therefore, the solutions provided are insufficient for health specialists to prepare

nutritional menus for individual patients. This manuscript proposes a multiobjective mathe-

matical programming model to aid in healthy nutritional menu planning that may prevent

childhood obesity. This model provides a plan for combinations and amounts of food across

different schedules and daily meals. This approach minimizes the major risk factors of child-

hood obesity (i.e., glycemic load and cholesterol intake). In addition, this approach consid-

ers the minimization of nutritional mismatch and total cost. The model is solved using a

deterministic method and two metaheuristic methods. Test instances associated with chil-

dren aged 4–18 years were created with the support of health professionals to complete this

numerical study. The quality of the solutions generated using the three methods was similar,

but the metaheuristic methods provided solutions in a shorter computational time. These

results are submitted to statistical hypothesis tests to be validated. The numerical results

indicate proper guidelines for personalized plans for individual children.

Introduction

Childhood obesity has shown rapid growth in many countries, but this growth may be partially

mitigated through the use of optimization mathematical models. This noncommunicable dis-

ease is a major public health concern because a child who is obese at an early age displays

increased risks of cardiovascular, pulmonary, metabolic, gastrointestinal, skeletal, psychologi-

cal and other diseases in adulthood [1][2][3]. Additionally, the evidence reveals a positive cor-

relation between obesity/being overweight in childhood and these conditions in adulthood [4].

Therefore, interventions administered during childhood have great potential because healthy

eating habits can be developed at this stage [5]. As a method to address this problem, a health
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professional must specify the combination and amount of food that the patient should con-

sume at different meal times during the day to ensure the appropriate intake of the nutrients

of interest during the planning period. These facts introduce a particular type of operational

research problem called the Nutritional-Menu Planning Problem (NMPP). The NMPP is an

NP-Hard problem [6], and in practical terms, the method usually used to solve it consists of

manually constructing menus through a trial-and-error process that is extremely inefficient

and does not guarantee an appropriate menu for each patient.

NMPP variants approached using mathematical models have different objective functions.

Stigler [7] and Dantzig [8] were the first to propose the goal of minimizing the total cost of the

diet problem. Bas [9] studied the minimization of a risk factor for patients with a high glycemic

load and metabolic diseases. Orešković, Kljusurić, and Šatalić [10] maximized the palatability

of a menu based on patient preferences by assigning a weight to the objective function in the

specific case of vegetarian menus. Masset et al. [11] and Okubo et al. [12] minimized the differ-

ence between the quantities currently ingested and the recommended amount while satisfying

nutritional requirements. Complementary diets for 6- to 24-month-olds [13] and the planning

of nutritional menus at a school in Southeast Asia for 13- to 18-year-olds were studied by con-

sidering total cost minimization [14]. In some situations, cost minimization alone is insuffi-

cient to obtain the proper diet. Other objectives are also relevant, leading to the multiobjective

NMPP that we denote as MO-NMPP.

Several MO-NMPP studies have been conducted. A multiobjective model more completely

represents the real problem addressed by the NMPP. Koroušić [6] [15] addressed both eco-

nomic and aesthetic aspects when generating food menus. The multiobjective model optimizes

cost, functionality, seasonality, and other aspects, such as flavor, consistency, color, tempera-

ture, shape and method of preparation. Donati et al. [16] presented a multiobjective model to

generate diets at the lowest cost while minimizing the environmental effect of its production,

which was measured as equivalent carbon dioxide emissions and land and water use. Van

Mierlo, Rohmer and Gerdessen [17] studied a similar situation that minimized fossil fuel

depletion instead of cost minimization. The authors found that the existing models for

MO-NMPP are focused on general issues that are valid for an obese individual. However,

childhood obesity treatments must consider the child’s development. Thus, noticeably restric-

tive diets in terms of calories are not recommended because children are developing. Addi-

tionally, the recommended menu must encourage the development of healthy eating habits

while minimizing exposure to risk factors such as energy-dense, high-fat, high-sugar and high-

salt foods. Furthermore, an appropriate glycemic load and an average daily cholesterol intake

are necessary. Moreover, the minimum nutritional mismatch between the nutritional contri-

butions provided by the menu and the amount recommended by specialized organizations is

an essential condition that the best compromise solution must satisfy. By including all of these

components in the original multiobjective problem, we introduce the Multiobjective Nutri-

tional-Menu Planning Problem for Childhood Obesity (MO-NMPP-CHO).

This paper proposes an approach for the MO-NMPP-CHO that considers the minimization

of the main risk factors for the development of chronic childhood obesity. The concept of

nutritional mismatch is considered, which slightly relaxes the constraints. Moreover, the clas-

sic objective of minimizing the average daily cost of the menu was considered to avoid limiting

the applicability of the menus to sectors with lower incomes, which adds to the nutritional

constraints suggested by specialized organizations. With the help of a specialist, we created a

set of numerical instances that were solved using a deterministic method and two metaheuris-

tic methods.

The remainder of this paper is organized as described below. Section 2 describes the meth-

ods used to complete our analysis. In Section 2.1, we introduce the multiobjective
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mathematical programming model (MO-NMPP-CHO) that we proposed to control and pre-

vent childhood obesity. Then, we propose two solution strategies to complete the analysis in

Section 2.2: an approach based on the ℇ-constraint method and two other evolutionary

approaches. Section 2.3 describes tools related to problem generation, the performance mea-

sures of the solution strategies, and their statistical analysis. The numerical experimentation

and the discussion of the results are summarized in Sections 3 and 4, respectively. Finally, Sec-

tion 5 presents the main conclusions of this study.

Methods

In this section, we introduce the multiobjective model for the MO-NMPP-CHO, the

approaches used to address it, and the analysis tools used to complete the analysis.

A multiobjective approach for the MO-NMPP-CHO

This section presents the model for the MO-NMPP-CHO. The proposed approach minimizes

the main risk factors for the development of the chronic diseases associated with childhood

obesity, nutritional mismatch and the average daily cost of the generated menus. The defini-

tions of the parameters and variables included in the model are summarized as follow:

Description of sets and subindexes:

A: Number of fatty acids considered, a = 1,. . ., A
G: Number of food groups considered, g = 1,. . ., G
I (k, j): Number of meals that can be served of dish j during mealtime k, i = 1, . . ., I (k, j)
J (k): Number of dishes to be served during mealtime k, j = 1,. . ., J (k)

K: Number of mealtimes considered, k = 1,. . ., K
L: Number of days considered for menu planning, l = 1,. . ., L
M: Number of macronutrients considered, m = 1,. . ., M
V: Number of vitamins considered, v = 1,. . ., V
H: Number of minerals considered, h = 1,. . ., H
Description of Parameters:

Ckji: Cost of food i in dish j at mealtime k
CGkji: Units of the estimated glycemic load by food portion i of dish j at mealtime k
AMNkjim: Grams of macronutrient m by a portion of food i of dish j at mealtime k
EMm: Kilojoules contributed by one gram of macronutrient m
PEMSm/PEMIm: Maximum/minimum fraction of energy contributed by macronutrient m
AMLkjia: Fatty acid a contributed by a portion of food i of dish j at mealtime k
EAkji: Totals of kilojoules contributed by a portion of food i of dish j at mealtime k
ED: Total kilojoules required each day

ECSk/ECIk: Maximum/minimum fraction of daily energy provided at mealtime k
RLa: Maximum fraction of energy contributed by the fatty acid a
AVkjiv: Vitamin v intake by a portion of food i of dish j at mealtime k
RSVv/RIVv: Maximum/minimum intake of vitamin v each day

AMkjih: Contribution of mineral h from a portion of food i of dish j at mealtime k
RSMh/RIMh: Maximum/minimum consumption of mineral h each day

AFkji: Contribution, in grams, of dietary fiber from a portion of food i of dish j at mealtime

k
RF/FD: Maximum/minimum number of grams of dietary fiber recommended each day

Grkjig: Indicates if food i in dish j at time k belongs to group g
RGDSg/RGDIg: Maximum/minimum number of daily dishes of group g recommended for

good nutrition

Best compromise nutritional menus for childhood obesity
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RGSSg/RGSIg: Maximum/minimum number of dishes per week of group g recommended

LSP/LIP: Minimum/maximum number of portions allowed

Description of Variables:

Rvlv: Deviation in the amount of vitamin v in relation to the recommended amount on day l
Rmilh: Deviation in the amount of mineral m in relation to the recommended amount on

day l
Rfl: Deviation in the amount of dietary fiber in relation to the recommended amount on

day l
Rala: Deviation in the energy level provided by fatty acid a on day l
Rel: Deviation in the total energy on day l
Rhclk: Deviation in the energy level provided at mealtime k on day l
Rmalm: Deviation in the energy level provided by macronutrient m on day l
Rgdlg: Deviation in the level of food group g consumed on day l
Rgsg: Deviation in the level of food group g consumed in one week.

ykjil: 1, if food i is in dish j at time k on day l and 0 otherwise

xkjil: Amount of portions of food i served in dish j at time k on day l
The model that enables the generation of food plans for children to reduce the risk of child-

hood obesity is presented in Eqs (1)–(19).

Min Z1 ¼
ð
PL

l¼1

PK
k¼1

PJðkÞ
j¼1

PIðj;kÞ
i¼1

Ckji � xkjilÞ

L
ð1Þ

Min Z2 ¼
ð
PL

l¼1

PK
k¼1

PJðkÞ
j¼1

PIðj;kÞ
i¼1

xkjil � AMLkji3Þ

L
ð2Þ

Min Z3 ¼
ð
PL

l¼1

PK
k¼1

PJðkÞ
j¼1

PIðj;kÞ
i¼1

CGkji � xkjilÞ

L
ð3Þ

Min Z4 ¼

 
XL

l¼1

 
XV

v¼1

Rvlv þ
XH

h¼1

Rmilh þ
XA

a¼1

Rala þ
XK

k¼1

Rhclk þ
XM

m¼1

Rmalm þ
XG

g¼1

Rgdlg þ Rfl

þ Rel

!

þ
XG

g¼1

Rgsg

!

=ðL � 9Þ ð4Þ

Subject to:

ED � ð1 � RelÞ �
XK

k¼1

XJðkÞ

j¼1

XIðj;kÞ

i¼1

xkjil � EAkji � ED � ð1þ RelÞ 8l ð5Þ

PEMIm � ED � ð1 � RmalmÞ �
XK

k¼1

XJðkÞ

j¼1

XIðj;kÞ

i¼1

xkjil � EMm � AMNkjim

� PEMSm � ED � ð1þ RmalmÞ 8l;mð6Þ

ECIk � ED � ð1 � RhclkÞ �
XJðkÞ

j¼1

XIðj;kÞ

i¼1

xkjil � EAkji

� ECSk � ED � ð1þ RhclkÞ 8k; lð7Þ
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XK

k¼1

XJðkÞ

j¼1

XIðj;kÞ

i¼1

xkjil � EM3 � AMLkjia � RLa � ED � ð1þ RalaÞ 8a 6¼ 3; l ð8Þ

RIVv � ð1 � RvlvÞ �
XK

k¼1

XJðkÞ

j¼1

XIðj;kÞ

i¼1

xkjil � AVkjiv � RSVv � ð1þ RvlvÞ 8v; l ð9Þ

RIMh � ð1 � RmilhÞ �
XK

k¼1

XJðkÞ

j¼1

XIðj;kÞ

i¼1

xkjil � AMkjih � RSMh � ð1þ RmilhÞ 8h; l ð10Þ

FDð1 � RflÞ �
XK

k¼1

XJðkÞ

j¼1

XIðj;kÞ

i¼1

xkjil � AFkji � RF � ð1þ RflÞ 8l ð11Þ

RGDIg � ð1 � RgdlgÞ �
XK

k¼1

XJðkÞ

j¼1

XIðj;kÞ

i¼1

ykjil � Grkjig � RGDSg � ð1þ RgdlgÞ 8l; gð12Þ

RGSIgð1 � RgsgÞ �
XL

l¼1

XK

k¼1

XJðkÞ

j¼1

XIðj;kÞ

i¼1

ykjil � Grkjig � RGSSg � ð1þ RgsgÞ 8g ð13Þ

XIðj;kÞ

i¼1

ykjil ¼ 1 8j; k; l ð14Þ

y32il þ y32iðlþ1Þ � 1 8i; l ð15Þ

y62il þ y62iðlþ1Þ � 1 8i; l ð16Þ

LIP � ykjil � xkjil � LSP � ykjil 8i; j; k; l ð17Þ

xkjil;Rvlv;Rmilh;Rfl;Rala;Rel;Rhclk;Rmalm;Rgdlg;Rgsg � 0 8i; j; k; l; v; h; a;m; gð18Þ

ykjil 2 f0; 1g 8i; j; k; l ð19Þ

The first four Eqs (1) to (4), correspond to the objective functions. The first objective func-

tion (1) minimizes the average daily cost of the food plan [7]. The second objective function

(2) minimizes the average daily cholesterol intake to reduce the negative effects of fat con-

sumption. The third objective function (3), which was proposed by Bas [9], minimizes the

average daily glycemic load of the menu. The glycemic load (GL) corresponds to the glycemic

index (GI), which is adjusted by a specific amount of carbohydrates (GL = carbohydrates x GI/
100). This concept is a topic of interest because the consumption of foods with a low glycemic

index reduces the risk of diseases associated with hyperinsulinemia (excess insulin in the

blood), such as diabetes mellitus and cardiovascular diseases, while also decreasing the sensa-

tion of hunger [18]. Finally, the fourth objective (4) minimizes the average daily nutritional

mismatch of the generated menu, whose elements are specified in constraints (5)–(13).

Best compromise nutritional menus for childhood obesity
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Constraints (5), (6), (7) and (8) limit the total daily energy input in kilojoules contributed

by each group of macronutrients each day, the energy contribution of different meals sched-

ules, and energy contributions of saturated and unsaturated fatty acids, respectively. Con-

straints (9) and (10) ensure that the requirements for vitamins and minerals were satisfied in

this study according to the recommended and tolerable levels of intake, as specified by special-

ized organizations. In addition, other elements must be provided, although they are not con-

sidered as nutrients. Thus, constraint (11) controls the daily consumption of dietary fiber.

Constraints (12) and (13) ensure the proper daily and weekly intake of different food groups,

as suggested by experts. Constraints (14), (15), (16) and (17) specify the appropriate menus.

Thus, constraint (14) requires that all dishes served at different meal times on different days

have an assigned food. Constraints (15) and (16) ensure that no main dish is served during

two consecutive lunches or two consecutive dinners, respectively. Constraint (17) limits the

size of portions that can be assigned.

Finally, constraints (18) and (19) define the types of variables in the model. The first vari-

ables were the assigned portion and mismatch levels, which must be greater than or equal to

zero. The second set includes binary variables associated with the decision regarding whether

to consider food under the established conditions. Then, the resulting model is a mixed integer

linear programming problem.

Solution strategies

Unlike optimization problems with only one objective function, in the multiobjective case, a

set of nondominated (efficient) solutions is sought instead of an optimal solution. For example,

if a multiobjective model includes several minimization objectives Zi (x), then a solution y
dominates solution x if Zi (y)� Zi (x) for every objective i, and at least one objective i exists

such that Zi (y)< Zi (x). The set of solutions that are not dominated by another solution in the

objective space is known as the Pareto border [19]. The model for MO-NMPP-CHO is solved

using three different methods. The Ɛ-constraint method [20] is implemented using the Gen-

eral Algebraic Modeling System (GAMS/CPLEX solver) [21]; two multiobjective evolutionary

algorithms (MOEA) are implemented in C++: Nondominated Sorting Genetic Algorithm II

[22], which is also known as NSGA-II, and Strength Pareto Evolutionary Algorithm 2 [23],

which is also known as SPEA2. A set of test instances associated with boys and girls aged 4–18

years was created with the support of health professionals to complete the numerical study.

An approach for the MO-NMPP-CHO based on the Ɛ-constraint method. The purpose

of the Ɛ-constraint method is to transform a multiobjective problem into several mono-objec-

tive problems to optimize one objective function, whereas those problems that become part of

the constraints are limited by values ε. For example, let us consider the multiobjective model

specified by Eqs (20) and (21), where objective Z is a vector of p functions Zi (i = 1,. . ., p) and

Fd is the feasible region. The Ɛ-constraint method generates several mono-objective models, as

illustrated in Eqs (22)–(24).

Min Zðx1; x2; . . . ; xnÞ ¼ ½Z1ðx1; x2; . . . ; xnÞ;Z2ðx1; x2; . . . ; xnÞ; . . . ;Zpðx1; x2; . . . ; xnÞ� ð20Þ

Subject to,

ðx1; x2; . . . ; xnÞ 2 Fd ð21Þ

Min Zðx1; . . . ; xnÞ ¼ Ziðx1; . . . ; xnÞ ð22Þ
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Subject to,

ðx1; x2; . . . ; xnÞ 2 Fd ð23Þ

Zkðx1; . . . ; xnÞ � εk k ¼ f1; . . . ; pg; k 6¼ i ð24Þ

Our model includes p = 4 objective functions, and Fd is specified by constraints (5)-(19). The

described process is applied to each of the four objectives. The basic issue is to determine the

appropriate values of εi (i = 1,. . .,4). Thus, a separate problem, as illustrated in Eqs (25) and

(26), is solved for each objective function Zi, and the optimal solution ð�xi; �yiÞ is used to specify

the vector ½Z1ð�xi; �yiÞ; . . . ;Z4ð�xi; �yiÞ�. Then, the range of values ½mini2f1;...;4gZpð�xi; �yiÞ;maxi2f1;...;4g

Zpð�xi; �yiÞ� for each εp (p = 1,. . ., 4) is divided into t parts to determine (t+1) values for εp. In our

case, t = 2 generates 3 different values for εp.

Min Zðx; yÞ ¼ Ziðx; yÞ ð25Þ

Subject to,

ðx; yÞ 2 Fd ð26Þ

For each objective Zi (i = 1,. . .,4), the mono-objective model in Eqs (22)–(24) is solved for

each combination of different values of εk, k � {1,. . .,4}, where k 6¼ i in their sets of values (i.e.,

27 different problems are solved for each i), to complete the Ɛ-constraint method. The models

generated for different ε combinations are solved using the GAMS/CPLEX solver with the

Branch-and-Cut algorithm. After the solutions for all of the models generated by the combina-

tion of ε values are obtained, the nondominance in the objective space is used for all solutions,

which generates the Pareto border approximation.

Two evolutionary approaches for the MO-NMPP-CHO. In an evolutionary approach, a

complete population of solutions is modified during the process. Among these methods, a sub-

classification known as evolutionary algorithms presents multiple advantages to address multi-

objective problems [24]. In fact, evolutionary algorithms are characterized by imitating the

evolutionary process of the species regarding the survival of the fittest, i.e., a population of

individuals (solutions to the problem) is modified after several generations through the appli-

cation of parent selection rules, crossover strategies and mutation strategies. Thus, the follow-

ing series of elements must be introduced to proceed:

• Encoding the solution: definition of the coded representation (or chromosome) of individu-

als in the population in both the objective space and the decision space.

• Fitness assignment: definition of a strategy to assign a value to each individual to motivate its

aptitude to be part of the next generation.

• Mating selection: definition of the strategy to select individuals to be parents of new

solutions.

• Environmental selection: definition of the strategy to decide the members of the current

population that will be included in the population of the next generation.

• Reproduction strategy: definition of the mutation and crossover operators to generate the

next generation with the probability of applying each operator.

• Initialization of population: definition of the population size and strategy to create the initial

population.

Best compromise nutritional menus for childhood obesity
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• Stop criterion: definition of a criterion that enables the algorithm to stop the calculation

after fulfilling a condition.

We consider two evolutionary algorithms, NSGA-II and SPEA2, to address the MO-N-

MPP-CHO. First, we defined the identical operators and strategies to implement both meth-

ods; then, we specified the different operators and particular strategies in each method.

Encoding the solution: A solution in the decision space is represented using two rows and T
columns, where T is the number of days multiplied by the number of dishes that should be

served per day. Fig 1 illustrates the attributes of each row and column to encode the solution

in the decision space. The first row includes the number of food portions to be served, and the

second row includes an identifier of the food to be served. The position of each column consid-

ers different characteristics (e.g., the meal time to which it belongs and the dish in the meal).

The representation of an individual in the objective space corresponds to a vector whose size is

equal to the number of objectives (4 in this case).

Reproduction strategy: For both metaheuristic methods, we used a crossover operator with

M crossing points [19], where M is equal to the number of days to be planned. The mutation

operator modifies the number of points equal to the number of days to be planned and thus

both the food and amount of food portion are randomly reallocated. Two different children

are generated when the crossover operator is applied, and one child is randomly selected. A

strategy of crossover-OR-mutation is used so that at least one operator (crossover or mutation)

is applied during the crossbreeding application [25].

Initial population: Individuals are randomly created to generate the initial population and

ensure diversity within the objective space. However, they become members of the population

if they are not clones of any of the existing individuals in the initial population.

Stop criterion: The termination condition for both metaheuristic methods is the fulfillment

of Gmax generations or a maximum running time of 1,800 seconds.

The elements listed below must be specified to implement NSGA-II for the MO-NMPP-

CHO. First, the fitness allocation is based on the dominance depth criterion that generates sev-

eral layers in the population; namely, a population of individuals creates a better-quality layer

(i.e., ranking 1), which includes individuals who are not dominated by others. The second

layer with ranking 2 includes the individuals who are not dominated by others in the remain-

ing population. The same principle applies to create other layers with higher rankings. The sec-

ond element that specifies fitness is the density estimator, which is designated the crowding

Fig 1. Representation of an individual in the decision space, planning for one day.

https://doi.org/10.1371/journal.pone.0216516.g001
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distance and consists of estimating the perimeter of the cuboid formed by the neighbors closest

to the individual in the objective space illustrated in Fig 2 for a bi-objective maximization

problem. Thus, the operator of a crowding comparison specifies that an individual dominates

another if it has a better ranking or equal ranking with a greater crowding distance.

The parents who create the new population through the application of genetic operators are

selected from the current population through a binary tournament using the crowding com-

parison operator to specify the fittest individuals. Environmental selection is performed by

adding the best layers from the current population to the new population until it reaches its

preset size. If the population preset size is unable to be achieved exactly, then individuals with

better density indicators are added from the last candidate layer for inclusion until the size of

the new population is attained. At the end of the procedure, the individuals with a ranking of 1

correspond to nondominant individuals and form the Pareto border approximation. We

Fig 2. Example of crowding distance. Each point is a nondominated solution.

https://doi.org/10.1371/journal.pone.0216516.g002
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include the strategy of eliminating the overlapping solutions in the objective space after creat-

ing the new population, as described in a previous study [26]. Hence, in the worst case, N indi-

viduals are present instead of clones to continue the process because the initial population

does not contain clones. A parameterization procedure was conducted to tune the parameters

of NSGA-II using a 2k factorial design [27] with a confidence level of 95% that resulted in the

following parameters: population size, 300; the maximum number of generations, 500; and the

probability of applying the crossover operator instead of the mutation operator, 95%.

SPEA2 method for the MO-NMPP-CHO is characterized as described below. Unlike

NSGA-II, SPEA2 ensures elitism through an external file in addition to the main population of

individuals. The size of the external file remains fixed because of the truncation operator.

Hence, when the sample exceeds the permitted size for the external file, individuals with a

smaller distance to another individual in the objective space are iteratively eliminated until the

sample has attained the permitted size, thereby avoiding the elimination of boundary solutions.

The density estimator corresponds to the inverse of the Euclidean distance in the objective

space between the individual and the k-th closest individual, where k is equal to the integer part

of the square root of the sum of the size of the main population and the size of the external file.

The strength value for each individual must be calculated to obtain the fitness of an individual.

Therefore, the fitness of an individual is equal to the sum of its raw fitness that corresponds to

the sum of the strength value of the individuals who dominates it and its density estimator.

The environmental selection process used to generate the external file of the next genera-

tion was applied by copying the nondominant individuals of the current main population and

the external file into the external file of the next generation. The environmental selection pro-

cess employed to generate the main population of the next generation was performed by apply-

ing genetic operators to the parents selected from the external file of the next generation. The

parents were selected through a binary tournament using their fitness. When the stop criterion

was fulfilled, the individuals in the external file with a fitness value less than one corresponded

to the nondominant individuals who formed the Pareto border approximation.

The parameterization for SPEA2 was performed using a 2k factorial design with a 95% con-

fidence level that resulted in the following parameters: size of the main population, 300; maxi-

mum number of generations, 500; probability of applying the crossover operator instead of the

mutation operator, 80%; and external file size: 50% of the main population size.

Implementation of solution strategies. The proposed mathematical programming model

was solved with the three methods described above. For the Ɛ-constraint method, each problem

instance was solved using GAMS software, version 24.3.3 with IBM ILOG CPLEX Optimization
Studio solver, version 12.06.1 [21]. The metaheuristics were implemented in C++. All imple-

mentations were solved using a computer with an i7 Intel Core processor operating at 2.40 GHz

and 8 GB of RAM.

Analysis tools

Different elements are introduced to complete the analysis: problem instances, performance

measures of the strategies, and their statistical analysis.

Problems generated. Because no instance was available in the literature to complete our

analysis, six problems were built with the support of two health professionals from two public

clinical centers. Both professionals have been working for several years in the diagnosis and

treatment of childhood obesity. The problem instances were constructed based on the WHO

nutritional recommendations and the experience of health professionals after considering the

needs of individual children diagnosed with obesity in different age groups.
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The food composition database used in the present study corresponds to the database avail-

able in the INTA (Institute of Nutrition and Food Technology) of the University of Chile

(https://inta.cl/tabla-de-composicion-de-alimentos-2018).

Model testing. Different indicators (due to Talbi [17]) are used to complete the analysis

of the results generated with the methods. The notation || � || indicates the Euclidian distance

in the objective space, and | � | indicates the cardinality of a set. The Extent indicator Iex(A) (27)

is used to analyze the diversity within population A generated with a particular method, where

n is the number of objective functions, Zi (u) is the value of the i-th objective function, and Z
(u) is the vector of the objective functions of individual u.

IexðAÞ ¼

 
Xn

i¼1

ðmaxu;v2AkZiðuÞ � ZiðvÞkÞ

!1=2

ð27Þ

The Generational Distance IGD(A,R) (28) measures the distance between the final popula-

tion A and the initial population R, thus measuring the improvement obtained with heuristic

methods. The method with the best performance in calculating this indicator achieves the

greatest distance between its initial and final populations.

IGDðA;RÞ ¼

 
X

u2A

minv2RkZðuÞ � ZðvÞk2

!1=2

=jRj ð28Þ

The Contribution indicator Cont(PF1/PF2) (29) is used to measure the contribution of the

nondominated solutions of two methods using approximations of their Pareto fronts PF1 and

PF2. When combining the solutions from these methods, PF denotes the intersection of sets

PF1 and PF2, PF� includes the nondominated solutions in PF1 [ PF2, W1 is the set of solutions

of PF1 that dominates a solution in PF2, and N1 corresponds to the set of solutions of PF1 that

do not interact with the solutions of PF2 (i.e., solutions in N1 that do not dominate any solu-

tion, are not dominated by any solution and are not clones of any solution of PF2). Finally,

Cont (PF1/PF2) computes the proportion of nondominated solutions that PF1 allocates to PF�,
Cont (PF2/PF1) computes the proportion of nondominated solutions that PF2 allocates to PF�,
and Cont (PF1/PF2) + Cont (PF2/PF1) = 1. For example, if Cont (PF1/PF2) is greater than 0.5,

then Cont (PF2/PF1) is less than 0.5; the method that generates PF1 is better than the method

that generates PF2 in terms of convergence to the Pareto frontier.

Cont ðPF1=PF2Þ ¼ ð
jPFj

2
þ jW1j þ jN1jÞ=jPF�j ð29Þ

In addition, the method takes into account both the number of solutions of the Pareto bor-

der approximation identified with each method and the required execution time.

Statistical tools. The proposed statistical analysis of the performance measures is a multivar-

iate analysis of variance (MANOVA) [28]. This method verifies if, on average, any factor exerts a

statistically significant effect on the mean vector of the response variables (one-way MANOVA).

The hypothesis to be tested using the MANOVA is depicted in formulas (30) and (31):

H0 : m!1 ¼ m!2 ¼ . . . ¼ m!m ð30Þ

H1 : m!i 6¼ m!j; for somei 6¼ j ð31Þ
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Or more explicitly, the calculations are shown in formulas (32) and (33):

H0 :

m11

. . .

m1l

2

6
6
4

3

7
7
5 ¼

m21

. . .

m2l

2

6
6
4

3

7
7
5 ¼ � � � ¼

mm1

. . .

mml

2

6
6
4

3

7
7
5 ð32Þ

H1 :

mi1

. . .

mil

2

6
6
4

3

7
7
5 6¼

mj1

. . .

mjl

2

6
6
4

3

7
7
5; for somei 6¼ j ð33Þ

Where m!i is the vector of means of the response variables due to the i-th factor, while μij is

the average of the j-th response variable due to the effect of the ith factor. The general linear

model is shown in Eq (34):

x!ij ¼ m!þ t!i þ ε!ij ð34Þ

Where:

x!ij: Vector of response variables for the i-th level of the factor in the j-th observation.

m!: Population average vector, common to the factors.

t!i: Effect of factor i on the vector of response variables.

ε!ij: Random error of the response variable vector.

In this paper, the factors correspond to the different algorithm employed, i.e., Ɛ-constraint

method, NSGA-II and SPEA2 methods, whereas the response variables are the two perfor-

mance measures of CPU Time and Extent. The probability of a type I error was set to α = 0.05

(5.0%). Computations for the statistical analysis were performed using R programming on

IDE RStudio and an Intel1 core i7-7500 quad core processor operating at 2.70 GHz. More-

over, a four hypothesis contrast test was conducted, namely, Hotelling-Lawley, Roy, Pillai and

Wilk [29].

Results

Test instances

The six problem instances mentioned above were associated with children diagnosed with

obesity in three age groups: 4–8 years, 9–13 years and 14–18 years. Each designed instance dif-

fers in the amount of recommended daily energy, suggested dietary fiber, and recommended

amounts for some or all of the micronutrients considered (see Table 1). The notations in

Table 1 that characterize the instances include three elements. The letter indicates the gender

(“a”: girl; “o”: boy), the first number indicates the lower limit of the age range, and the second

number indicates the upper limit of the age range, for example, o:4–8 indicates a boy aged 4–8

years.

Table 2 indicates the parameters that do not depend on certain instances and are the valid

nutritional recommendations for children aged 4–18 years. Thus, Table 2 includes recommen-

dations for the proportion of energy contributed by each macronutrient, the proportion of

energy contributed by each mealtime, the proportion of energy contributed by different fatty

acids, and minimum/maximum allowed food portion. Table 2 also indicates the recommenda-

tions for daily and weekly food group consumption proposed by the INTA. Furthermore, a

seven-day planning period was considered for all instances because the proposed model inde-

pendently considers the weekly planning period.
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Numerical results

The result of the performance measures are summarized in Table 3. Because the metaheuristics

are stochastic processes, the average value of 10 executions is shown. For the Ɛ-constraint

method, GAMS uses a Branch-and-Cut algorithm, and therefore only a single execution is per-

formed. As an example of solutions obtained using these methods, Table 4 shows one of the

Pareto border solutions for each method for one day for 4- to 8-year-old children. Importantly,

the Pareto border is composed of a set of solutions that are not dominated by each other. The

Table 1. Test instances for each gender (a/o) and age group.

o:4–8 a:4–8 o:9–13 a:9–13 o:14–18 a:14–18

Energy [kJ/day] 5857.6 5020.8 7531.2 6694.4 9204.8 7531.2

Vitamin A [μg/day] 400/1300 400/1300 600/1700 600/1700 900/2800 700/2800

Vitamin B1 [mg/day] 0.6/ND 0.6/ND 0.9/ND 0.9/ND 1.2/ND 1/ND
Vitamin B2 [mg/day] 0.6/ND 0.6/ND 0.9/ND 0.9/ND 1.3/ND 1/ND
Vitamin B3 [mg/day] 8/15 8/15 12/20 12/20 16/30 14/30

Vitamin B6 [mg/day] 0.6/40 0.6/40 1/60 1/60 1.3/80 1.2/80

Vitamin B9

[μg/day]

200/400 200/400 300/600 300/600 400/800 400/800

Vitamin B12 [μg/day] 1.2/ND 1.2/ND 1.8/ND 1.8/ND 2.4/ND 2.4/ND
Vitamin C [mg/day] 25/650 25/650 45/1200 45/1200 75/1800 65/1800

Vitamin E [mg/day] 7/140 7/140 11/220 11/220 15/260 15/260

Calcium [mg/day] 1000/2500 1000/2500 1300/3000 1300/3000 1300/3000 1300/3000

Copper [mg/day] 0.44/3 0.44/3 0.7/5 0.7/5 0.89/11 0.89/8

Iron [mg/day] 8/11 8/11 8/11 8/11 11/20 15/20

Magnesium [mg/day] 150/250 150/250 300/400 300/400 300/400 300/400

Phosphorus [mg/day] 500/3000 500/3000 1250/4000 1250/4000 1250/4000 1250/4000

Potassium [mg/day] 2457/4500 2106/4500 3159/4500 2808/4500 3510/4700 3510/4700

Selenium [μg/day] 15/40 15/40 15/40 15/40 40/55 40/55

Sodium [mg/day] 500/1400 500/1200 500/1800 500/1600 500/2000 500/1800

Zinc [mg/day] 5/12 5/12 8/23 8/23 9/24 11/24

Dietary fiber [g/day] 12/20 12/20 15/30 15/30 20/40 20/40

https://doi.org/10.1371/journal.pone.0216516.t001

Table 2. Recommendations for macronutrients, mealtimes, fatty acids, portion sizes, and food groups (daily and weekly).

Parameter Value Food groups RGDIg/RGDSg RGSIg/RGSSg
PEMI1/PEMS1 0.45/0.65 Vegetable 2/8 7/56

PEMI2/PEMS2 0.10/0.30 Fruit 2/8 7/56

PEMI3/PEMS3 0.20/0.35 Dairy products 2/8 7/56

ECI1/ECS1 0.1/0.15 Fish 0/1 1/3

ECI2/ECS2 0.05/0.1 Red meat 0/1 1/3

ECI3/ECS3 0.3/0.4 Poultry 0/1 1/3

ECI4/ECS4 0.05/0.1 Egg 0/1 1/3

ECI5/ECS5 0.1/0.15 Noodles 0/1 2/5

ECI6/ECS6 0.2/0.3 Rice 0/1 2/5

RL1 0.1 Potatoes 0/1 2/5

RL2 0.1 Legumes 0/1 1/3

RL4 0.1

RL5 0.012

LIP/LSP 0.5/1.5

https://doi.org/10.1371/journal.pone.0216516.t002
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produced menus generally show that all methods repeat certain types of food, with a strong

relationship between price and nutritional benefit (e.g., skim milk, natural yogurt, and lentils

with rice). Notably, the evolutionary methods select many of the foods selected by the exact

method.

Table 3. Computational performance of methods in groups stratified according to gender (a/o) and age.

Method Indicators o:4–8 a:4–8 o:9–13 a:9–13 o:14–18 a:14–18

Ɛ-constraint method (1) No. of solutions 48 46 51 50 51 49

Extent 54.69 52.48 51.09 52.69 61.73 59.20

CPU Time [s] 57192.53 61397.81 55013.72 60227.17 55178.29 72538.67

Cont (1/2) 0.21 0.2 0.19 0.2 0.17 0.18

Cont (1/3) 0.37 0.4 0.33 0.33 0.29 0.28

NSGA-II (2) No. of solutions 300 300 300 300 300 300

Extent 39.57 36.25 44.09 45.66 50.75 50.67

CPU Time [s] 123.76 133.90 149.18 127.86 124.97 122.95

Cont (2/1) 0.79 0.8 0.81 0.8 0.83 0.82

Cont (2/3) 0.58 0.73 0.65 0.64 0.65 0.62

Generational Distance 36.57 52.27 30.18 35.50 34.34 22.59

SPEA2 (3) No. of solutions 150 150 150 150 150 150

Extent 39.49 32.62 46.98 46.13 51.53 50.32

CPU Time [s] 274.42 283.83 277.41 280.41 266.06 268.41

Cont (3/1) 0.63 0.6 0.67 0.67 0.71 0.72

Cont (3/2) 0.42 0.27 0.35 0.36 0.35 0.38

Generational Distance 44.30 59.38 23.03 22.22 18.03 19.83

https://doi.org/10.1371/journal.pone.0216516.t003

Table 4. Menus created using the Ɛ-constraint, NSGA-II and SPEA2 methods.

Mealtime Dish Method

Ɛ-constraint NSGA-II SPEA2

Food Portion Food Portion Food Portion

Breakfast Hot

beverage

Skim milk 0.5 Quaker oats with milk 1.2 Skim milk 0.6

Sandwich Whole wheat bread with

ham

0.5 Whole wheat bread with

honey

0.9 Whole wheat bread with margarine 0.5

Morning snack Fruit Strawberries 0.6 Cantaloupe 1.0 Cherries 0.6

Lunch Salad Lettuce 1.4 Broccoli 1.0 Celery salad 1.4

Main course Fish soup 0.5 Boiled potatoes with egg 0.5 Chickpeas 0.5

Dessert Natural yogurt 0.5 Plum 1.1 Blueberries 1.4

Afternoon

snack

Fruit Cherries 0.5 Raspberries 1.1 Cherries 0.6

Teatime Hot

beverage

Skim milk 0.5 Quaker oats with milk 0.6 Quaker oats with milk 0.8

Sandwich Whole wheat bread with

ham

0.5 Whole wheat bread with ham 0.7 Whole wheat bread with cottage

cheese

0.5

Dinner Salad Lettuce 1.0 Green beans 0.5 Celery salad 1.4

Main course Lentils with rice 0.5 White fish with potato 1.2 Potato, pumpkin, and beef stew 0.5

Objective Values

Z1 [USD] 4.76 2.53 3.78

Z2 [mg] 96.1 143.5 105.5

Z3 [u] 60.8 72.2 70.2

Z4 [%] 0 12 7

https://doi.org/10.1371/journal.pone.0216516.t004
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Statistical analysis

Given the inherent randomness of the solution methods employed, a thorough statistical anal-

ysis was conducted on the results of performance measures using the tools introduced in Sec-

tion 2.3.3 to adequately compare the methods.

Statistical comparison of the performance measures CPU time and Extent. For a MAN-

OVA to be appropriate, a non-negligible correlation must exist between the response variables.

Thus, in this study, the correlation between the CPU Time and Extent was calculated, obtaining

a Pearson’s linear correlation coefficient r = 0.692746, indicating that the application of the

MANOVA is appropriate.

The null hypothesis of MANOVA, namely, the factors do not exert a statistically significant

effect on the mean vector of the response variables, was considered. The results of the various

tests performed indicate that this null hypothesis must be rejected because the factors exert a

statistically significant effect on the response variables. First, an a priori natural-log transfor-

mation was performed on the observations obtained using the models. Second, a four hypothe-

sis contrast test was conducted, namely, Hotelling-Lawley, Roy, Pillai and Wilk [29]. Third,

the assumptions of the MANOVA model were tested, i.e., multivariate normality, homoge-

neous covariance matrix and independence. Table 5 summarizes these results. Notably, p-val-

ues less than 5% for all the tests corroborate the findings mentioned above.

The tests of differences in means between pairs of factors, the 95% confidence intervals (in

terms of the original variables) and the p-values are shown in Table 6. Based on these results

and the distribution of the values shown in Figs 3 and 4, we concluded that a significant differ-

ence in the Extent variable exists between NSGA-II & Ɛ-constraint and between SPEA2 & Ɛ-

constraint, with the Ɛ-constraint method being superior to the NSGA-II & SPEA2 methods.

On the other hand, the difference in Extent between the methods NSGAII & SPEA2 is not sta-

tistically significant. Regarding CPU Time in hours, we concluded that the methods NSGA-II

& SPEA2 are superior to the Ɛ-constraint method, while the differences in the mean values cal-

culated using the three methods is not statistically significant.

Statistical comparison of the performance measure Generational Distance. The pro-

posed statistical analysis is an analysis of variance (ANOVA) [28], as we are interested in the

effect of one factor (with two levels) on a unique response variable. The factor is, again, the dif-

ferent algorithms employed, i.e., NSGA-II and SPEA2, excluding the algorithm C-M (which is

not a population-based algorithm). The response variable is the performance measure of Gen-
erational Distance.

Computations performed in this analysis were executed on the same machine as the one-

way MANOVA, resulting in an acceptance of the null hypothesis with a p-value of 0.616, i.e., a

Table 5. Summary of assumptions and hypothesis testing using one-way MANOVA.

Item Statistical Test p-value

Hypothesis Test Hotelling-Lawley < 2.2e-16

Roy < 2.2e-16

Pillai 0.0002204

Wilks < 2.2e-16

Assumption: Multivariate Normality Skewness criteria 0.5053

Kurtosis criteria 0.32

Skewness and kurtosis criterion 0.3519464

Assumption: Homogeneous covariance matrix Box’s M-test 0.07138

Assumption: Independence Durbin-Watson 0.4583

https://doi.org/10.1371/journal.pone.0216516.t005
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statistically significant difference in the performance of Generational Distance is not observed.

As usual, assumptions are held, and they are summarized in Table 7.

Discussion

The performance measures that were analyzed in this study are the CPU Time, Extent and Gen-
erational Distance (the latter was analyzed using the population-based metaheuristics). Based

on the statistical analysis, the Ɛ-constraint method produced better results in terms of diversity

than the metaheuristic methods, but at the expense of a significantly longer execution time

than required by metaheuristics. A potential explanation for this finding is that the Ɛ-con-

straint method solves multiple versions of the same model with different combinations of epsi-

lon (ε) values and the software (GAMS) uses the exact Branch-and-Cut method. Regarding

the comparison between the metaheuristic methods used in the present study, no statistically

significant differences are observed in the Extent, CPU Time and Generational Distance
indicators.

Table 6. Tests of differences in mean values between pairs of factors.

Variable Compared factors Average difference Lower limit Upper limit p-value

Extent NSGA-II & Ɛ-constraint -10.815 -19.6341 -1.9958 0.0159

SPEA2 & Ɛ-constraint -10.802 -19.6208 -1.9825 0.0161

SPEA2 & NSGA-II 0.0134 -8.8058 8.8325 0.9999

CPU Time [hrs] NSGA-II & Ɛ-constraint -16.7021 -18.2785 -15.1257 0.0000

SPEA2 & Ɛ-constraint -16.6619 -18.2383 -15.0855 0.0000

SPEA2 & NSGA-II 0.0402 -1.5363 1.6166 0.9976

https://doi.org/10.1371/journal.pone.0216516.t006

Fig 3. Box plot of the factors for the Extent variable.

https://doi.org/10.1371/journal.pone.0216516.g003
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On the other hand, Cont indicators were used to measure the proportion of individuals in a

Pareto front approximation built by combining two populations. The contribution of the Ɛ-

constraint method was less than 40%, although in all studied cases, the individuals included in

the Pareto front approximation generated using this method still belonged to the approxima-

tion built from its combination with the population generated using the NSGA-II and SPEA2

methods. Interestingly, although all the solutions of the Ɛ-constraint method were part of the

Pareto border built by combining their solutions with those obtained using metaheuristics, the

metaheuristic methods provided a large percentage of solutions that were not dominated by

the solutions obtained using the exact Ɛ-constraint method. Additionally, the computational

time required was considerably shorter. Notably, the value of this measure is influenced by the

population size defined for each method.

Conclusions

The multiobjective approach proposed in this paper generates menus that minimize the con-

sumption of substances that are particularly harmful to obese children. It also minimizes the

Fig 4. Box plot of the factors for the CPU Time variable.

https://doi.org/10.1371/journal.pone.0216516.g004

Table 7. Summary of assumptions for the one-way ANOVA.

Assumption Statistic Test p-value

Normality Shapiro-Wilk 0.0818

Homoscedasticity Bartlett 0.2584

Independency Durbin-Watson 0.7651

https://doi.org/10.1371/journal.pone.0216516.t007
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nutritional mismatch and cost of planning to avoid limited access to healthy diets because of

economic issues, while complying with the nutritional recommendations of specialized orga-

nizations. The proposed model for MO-NMPP-CHO with the created instances was solved

with a deterministic method and two metaheuristic methods.

Although childhood obesity is a multifactorial problem, the formation of healthy eating

habits at an early age creates benefits over the long term. Thus, the multiobjective mathemati-

cal programming model for planning nutritional menus described in this paper appears to be

an appropriate method to minimize exposure to the major risk factors for the development of

chronic diseases associated with childhood obesity, the total cost of nutritional planning, and

nutritional mismatch.

Nevertheless, the numerical results indicate that solving this type of problem using exact

methods is not appropriate to address real or complex instances because of their execution

time. Positive results are obtained using evolutionary techniques that require appropriate

computational times. Although these techniques only represent an approximate analysis,

health professionals can provide guidance to create monthly and weekly plans in a fast and

personalized manner, based on the requirements of each child.
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