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Abstract

The common cutworm (CCW; Spodoptera litura Fabricius) is a serious herbivorous insect

pest of soybean (Glycine max) in Asia and Oceania. Previously, we identified quantitative

trait loci (QTLs) for CCW-antibiosis-resistance, CCW-1 and CCW-2, and antixenosis-resis-

tance, qRslx1 and qRslx2, in the cultivar ‘Himeshirazu’. The effects of these QTLs are useful

in the breeding of CCW-resistant cultivars. In this study, we conducted an antixenosis bioas-

say on CCW using recombinant inbred lines derived from a cross between a wild soybean

(Glycine soja) and the leading cultivar ‘Fukuyutaka’ to identify CCW-resistance genes in G.

soja. The QTL analysis revealed six and four novel antixenosis-resistance QTLs in 2012

and 2013, respectively. Among them, the QTLs on chromosomes 2 and 7, designated

qRslx4 and qRslx3, respectively, were stably detected in both years. qRslx3 exhibited the

largest effect in both years, suggesting that qRslx3 can be exploited in the breeding of

CCW-resistant soybean. Furthermore, qRslx3 and qRslx4 can be used, along with previ-

ously reported QTLs from ‘Himeshirazu’, to enhance the CCW-resistance of soybean culti-

vars because their chromosomal positions are unique. These new CCW-resistance QTLs

from G. soja should play important roles in the breeding of CCW-resistant soybean cultivars.

Introduction

The common cutworm (CCW, Spodoptera litura Fabricius), which is an insect pest of many

important crops in Asia and Oceania, feeds on the leaves of more than 100 plant species [1]

and causes serious yield losses to soybean (Glycine max). The development of cultivars with

CCW resistance would reduce insecticide applications and stabilize soybean production. How-

ever, the breeding of CCW-resistant soybean cultivars has been unsuccessful for many years.

The phenotyping of resistance under field conditions is unreliable because the extent of the

feeding damage is largely affected by the distance from plants on which the CCW had oviposi-

tioned and because other insect species cause feeding damage. In addition, the resistant germ-

plasm used for the breeding have undesirable agronomic traits, which have made it difficult to
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breed resistant cultivars with high yield and quality levels. Marker-assisted selection (MAS) is

expected to be a useful tool for CCW-resistance breeding in soybean because breeders can

select lines containing resistance genes without performing phenotypic evaluations. To exploit

MAS in the breeding of CCW-resistant cultivars, a genetic analysis is necessary to develop

markers associated with resistance genes.

The resistance mechanisms to herbivorous insects are generally divided into antixenosis

(affecting feeding behaviors of insect pests; non-preference mechanisms) and antibiosis (hav-

ing detrimental effects on development), and genetic analyses have been conducted to identify

resistance genes to herbivorous insects. Three Japanese soybean landraces, ‘PI171451’,

‘PI227687’ and ‘PI229358’ were initially identified resistant to the Mexican bean beetle (Epi-
lachna varivestis Mulsant) [2]. Subsequently, quantitative trait loci (QTLs) for antixenosis and

antibiosis resistance to corn earworm (Helicoverpa zea Boddie), an herbivorous insect of soy-

bean in the USA, were reported in the same three landraces [3–5]. In particular, both antixeno-

sis- and antibiosis-resistance-related QTLs to corn earworm were located on chromosome

(Chr) 7, in earlier linkage group (LG) M. Interestingly, the QTLs are effective against soybean

looper (Pseudoplusia includens) and tobacco budworm (Heliothis virescens) [6–8]. Addition-

ally, the QTL detected on Chr 15 (LG-E) has major effects in two different recombinant-inbred

line (RIL) populations [9]. A QTL analysis for CCW-resistance revealed three major QTLs for

antibiosis, qCCW6_1, qCCW10_1 and qCCW12_2, and three major QTLs for antixenosis,

qCCW10_1, qCCW10_2 and qCCW12_1, in the RIL populations derived from Chinese soy-

bean germplasms [10]. Furthermore, 26 and 43 antibiosis-resistance QTLs for CCW were

detected in 2009 and 2011, respectively, using association analyses [11]. Although these reports

revealed many antibiosis- and antixenosis-resistance QTLs, the resistance mechanisms associ-

ated with these genes are still unresolved.

A forage soybean cultivar, ‘Himeshirazu’ (PI594177), exhibits clear resistance to CCW [12].

Two antibiosis-resistance QTLs, CCW-1 and CCW-2, were detected on Chr 7 by a QTL analy-

sis of an F2 population derived from a cross between the susceptible cultivar ‘Fukuyutaka’

(PI506675) and ‘Himeshirazu’ [13]. The resistance alleles of both loci originated from ‘Hime-

shirazu’. CCW-1 and the resistance QTL to corn earworm on Chr 7 detected in PI229358 were

proven to be identical by crossing tests [14]. However, an antixenosis-resistance analysis using

RILs developed from the F2 population revealed two antixenosis-resistance QTLs [15]. QTLs

on Chr 7 and Chr 12 (LG-H) were named QTL for resistance to S. litura antixenosis1 (qRslx1)

and qRslx2, respectively. The resistance allele of qRslx1 was derived from ‘Himeshirazu’,

whereas that of qRslx2 was from ‘Fukuyutaka’. The location of qRslx1 is almost the same as

that of CCW-1, suggesting that the same gene provides both antibiosis and antixenosis resis-

tance. We introduced CCW-1 (qRslx1), CCW-2 or both into ‘Fukuyutaka’ to develop near-iso-

genic lines (NILs) and confirmed the effects of these genes [14]. Under field conditions, CCW-
1 NILs suppress CCW larval accumulation [16].

Although CCW-1 (qRslx1) and CCW-2 are effective, the resistance level of the NIL contain-

ing both resistance genes is still lower than that of ‘Himeshirazu’ [14, 16]. Thus, we focused on

CCW resistance in wild soybean (Glycine soja) as a new resistance gene source. G. soja is an

annual plant that is found in eastern and northeastern China, Japan, Korea and far eastern

Russia [17]. In Japan, G. soja is distributed broadly in disturbed habitats, such as riverbanks,

roadsides and at the edges of fields [18–21]. To our knowledge, no reports on the CCW resis-

tance of G. soja exist. We empirically know that G. soja is highly resistant to herbivorous

insects and that defoliated areas of G. soja are smaller than those of soybean when collected

germplasm is grown. The objectives of this study were (1) to assess the CCW-antixenosis resis-

tance of G. soja and (2) to identify novel CCW-antixenosis-resistance genes using RILs derived

from a cross between G. soja and ‘Fukuyutaka’.

Antixenosis resistance QTLs to common cutworm in wild soybean
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Materials and methods

Evaluation of antixenosis resistance to CCW

A set of 202 RILs were developed from an F2 population derived from a cross between G. soja
(NIAS Genebank accession JP110755) collected in Hiroshima Prefecture in southern Japan

and ‘Fukuyutaka’ (NIAS Genebank accession JP29668), which is a leading cultivar in south-

western Japan and is susceptible to CCW. The F7 and F8 RILs and their parents were grown in

a field (Andosol soil) at the Kyushu Okinawa Agricultural Research Center (located at 32˚

520N, 130˚440E) in 2012 and 2013. The planting dates were 26 June 2012 and 25 June 2013.

The inter-row spacing and hill spacing were 70 cm and 42 cm, respectively. Three individuals

were grown for each RIL, and samplings of leaflets were conducted equally. The flowering

dates of the RILs were recorded when flowering of two individuals were observed. Stakes were

used to support each plant because G. soja and the RILs have long stems. Approximately three

stems per plant were guided to the stakes, and other stems were cut because they may twine to

the stakes of other lines. No pesticides were applied over the experimental period. The proce-

dure for the bioassay of antixenosis was almost the same as previously reported [15]. Briefly,

an antixenosis test was performed in an air-conditioned room maintained at 23.5 ± 1˚C with a

12-h light/12-h dark photoperiod. The bioassay was performed in Petri dishes, with the bottom

of each dish being covered with a moist filter paper. Fully expanded leaflets of a similar age

were collected and cut into square segments of approximately 25 mm × 25 mm. A standard

leaflet segment of ‘Akisengoku’ and a test leaflet segment of one of the RILs, or a parent, were

placed with their abaxial sides facing upward on the filter paper. ‘Akisengoku’ was used as a

standard cultivar for comparison in the feeding tests conducted with the RIL, because it exhib-

its intermediate antixenosis-resistance between those of ‘Fukuyutaka’ and G. soja. Third-instar

CCW larvae that had been reared on an artificial diet (Insecta LF S; Nippon Nousan Kougyo

Co., Yokohama, Japan) were used for the bioassay. A third-instar CCW larva was placed into

each petri dish on the filter paper between the leaflet segments. Approximately 14 h later,

visual defoliation was assessed and rated on a scale of 0 to 10 for the two leaflet segments (Fig

1). A rating of 0 implied that the leaflet segment was not defoliated, while a rating of 10 implied

that the leaflet segment was fully defoliated. The antixenosis-resistance levels of each RIL and

the parents were evaluated using 12 and 72 leaflet segments, respectively. The following for-

mula was used to calculate the antixenosis index (C), which was used to compare the test plants

with the standard plant [22]:

C ¼ 2
P

A=ð
P

M þ
P

AÞ; ð1Þ

where A = the defoliation rate of the sample leaf segment and M = the defoliation rate of the

standard leaf segment (‘Akisengoku’). A C value was calculated using 12 leaflet segments. A C

Fig 1. Examples of the leaflet defoliation ratings of soybean. The numbers below the pictures are the defoliation values (on a scale of 0

to 10) for each leaflet segment.

https://doi.org/10.1371/journal.pone.0189440.g001
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value of 1 implied that the feeding on the test plant was the same as the feeding on the standard

plant. A C value > 1 implied a preference for the test plant, and a C value < 1 implied that the

test plant had a greater antixenosis-resistance than the standard cultivar.

Genotyping of markers

Total genomic DNA was extracted from young fresh leaves (0.3 g) at the vegetative growth

stage according to the procedure of Khosla et al. [23] with minor modifications. A total of 163

genome-wide single nucleotide polymorphism markers (S1 Table) were selected based on the

genotype information and analyzed as described by Kaga et al. [24] using the MassARRAY sys-

tem (Agena Bioscience, San Diego, CA, USA). In addition, 236 simple sequence repeat (SSR)

markers (S1 Table) were selected based on the F2 linkage map of the same cross combination

and analyzed as described by Kuroda et al. [25].

Linkage and QTL analyses

A genetic linkage map was constructed using JoinMap 4.0 [26]. The logarithm-of-odds thresh-

old for a linkage grouping was 4.0, and the marker order was determined using a maximum

likelihood mapping algorithm. The recombination frequencies were converted into genetic

distances (cM) using the Haldane mapping function. A QTL analysis was conducted with the

mean values of the RILs using the software package MultiQTL ver. 2.6 as described by Kaga

et al. [27]. Briefly, a single QTL model was fit for each trait–chromosome (linkage group) com-

bination. Chromosomal statistical significance thresholds (α = 0.05) for putative QTLs were

tested by 10,000 runs of a permutation test [28]. Multiple interval mapping [29] was then con-

ducted to reduce the background variation, taking into account QTL effects from other chro-

mosomes. After the permutation test runs, the parameters of significant QTLs (statistical

thresholds α = 0.05) were reported as position, substitution effect, and percentage of variance

explained (PVE). RILs were classified into two groups based on the genotypes of the detected

QTLs, and a one-way analysis of variance was conducted using PASW Statistics ver. 18 to com-

pare the mean C values.

Results

Antixenosis-resistance was evaluated using a preference comparison between the test line and

a standard cultivar, ‘Akisengoku’. The average C values of G. soja and ‘Fukuyutaka’ were 0.29

and 1.57, respectively, in 2012, and 0.50 and 1.54, respectively, in 2013 (Fig 2). The C values of

G. soja were significantly lower than those of ‘Fukuyutaka’ in both years (p< 0.001). The fre-

quency distributions of the 202 RILs’ C values were continuous and extended beyond the

ranges of the parents in both years (Fig 2). The ranges of the RILs’ C-values were 0.05 to 1.81

in 2012, and 0.07 to 1.80 in 2013, respectively. The mean C-values of the RILs were 0.95 and

0.82 in 2012 and 2013, respectively. C-values of 3.0% and 23.1% for the RILs were smaller than

those of G. soja, and C-values of 9.0% and 3.0% were larger than those of ‘Fukuyutaka’ in 2012

and 2013, respectively. The broad-sense heritability of antixenosis-resistance was estimated as

90.2 and 80.2%, in 2012 and 2013, respectively. A significant correlation was detected between

the C values of 2012 and 2013 (r = 0.57, p< 0.001).

We constructed a linkage map of the RILs using the segregation data for 399 loci in 202

RILs. The total map length was 2,376 cM (S1 Fig) and the average and maximum marker dis-

tance were 6.3 cM and 35.1 cM, respectively. In total, 37 marker loci (9.3%) showed segregation

ratios significantly (p� 0.05) deviated from the expected 1:1 ratio of G. soja and Fukuyutaka

homozygote. Most markers with segregation distortion were identified at the distal ends of

chromosomes. Severe segregation distortion (p� 0.01) was observed for the markers on Chr 4

Antixenosis resistance QTLs to common cutworm in wild soybean
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(14 cM), Chr 6 (37 cM and 169 cM), Chr 8 (7 cM) and Chr18 (71 cM) (S1 Table). The genotype

frequency of ‘Fukuyutaka’ near these regions was increased.

Six and four QTLs associated with C values were detected in 2012 and 2013, respectively

(Table 1). The resistance alleles of these QTLs were derived from G. soja, except the two QTLs

detected on Chr 9 (LG-K) and Chr 16 (LG-J) in 2012. The substitution effects of C values and

the PVEs of the resistance QTLs derived from G. soja ranged from −0.384 to 0.182 and from

3.1 to 24.7, respectively. Because the QTLs on Chr 2 (LG-D1b) and Chr 7 were detected in

both years, we have provisionally designated these QTLs as QTL for resistance to S. litura anti-
xenosis 4 (qRslx4) and qRslx3, respectively. qRslx3 had the greatest substitution effect and PVE

in both years. We also conducted a QTL analysis for days to flowering (S2 Table, S2 Fig). QTLs

for flowering time were detected on Chr 16 and 19 (LG-L) near the QTLs for antixenosis-resis-

tance in 2012.

To clarify the effects of qRslx3 and qRslx4, RILs were classified into two genotype-based

groups, homozygous for G. soja and homozygous for ‘Fukuyutaka’, using markers located on

the both sides of each QTL (Fig 3). To simplify the analysis, data from RILs that were

Fig 2. Frequency distributions of the antixenosis indices of the recombinant-inbred lines derived

from a cross between Glycine soja and ‘Fukuyutaka’ in 2012 (A) and 2013 (B). The antixenosis

resistance was evaluated using C values (calculated using Equation 1), which represent the resistance

relative to that of a standard cultivar, ‘Akisengoku’. Arrows and vertical lines represent the positions of the

standard deviations and mean values of the parents, respectively.

https://doi.org/10.1371/journal.pone.0189440.g002
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heterozygous at the QTL regions or had undergone recombination in the QTL regions were

excluded. The markers used to classify the RILs are listed in Table 1. qRslx4 was detected on

different, but close, intervals on Chr 2 in 2012 and 2013 (Fig 4, Table 1). The markers,

C02-BARC-026065-05239 and GMES2618, covering both intervals, were used to classify the

genotypes of RILs of qRslx4. A one-way analysis of variance revealed that qRslx3 and qRslx4
exhibited significant effects on the C values of the RILs (Fig 3).

Discussion

We compared the antixenosis-resistance of G. soja and ‘Fukuyutaka’ by evaluating the C val-

ues, revealing that G. soja possessed a greater antixenosis-resistance than ‘Fukuyutaka’

Table 1. Quantitative trait loci (QTLs) associated with the antixenosis index (C value) detected in the recombinant-inbred lines derived from Gly-

cine soja and ‘Fukuyutaka’.

Year Chr QTL name LODa PEVb Substitution effectc Peak position (cMd) QTL region (cM)

2012 2 qRslx4 2.7 4.9 -0.173 136.9 Satt459 (127.3)—GMES2618 (144.4)

2012 7 qRslx3 7.6 12.8 -0.281 3.4 GMSC514 (0.0)—Satt150 (9.0)

2012 9 4.1 5.4 0.182 35.1 C09-BARC-015513-01990 (34.2) -Satt055 (35.4)

2012 14 5.8 8.5 -0.229 38.2 C14-BARC-044549-08718 (30.1)—Satt416 (39.1)

2012 16 2.8 4.3 0.163 20.0 C16-BARC-016775-02320 (16.0)—s016200713 (23.5)

2012 19 5.2 9.9 -0.247 75.0 Satt561 (68.4)—Sat_286 (82.8)

2013 2 qRslx4 2.8 4.5 -0.163 125.4 C02-BARC-026065-05239 (120.5)—Satt274 (127.2)

2013 6 5.6 7.9 -0.217 124.1 sF3H (122.6)—Satt708 (126.8)

2013 7 qRslx3 11.8 24.7 -0.384 4.1 GMSC514 (0.0)—Satt150 (9.0)

2013 18 2.2 3.1 -0.136 49.4 Satt352 (43.4)—Satt505 (50.9)

a Logarithm-of-odds.
b Percentage of variance explained.
c Substitution effect of the G. soja allele. A negative value implies that the G. soja allele had a resistance effect.
d Centimorgan.

https://doi.org/10.1371/journal.pone.0189440.t001

Fig 3. Differences in the mean antixenosis (C) values of the Glycine soja × ‘Fukuyutaka’-derived

recombinant-inbred lines for each genotype in (A) 2012 and (B) 2013. Each genotype of qRslx3 and

qRslx4 is represented by markers in the quantitative trait loci regions (Table 1). Values represent

means ± standard errors. *, *** Significant at the 0.05 and 0.001 levels, respectively.

https://doi.org/10.1371/journal.pone.0189440.g003
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(p< 0.001, Fig 2). Thus, G. soja possesses resistance gene(s) or allele(s) that can enhance the

CCW resistance of soybean. The frequency distributions for the C values of the RILs derived

from the cross between G. soja and ‘Fukuyutaka’ were continuous in both years, suggesting

that the C value is quantitatively controlled by multiple loci. To elucidate the genetic basis for

the CCW-antixenosis-resistance of G. soja, we constructed a genetic linkage map for the RILs

and conducted a QTL analysis. The total length of the linkage map was 2,376 cM (S1 Fig)

which is comparable with the 2,524 cM and 2,383 cM lengths of the linkage maps developed

by Song et al. [30] and Liu et al. [31], respectively. The order of the markers on the linkage

map generally agreed with the positions on the genome sequence of Glyma1 [32], with excep-

tions for inversions among several markers on the top and bottom of Chr 5 (LG-A1) and the

top of Chr 13 (LG-F) (S1 Table). Six and four QTLs for antixenosis-resistance were detected in

2012 and 2013, respectively. Among them, a G. soja allele on qRslx3 had the greatest substitu-

tion effect on the C values and the PVEs in both years (Fig 4, Table 1). qRslx3 could be useful

for breeding because it is stable and the most effective G. soja resistance allele against CCW. As

described above, the CCW-resistance genes CCW-1 (qRslx1) and CCW-2 were identified on

Fig 4. Location of the quantitative trait loci (QTLs) for antixenosis-resistance, qRslx4 on chromosome

2 (left) and qRslx3 on chromosome 7 (right) in Glycine soja × ‘Fukuyutaka’-derived recombinant-

inbred lines. Labels to the right of the bars show the marker names. The white and gray circles represent the

locations of the antixenosis-resistance QTLs observed in 2012 and 2013, respectively.

https://doi.org/10.1371/journal.pone.0189440.g004
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Chr 7 [13, 15]. A resistance gene to corn earworm was reported at almost the same position as

CCW-1 (qRslx1) [3–5]. In contrast, the position of qRslx3 is clearly different from those of

CCW-1 (qRslx1) and CCW-2 because qRslx3 is separated by approximately 35 cM and 15 cM,

respectively. Thus, qRslx3 can be exploited as a new source of CCW resistance to enhance soy-

bean lines that also possess CCW-1 (qRslx1) and CCW-2. Additionally, an antibiosis-resistance

QTL to CCW, qCCW7_1, was detected from a Chinese soybean germplasm on Chr 7, and

reported to be close to CCW-2 [10]. It is difficult to determine whether qRslx3 and qCCW7_1
are identical, because of the lack of common markers in their linkage maps. Recently, an associ-

ation analysis revealed an antibiosis-resistance QTL to CCW near the SSR marker GMES3041

on Chr 7 [11]. Based on the physical positions of the primer sequences, the marker (14.9 Mb) is

located on the interval between C07-BARC-032007-07237 (13.6 Mb) and C07-BARC-017117-

02203 (15.4 Mb) in our linkage map; therefore, the QTL is clearly different from qRslx3. Thus,

Chr 7 is an important chromosome for insect resistance to soybean, harboring many resistance

genes. Because qRslx3 is expected to play an important role in the breeding of CCW-resistant

cultivars, more detailed analyses are necessary to reveal the precise position and degree of the

antixenosis effect.

Another significant QTL, qRslx4, was detected on the bottom of Chr 2 in both years (Fig 4,

Table 1). The PVE and the substitution effect of the G. soja allele on qRslx4 were less than

those of qRslx3 (Fig 3). Although a two-way ANOVA was conducted to elucidate the epistatic

effect between qRslx3 and qRslx4, no significant epistatic effect was detected in either year. An

antixenosis-resistance QTL to corn earworm was detected on Chr 2 in the region between SSR

markers Satt290 and Satt141 [3, 33]. The estimated linkage distance between the antixenosis-

resistance QTL to corn earworm on Chr 2 and qRslx4 was determined to be approximately 30

cM with the aid of Soybase (http://www.soybase.org/), indicating that these QTLs are not

derived from the same gene. Similarly, an antibiosis-resistance QTL to CCW, qCCW2_1, was

detected on Chr 2 from a Chinese soybean germplasm [10]. However, qRslx4 and qCCW2_1
are probably not the same gene because qCCW2_1 exhibits only epistatic effects and no QTLs

with additive effects was detected on Chr 2. Furthermore, an association analysis of antibiosis-

resistance to CCW in a Chinese soybean germplasm population revealed four antibiosis-resis-

tance QTLs to CCW on Chr 2 [11]. The QTL detected at Sat_289 and qRslx4 may be the same

gene because the estimated distance between the flanking markers of these QTLs was approxi-

mately 10 cM. Two QTLs for resistance to bean pyralid (Lamprosema indicata Fabricius), BP2-
1 and BP2-2, were reported on Chr 2 [34]. These QTLs are clearly different from qRslx4
because the estimated linkage distances were more than 60 cM. We evaluated the effects of

qRslx4 and revealed relationships with previously reported resistance QTLs. These could be

used to enhance the CCW resistance of soybean cultivars.

The QTLs on Chr 9, 14, 16 and 19 were detected only in 2012, and the QTLs on Chr 6 and

18 were detected only in 2013. Resistance QTLs to CCW, corn earworm and bean pyralid have

been reported on these six chromosomes and some may be common to other resources [4, 5,

10, 11, 34, 35]. Because the effects of these QTLs on antixenosis are unstable and relatively

small (Table 1), it may be difficult to use them immediately in breeding programs. In addition,

the effects of the QTLs on Chr 16 and 19 on antixenosis may be influenced by flowering time

because the flowering time-associated QTLs were detected near these resistance QTLs (S2

Table). Thus, the effects of these QTLs must be confirmed by additional analyses. We are

developing NILs containing each of these QTLs to elucidate their single effects.

Global warming will likely change the geographical distribution of insects [36], and high

temperatures have been predicted to cause frequent outbreaks of lepidopteran insects [37].

The CCW will expand its habitat during global warming, causing more economic damage to

soybean production. To our knowledge, this is the first report to detect CCW-resistance QTLs

Antixenosis resistance QTLs to common cutworm in wild soybean

PLOS ONE | https://doi.org/10.1371/journal.pone.0189440 December 12, 2017 8 / 11

http://www.soybase.org/
https://doi.org/10.1371/journal.pone.0189440


from G. soja. The resistance alleles originating from the genetically remote wild ancestor are

likely to be novel, even though resistance QTLs were previously reported in close genomic

regions. Thus, the resistance QTLs from G. soja and the associated markers are expected to

allow for the efficient breeding of soybean cultivars with high levels of CCW resistance. We

expect that soybean cultivars with greater CCW resistance can be developed by pyramiding

qRslx3 and qRslx4 in addition to CCW-1 (qRslx1) and CCW-2, and this will stabilize the soy-

bean production in the face of continued global warming.
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