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Abstract: Drug delivery to tumor sites using nanotechnology has been demonstrated to overcome the
drawbacks of conventional anticancer drugs. Altering the surface shape and geometry of nanocom-
posites alters their chemical properties, which can confer multiple attributes to nanocarriers for the
treatment of cancer and their use as imaging agents for cancer diagnosis. However, heterogeneity
and blood flow in human cancer limit the distribution of nanoparticles at the site of tumor tisues.
For targeted delivery and controlled release of drug molecules in harsh tumor microenvironments,
smart nanocarriers combined with various stimuli-responsive materials have been developed. In this
review, we describe nanomaterials for smart anticancer therapy as well as their pharmaceutical as-
pects including pharmaceutical process, formulation, controlled drug release, drug targetability, and
pharmacokinetic or pharmacodynamic profiles of smart nanocarriers. Inorganic or organic-inorganic
hybrid nanoplatforms and the electrospinning process have also been briefly described here.

Keywords: pharmaceutical; nanocarrier; cancer; smart; polymer; lipid; virus; inorganic; hybrid; electrospinning

1. Introduction

Nanoparticles with sizes ranging from tens to hundreds of nanometers in at least one
of their dimensions demonstrate a large surface-area-to-volume ratio and quantum effects.
Their large surface area enables them to have chemical reactivity for the attachment of
multifunctional moieties [1]. Nanomaterials vary in dimension (from zero to three dimen-
sions) and shape (from spherical to irregular shape), which affect their electrical, optical, or
magnetic behaviors [2]. Various materials, including synthetic or natural polymers, lipids,
viruses, carbon, and metals, have been investigated for their nanoparticle composition [3,4].
As the technology for controlling the size and biocompatibility of nanomaterials has ad-
vanced over recent years, nanomaterials have been extensively applied in various fields,
including biomedical sciences [5].

Nanocarriers for biomedical applications are typically larger than single molecules,
such as water or glucose, and smaller than bacteria or cells. They can protect enclosed
small-molecule drugs or imaging agents with relatively high loading efficiency. The
concept involving the accumulation of nanoparticles around cancerous tissue with leaky
vasculature due to enhanced permeability and retention (EPR) effect has been prevalent
since the 1980s [6]. Nanoformulations based on polymers or lipids have been reported
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to enhance water solubility, permeability, and retention of drugs at the disease site [7].
Clinical applications of nanomedicines loaded with anticancer drugs such as doxorubicin
(DOX), daunorubicin, leuprolide, paclitaxel (PTX), vincristine, mifamurtide, irinotecan,
and cytarabine (Figure 1) into liposomes or albumin-coated nanoparticles have already
been approved by the Food and Drug Administration (FDA) or European Medicine Agency
(EMA) [8–19] (the list in Table 1 is not exhaustive).
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Table 1. Pharmaceutical aspects of cancer nanomedicines approved by USA or Europe.

Name (API) Approved Indication Formulation and Administration Route References

Doxil/Caelyx (doxorubicin) Ovarian cancer,
multiple myeloma PEGylated liposome and intravenous infusion [13]

DaunoXome (daunorubicin) Kaposi’s sarcoma Liposome and intravenous infusion [11]
Ontak (Engineered fusion protein
combining diphtheria toxin with

interleukin-2)
Cutaneous T-cell lymphoma Proteinaceous nanoparticle and

intravenous infusion [18]

Myocet (doxorubicin) Metastatic breast cancer Liposome and intravenous infusion [12]
Eligard (Leuprolide acetate) Advanced prostate cancer Polymeric nanoparticle and subcutaneous injection [19]

Abraxane (paclitaxel)
Non-small cell lung cancer,

metastatic breast cancer,
metastatic pancreatic cancer

Albumin-bound nanoparticle and
intravenous infusion [14]

Marqibo (vincristine) Acute lymphoblastic leukemia Liposome and intravenous infusion [15]
MEPACT (mifamurtide) Osteosarcoma Liposome and intravenous infusion [17]

Onivyde/MM-398 (irinotecan) Metastatic pancreatic cancer PEGylated liposome and intravenous infusion [16]
VYXEOS/CPX-351 (cytarabine

and daunorubicin) Acute myeloid leukemia Liposome and intravenous infusion [10]

NBTXR3/Hensify (radiotherapy) Squamous cell carcinoma Hafnium oxide nanoparticle and
intratumoral injection [8]

NanoTherm (Iron oxide) Brain tumor Magnetic nanoparticle and intratumoral injection [9]

API: active pharmaceutical ingredient; PEG: polyethylene glycol.
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However, the distribution of nanomedicines at the site of tumor tissues in humans
with passive targeting using the EPR effect is limited. Penetration or accumulation of drugs
in bulk tumors varies in humans due to interstitial fluid pressure [20]. In order to improve
treatment outcomes and reduce systemic side effects, the surface of nanomaterials can be
modified or functionalized with ligands for targeting cancer cells or for tailored therapeutic
approaches [21]. Recently, anticancer nanotherapeutics using photosensitizers or those
with a combined function of diagnosis and treatment have been developed. An inorganic
nanomaterial and an anticancer agent can be hybridized, or a fluorescent material and
an anticancer agent can be simultaneously loaded into one nanoformulation. Recently,
inorganic nanoparticles have been also combined with radiotherapy [8].

When injected into the blood circulation of the body, nanoparticles smaller than 5.5 nm
in their hydrodynamic diameter are primarily eliminated via renal clearance, but particles
larger than 7 nm in their diameter cannot be easily eliminated by urinary excretion [22].
The size limit of the pore and negative charge around the glomerular capillary basement
membrane prevent the filtration of large plasma proteins [23]. Without any special coating,
liposomes with 100–200 nm in their diameter tend to become trapped in the liver or
spleen [24]. As nanoparticles can bind to cellular receptors or are endocytosed by the cells,
the release of anticancer agents from nanocarriers needs to be ideally controlled for smart
anticancer therapy.

In this review, we categorize smart nanocarriers for anticancer therapy as polymer-
based nanocarriers, lipid-based nanocarriers, inorganic nanocarriers, and hybrid nanocar-
riers. The electrospinning technique for the production of nanofibers in bulk is also
introduced. Finally, we discuss the future directions of smart nanocarriers for effective
cancer treatment.

2. Why Is a “Smart” Nanocarrier Needed for the Treatment of Cancer?

Owing to cell proliferation and angiogenesis, the blood vessels inside the tumors are
abnormally shaped, and the endothelial cells have large fenestrations that are not aligned or
organized [25]. Due to slow venous return and impaired lymphatic drainage, nanomedicines
accumulated around cancerous tissue may remain within the tumor tissue [26]. However,
intra-tumor heterogeneities in human patients and the extracellular matrix (ECM) sur-
rounding the solid tumor tissue restrict the distribution of the nanomedicine attributed
to the EPR effect through the leaky tumor vasculature [27,28]. The progressive growth of
premalignant lesions separates the interior of the tumor from the surrounding blood supply,
which results in hypoxic conditions with low partial pressures of oxygen [29]. Around
the tumor, a metabolic shift called the “Warburg effect” appears. There is an increase
in glycolytic metabolism involving the conversion from glucose to lactate compared to
oxidative phosphorylation preferred by normal cells. The increased production of lactate
results in extracellular acidity (pH 6.5–6.9), which promotes ECM degradation and cell
invasion [30,31]. Nonmalignant endothelial cells, fibroblasts, macrophages, and T cells
have also been observed in the stroma surrounding solid tumors along with metabolic
interactions between stromal cells and cancer cells [32,33].

Based on the understanding of the characteristics of the tumor microenvironment,
“smart” nanocarriers have been developed in order to overcome pathophysiological bar-
riers. They are expected to offer high accuracy, selectivity, and high sensitivity for the
targeted delivery of loaded drugs in a predictable or controlled manner. Aspects such
as the penetration of cytotoxic drug-loaded nanocarriers into solid tumors, intracellular
drug delivery, and reaching a concentration within the therapeutic window at the target
site also aid in reversing multidrug resistance [34,35]. Targeted drug delivery may allow
drug activity to be localized specifically at the target tumor site rather than in other organs
in order to improve treatment outcomes and reduce systemic side effects. Antibodies,
vitamins, peptides, or sugars that recognize tumor-specific antigens, receptors, or trans-
porters have been developed for the active targeting of conjugated drugs [36]. Materials
responsive to stimuli such as pH, light, temperature, magnetic field, redox activity, or
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enzymes at the target tumor site are needed for the design of smart nanocarriers [37–40].
For instance, pH-responsive chitosan (CS) and bioresorbable polydioxanone containing
polydopamine nanospheres can be used for such applications [41,42]. Drugs released from
the pH-sensitive nanocarriers do not accumulate at pH 7.4 but accumulate in an acidic
tumor environment [43–46]. Nanomaterials responsive to photothermal stimuli generate
heat to destroy tumor cells in response to near-infrared (NIR) light irradiation [47–50].
Drug delivery nanoplatforms that can perform drug release in response to a redox reaction
or specific enzyme have also been developed [51–62] (Table 2).

Table 2. Recent publications on stimuli-responsive drug delivery nanocarriers for smart anticancer therapy.

Stimulus Formulation References

pH Polymersome by self-assembling of a carboxyl-terminated
polyethylene glycol amphiphile [40]

pH Lectin-conjugated mesoporous silica nanoparticle [43]
pH Phosphorylcholine polymer micelle [44]

pH Polymeric micelle based on
heparin-α-tocopherol conjugate [45]

pH Self-assembling polypeptide and calcium phosphate [46]
Photothermal Dipalmitoyl phosphatidylcholine liposome [47]
Photothermal Copper sulfide nanoparticle [48]
Photothermal Silica-coated silver-gold nanoshell [49]

Redox Zwitterionic cross-linked micelle based on a
penta-block copolymer [38]

Redox Inorganic nanoparticle functionalized by organic group,
polysaccharide, or peptide [51]

Redox Liposome with disulfide-phospholipid conjugate [52,53,62]
Redox Polymeric nanomicelle [55–58]

Enzyme Micelle formed from two amphiphilic block copolymers [39]
Enzyme Monostearin/amorphous calcium carbonate nanoparticle [59]
Enzyme Self-assembled protein nanoparticle [60]

pH, redox,
and enzyme Gelatin-encapsulated magnetic nanoparticle [63]

The anticancer DDS that can react with enzymes and control the release of DOX was
developed by using cystamine-modified gelatin [63]. Oil-in-water microemulsion contain-
ing cystamine-modified gelatin, Fe3O4, and DOX were prepared for delivery by utilizing
the EPR effect at the tumor site. Cystamine-modified gelatin released DOX, which was
in response to glutathione (GSH) and matrix metalloproteinase (MMP). Since the amount
of GSH and MMP is overexpressed in cancer tissues compared to that in normal tissues,
the developed microemulsion can control the release of DOX in cancer tissues. Controlled
drug releases induced by GSH and MMP improved tumor therapy and drug monitoring
using T2 magnetic resonance imaging (MRI) were possible due to the properties of Fe3O4.
While the drug release was regulated by enzymes, monitoring the drug concentration was
important for determining the efficiency and prognosis of cancer treatment. Core-satellite
nanomedicines for accurate real-time monitoring of enzyme-induced drug release were
also developed [64]. This nanomedicine was developed using DOX and indocyanine green
(ICG), which acted as medical diagnostics and were loaded with surrounding CuS nanopar-
ticles (ICG/DOX@Gel-CuS nanomedicines). CuS nanoparticles (NPs) generate a photoa-
coustic signal independent of the physical status of the ICG/DOX@Gel-CuS nanomedicines
(NMs). This independent property aids in the real-time tracking of nanomedicines. In con-
trast, ICG fluorescence depends on the physical status of ICG/DOX@Gel-CuS NMs. The
stable state of ICG/DOX@Gel-CuS NMs results in quenching and interference with ICG
fluorescence. ICG/DOX@Gel-CuS nanomedicines and the controlled release of DOX were
monitored up to 24 h. The application of ICG/DOX@Gel-CuS NMs resulted in significantly
reduced tumor sizes without toxicity (Scheme 1).
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Scheme 1. Development of enzyme-activatable indocyanine green (ICG)/doxorubicin (DOX)@Gel-
CuS nanomedicines (NMs) with a core-satellite architecture made of gelatin nanoparticles (NPs)
loaded with near-infrared fluorescent ICG and chemo-drug DOX and coated with “satellite” CuS
NPs. The DOX release from ICG/DOX@Gel-CuS NMs can be monitored by fluorescence (FL) and
photoacoustic (PA) dual-modal imaging in a real-time manner due to core-satellite architecture and
degradability of the gelatin matrix in response to proteases overexpressed in tumor. The FL of ICG,
which was initially quenched within intact NMs, increases according to the DOX released from NMs
(reproduced with permission from [64], Copyright 2019 American Chemical Society).

3. Organic Nanocarriers for Anticancer Therapy

Depending on the constituent materials, organic nanocarriers for anticancer therapy
are broadly classified as polymer-based nanoformulations, lipid-based nanoformulations,
and protein-based or virus-based nanoparticles.

3.1. Polymer-Based Nanocarriers
3.1.1. Polymeric Nanoparticles

Synthetic and natural polymers have been applied for controlling the fluidity of
liquids, film coating in pharmaceutical formulations, controlled drug release, targeted
drug delivery, improvement of the bioavailability (BA) of drugs, and biomedical im-
plants [65]. Compared to liposomes, polymeric nanoparticles demonstrate the advantage
of controlling the stability and release of loaded drugs [66]. Poly(lactide-co-glycolide)
and poly(cyanoacrylate) are used for the preparation of drug delivery nanocarriers. In
the polymerization reaction involving a dispersion system, nano-sized particles can be
produced by using surfactants above the critical micelle concentration.

Polymeric nanoparticles are nanometer-sized particles composed of polymers that
are exploited as carriers of therapeutic agents for invasive and non-invasive routes of
delivery [67]. Such systems are designed to respond to a variety of internal stimuli around
the tumor tissue, such as pH, reductive environment, temperature, and enzyme concentra-
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tion, in order to maximize drug delivery at the target site [9]. These nanoparticles undergo
physiochemical structural changes when exposed to these stimuli, thereby losing their
well-defined nanoarchitecture and releasing drugs directly into tumor cells [10]. Polymers
used to prepare such formulations consist of at least one moiety derived from acrylamide,
acrylate, and acrylic acid and other moieties derived from cellulose derivatives, poly(vinyl
alcohol), polystyrene, polypropylene, polycaprolactone, poly(lactic acid-co-glycolic acid)
(PLGA), polyanhydride, etc. [11]. Grafting of hydrophilic polyethylene glycol (PEG) to
polymeric strands allows modification with the targeting ligand or self-assembly with the
pH-responsive polymer [68]. Coating nanoparticles with the proper PEG derivative is a
strategy for decreasing the interaction of nanoparticles with plasma opsonins and uptake
by mononuclear phagocytes [69,70] (Figure 2).
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3.1.2. Micelles

Surfactants in the aqueous solution aggregate in response to certain concentration and
temperature conditions to form micelles. Micelles within the particle diameter range in
which drug-loaded micelles are expected to accumulate in the tumor tissue via the EPR
effect can be selected for cancer therapy. The size and physical properties of micelles can
be controlled by adjusting molecular weight, chemical composition, and component ratio.

Polymeric micelles can be modified for stimuli responsiveness and active targeting
for cancer drug delivery. Depending on the manufacturing method, they can be used as a
carrier of hydrophilic or hydrophobic drugs, specifically in chemotherapy. GeneXol-PM®

was approved by the FDA in 2007 as a polyethylene glycol (PEG)-PLA-based polymeric
micelle, which is a carrier of PTX and is effective in treating breast cancer and lung
cancer [71,72]. Anti-cancer effects or physicochemical properties can be improved via
the modification of micelles or conjugation. Cavalcante et al. developed pH-sensitive
micelles in order to enhance antitumor activity and reduce toxicity [73]. DSPE-PEG2000,
oleic acid, and DOX were used to manufacture micelles. Oleic acid forms an ion pair
with the DOX amine group at pH 7.4. As oleic acid becomes protonated at pH 5 or lower
pH, the ion pair is unpaired, and the micelle becomes unstable, resulting in the release of
DOX. Upon examining the release profile of DOX for 24 h, approximately 30% and 60% of
DOX were released at pH 7 and pH 5, respectively. When the tumor size was compared
to that of the control group, the micelles comprising the ion-pair of DOX with oleic acid
were significantly smaller. In the case of micelles without the ion-pair of DOX and oleic
acid, an anticancer effect was observed; however, the difference was not significant when
free DOX was used. These observations suggest that the ion pair of DOX and oleic acid
releases DOX in response to pH. Xiao et al. developed boronate cross-linked micelles
(BCM) that demonstrated an extremely long tumor retention period. BCM showed much
better stability than the non-crosslinked micelles [74]. Furthermore, BCM showed excellent
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stability under in vitro conditions in the plasma at physiological pH but lost their structure
under acidic pH and the addition of mannitol (Figure 3). BCMs were retained in the tumors
for 12 days after drug administration, and the size of the tumor and tumor-associated
mortality were statistically reduced.
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3.1.3. Dendrimers

Dendrimers exhibit a regular branched structure comprising symmetric small molecules
around the core and polymeric branch units [75]. Depending on the structure of branching
units, which demonstrate a tree shape or star shape, polymeric dendrimers show three-
dimensional spherical or rugby ball shapes. Divergent synthesis and convergent synthesis
are conventional preparation methods for dendrimers [76,77]. The Diels–Alder reaction,
thiol–ene reaction, or alkyne–azide reaction have been also attempted for the design and
synthesis of dendrimers [78–80].

Polymeric dendrimers made from polyamidoamine are expected to enhance the water
solubility of hydrophobic drugs, which are enclosed in the internal space or bound to a
functional group on the surface of the dendrimers [81]. The surface functional groups of
dendrimers can also be chemically modified for targeted drug delivery and to decrease
toxicity [82]. Dendrimers can also be used as gene carriers. Na et al. developed a dendrimer-
type bio-reducible polymer as a therapeutic gene delivery carrier [83]. Small interfering
RNA (siRNA) is an RNA molecule that interferes with the expression of a specific gene
and is primarily examined for applications in cancer treatment [84]. Na et al. used
cystamine bisacrylamide diaminohexane (ABP), which is an arginine-grafted bio-reducible
polyamidoamine (PAMAM), to synthesize a dendrimer-type bio-reducible polymer (PAM-
ABP). An anti-vascular endothelial growth factor (VEGF) siRNA was loaded into PAM-ABP.
VEGF, which has been studied for cancer treatment, is a mitogen that plays an important
role in the improvement of angiogenesis [85]. Angiogenesis and lymphangiogenesis have
been observed during the growth of cancer, which are attributed to the overexpression
of VEGF. These developments are primarily responsible for progression and metastasis.
The anti-VEGF antibody prevents cancer growth and metastasis by blocking angiogenesis
and lymphangiogenesis. The size of anti-VEGF-loaded PAM-ABP was 116 nm, and VEGF
gene silencing was more effective than PEI/siRNA in HT1080, A549, and Huh-1 cell lines
with no cytotoxicity of PAM-ABP observed under in vitro conditions. Otis et al. developed
antibody-conjugated dendrimers in order to target cancer cells [86]. Otis et al. used an anti-
human epidermal growth factor receptor-2 (HER-2) antibody (Herceptin) to functionalize
the dendrimer with targeting properties. Her-2 was bound to the dendrimer surface by
using many functional groups, and a target diagnostic material was developed by placing
gold nanoparticles (AuNPs) and gadolinium (Gd) inside the dendrimer. The encapsulation
of AuNPs and Gd was confirmed by UV-vis and ICP-OES. The dendrimer showed a high
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absorption rate in the A549 cell line, which was Her-2 positive, and the authors suggested
that a clinical approach was possible with respect to incorporating the effects of herceptin
and CT/MRI dual modus imaging.

3.2. Lipid-Based Nanoformulations
3.2.1. Liposomes

Lipid-based nanoformulations have been used as nanocarriers for chemotherapeutics
as well as vaccine adjuvant-delivery systems [87]. In addition to cancer, there are various
indications for them, including hepatitis, influenza, and COVID-19 [88].

Liposomes, which are biodegradable vesicles with lipid bilayers composed mainly of
phospholipids, have been clinically used as delivery vehicles for drugs such as DOX and
daunorubicin [89]. Lipophilic drugs can be trapped in the liposomal lipid membrane, and
hydrophilic drugs can be dissolved in the inner liquid core of the liposome. Liposomes
have also shown potential for the delivery of genes, proteins, and peptides [90,91].

Methods such as thin-film hydration, sonication, extrusion, and microfluidic mixing
are used for manufacturing liposomes [92–94]. After dissolving lipids and drugs in an
organic solvent, a thin film is prepared using a rotary evaporator, and liposomes are pre-
pared via rehydration. Thereafter, uniform liposomes can be manufactured by additionally
performing ultrasonic treatment or extrusion of liposomes.

In order to lower the uptake of liposomes by reticuloendothelial system (RES) cells
and to prolong the circulation half-life of loaded drugs, PEG was incorporated into the
liposomal membrane [95]. The liposomal membrane can be modified with targeting moieties
or antibodies specific to the target cell [96]. We can also design stimuli-responsive liposomes
for improving drug delivery and anticancer efficacy [62]. Liposomes can be administered
via both oral and intravenous routes. Kim et al. reported a three-fold increase in the BA
of docetaxel (DTX) [97]. The liposome coated with Eudragit® significantly inhibited the
release of DTX at pH 1.2 of the gastric environment. In contrast, docetaxel was quickly
released at pH 6.8 without any statistically significant difference when compared to the
release from non-coated liposomes. The oral BA of free docetaxel was 1.91 ± 0.232% (Table 3).
Interestingly, the oral BA of liposomes coated with Eudragit® was 5.92 ± 1.31, which is
higher than that of the control group. This suggests that the Eudragit®-coated liposomes are
expected to stably deliver drugs, including DTX, and enhance oral absorption.

Table 3. Pharmacokinetic parameters after oral administration of free docetaxel (DTX) (20 mg·kg−1)
and Eudragit®-coated liposomal DTX (10 mg·kg−1) (reproduced with permission from [97], Copy-
right 2018 Springer Nature).

Parameter DTX (20 mg·kg−1, Mean ± SE) Eudragit-Coated Liposomal
DTX (10 mg·kg−1, Mean ± SE)

tmax (min) 110 ± 10.0 90.0 ± 9.49
Cmax (µg·mL−1) 0.0112 ± 0.00193 0.00981 ± 0.00169

Ka (min−1) 0.0609 ± 0.0257 0.0349 ± 0.0165
K (min−1) 0.00168 ± 0.000726 0.000995 ± 0.000181
t1/2 (min) 567 ± 181 818 ± 182

AUC (µg·min·mL−1) 6.98 ± 0.846 10.8 ± 2.39
Vβ (mL·kg−1) 44,745 ± 14,275 64,605 ± 14,381

BA (%) 1.91 ± 0.232 5.92 ± 1.31
DTX: docetaxel; SE: standard error; tmax: time of maximum drug concentration; Cmax: maximum drug concentra-
tion in plasma or serum; Ka: absorption rate constant; K: elimination rate constant; t1/2: elimination half-life; AUC:
area under the curve; Vβ: volume of distribution in the β-phase; BA: bioavailability.

3.2.2. Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNs), which are spherical nanoparticles composed of lipids
that possess a solid lipid core matrix, have also been investigated for cancer treatment with
active nanomedicine development in order to overcome the limitations of conventional
anticancer drugs [98]. SLNs have been well established because they enhance the efficiency
of drug delivery and can deliver hydrophobic and hydrophilic drugs without toxicity
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issues [99,100]. Smith et al. studied a novel DDS with SLNs in order to improve stability
and avoid the rapid metabolism of 5-Fluorouracil (5-FU) [101]. SLNs loaded with 5-FU
were prepared by high-pressure homogenization. Glycerol monostearate, mPEG2000-
DSPE, compritol, or precirol was used as the matrix, and Tween 80, lecithin, and poloxamer
were used to stabilize SLN. SLNs loaded with 5-FU were cytotoxic to HCT-116 cells, with
less than 10% cell viability observed at the concentration of 25 µM. The 5-FU release profile
of SLN was analyzed. Most of the free 5-FUs were rapidly released within 4 h. However,
in the case of SLN, 5-FU was slowly released over 8 h, with only 70% of the drug released
over 24 h. In addition, Western blotting was used to confirm the inhibition of factors
closely related to cancer growth, such as epidermal growth factor receptor and protein
kinase B (AKT), in HCT-116 cells. NOD/SCID mice were subcutaneously inoculated with
HCT-116 cells (5.7 × 106 cells) in order to develop a colorectal cancer xenograft model. The
mice received an intraperitoneal (i.p.) injection of SLN every alternate day for two weeks.
Pharmacokinetic profile analysis showed that the area under the curve from the starting
point to tmax (AUC(0-t)) of 5-FU SLNs was 5-fold higher (54.7 ± 3.2) than that of the free
5-FU (15.5 ± 1.9). The tumor size was evaluated for 30 days. The tumor size of the group
that was administered SLN was significantly smaller (approximately 200 mm3) than that
of the untreated group (approximately 350 mm3).

3.3. Virus-Based Nanoparticles

Virus-based nanoparticles (VNPs) are being examined in many studies and are a
great candidates for the development of smart therapeutics because of their virus-specific
advantages such as cell penetration, strong gene expression, possible opportunities for
engineering, and modification of functional groups [102,103]. Among virus-based parti-
cles, adeno-associated virus (AAV)-based particles, which are used for continuous gene
expression and the induction of mild or very low immune responses, have been well
characterized [104]. AAV/VEGF-Trap was studied for the prevention of tumors and pul-
monary metastasis by blocking angiogenesis, and effective inhibition of tumors with a
single intravenous administration was demonstrated by Lu et al. [105]. RNA interference
is a promising strategy for cancer treatment. It can interfere with the growth of cancer cells,
improve apoptosis of tumor cells, and prevent cancer metastasis. The study was conducted
with a breast cancer therapeutic agent that introduced short hairpin RNAs into AAV [106].
AV-based carriers (rAAV-PSMA2sh) showed the highest shRNA knockdown efficiency in
HEK293T cells, and the tumor size was also significantly smaller in animal experiments
conducted twice a week for four weeks. Virus-based nanoparticles were applicable for the
treatment of various diseases [107]. Owing to the unique characteristics of the virus, it
is primarily used as a smart system to deliver genes [108]. Hence, the number of clinical
trials examining the efficacy of such methods increased rapidly, and technologies involving
virus-based nanoparticles are being further advanced.

4. Inorganic Nanocarriers and Hybrid Nanoplatforms for Anticancer Therapy

In this century, advances in synthetic chemistry have provided tools for synthesizing
a wide range of inorganic nanoparticles. Owing to their inherent properties, we can exploit
their traits and use them as drug delivery agents as well as imaging representatives. Their
robust infrastructure allows us to encapsulate more than one functional component with
different capabilities, which enhances the potency of the system. Owing to advantages such
as non-toxicity, biocompatibility, hydrophilicity, and high stability over organic materials,
they are widely used in the field of drug delivery [109].

Common inorganic nanoparticles can be classified into three distinct categories:

• Inorganic nanoparticles derived from metals, such as gold, silver, iridium, and plat-
inum, which show phenomenal resistance towards oxidation;

• Magnetic nanoparticles (MNPs) are mainly derived from 3d and 4f metals, such as
Fe3O4 and Gd2O3;
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• Fluorescent nanoparticles such as silicon-based quantum dots and lanthanide-based
upconversion nanoparticles [110,111].

Although significant efforts have been made to use them as imaging agents and for
enhanced radiotherapy and other biomedical applications in oncological systems, their usage
as drug delivery vehicles has garnered little interest. Low toxicity, high cellular uptake, and
nonimmunogenic response have contributed to their use in the field of DDS. For particles
with sizes within the nano region, especially those based on inorganic materials, distinct
properties have been observed compared to their bulk counterparts. In the field of biological
sciences, the amount of magnetism exerted by nanocomposites, as well as their sizes, shapes,
and other optical properties, can substantially alter the expected outcome [112].

The immunoferritin method, mercury-based method, techniques involving uranium,
and immunocolloidal methods involving gold have been reported earlier for antibody
markers. Since then, the market for the biomedical industry has grown and is vastly
dictated by bio-conjugated compounds incorporating inorganic metals [113–116]. In recent
times, we have seen significant advances in the field of DDSs, as progress in nanotech-
nology has enabled us to develop various nanoparticles without any size restrictions.
Carbon nanotubes, fullerenes, and graphene quantum dots (GQDs) also play an important
role [117–119]. We can attach a drug to the surface moiety of graphene, which will be
used for targeted drug delivery and the reduction in side effects and toxicity as well as
cost-effectiveness. Owing to their specific chemical characteristics, inorganic nanoparticles
are stable and not subject to microbial attack; therefore, novel pharmaceutical therapies are
now being developed based on a nanoparticle platform.

The synthesis of inorganic nanoparticles involves many techniques, including hy-
drothermal methods, microwave-assisted methods, laser ablation, template synthesis,
spark discharge, and sputtering. This is mainly applicable to dry particles and nanopar-
ticles disseminated in the liquid phase. Nano-sizes in materials can also be achieved by
reducing the size from micro to nano at the atomic level [120].

Owing to their inherent properties, iron oxide nanoparticles (INP) are highly used
when it comes to DDSs associated with MNPs. Giorgia Pastorin et al. have reported studies
showing the release of sorafenib from INP coated with PVA-LDH and PEG-LDH and
synthesized by using ammonia as a base. X-ray spectroscopy, Fourier-transform infrared
(FT-IR) spectroscopy, transmission electron microscopy, scanning electron microscopy
(SEM), dynamic light scattering, high-performance liquid chromatography, UV-visible spec-
trophotometry, thermogravimetric analysis, and vibrating sample magnetometry have been
used for characterization. In the cytotoxicity assay performed against normal 3T3 fibroblast
cells, no toxicity was observed after 72 h with different concentrations of nanoparticles.
While mediating anticancer activities against HepG2 cells in acidic media, the nanoparti-
cles showed significant cytotoxicity, making sorafenib-loaded and surface-modified INPs
potent candidates for magnetic DDS [121].

In 2019, Rostamizadeh et al. demonstrated the efficiency of MNPs coated with PE-
Gylated curcumin in cancer therapeutics [122]. They exploited the magnetic targeting
characteristics of the nanoparticles. First, they synthesized dicarboxylated PEG using a
standard method in which acetone was used to dissolve PEG, and the entire reaction was
completed under ice-cold conditions. The next step involved the synthesis of PEGylated
curcumin based on NHS/EDC chemistry followed by the synthesis of MNPs coated with
PEGylated curcumin. A coprecipitation method was used for MNP. This system can be
used as a pH-dependent magnetic drug carrier.

Superparamagnetic Iron Oxide Nanoparticles (SPIONs)

Another study reported the use of modified superparamagnetic iron oxide nanoparti-
cles (SPIONPs) using block copolymers such as PCL-PEG-PCL. The study involved the
preparation of nanoparticles by using the same principle; ammonium hydroxide was used
as a base. In the case of co-polymer synthesis, the authors used the ring-opening polymer-
ization technique, where Sn(Oct)2 was used as a catalyst. In this case, 5FU was used as the
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drug. The double emulsion method (water/oil/water) was used for encapsulation inside
the nanoparticle. The encapsulation efficiency was measured by using a spectrophotometer
at 266 nm. The study reported drug encapsulation efficiency of up to 90%. Based on the
characterization studies, FT-IR showed an exact peak at 580 cm−1 for distinct Fe-O bond
stretching in Fe3O4, while XRD data showed an inverse spinel structure. SEM analysis
corroborated the well-aggregated structure of the nanoparticles. In the in vitro drug release
studies, SPIONPs released a maximum amount of 5-FU (33.1%), and the overall release
was 84.1% in 48 h depending on the acidic pH (pH 5.4) [123].

In DOX-encapsulated Fe3O4 nanoparticles, hexaethyl cellulose (HEC), NCC, and
polyvinylpyrrolidone could be used for surface modification. In the cell viability assay
performed against hFOB cells, all surface-modified nanoparticles showed reduced toxicity
compared to free Fe3O4 nanoparticles. Among them, the lowest toxicity was shown by
particles coated with HEC, although cationic charges are more prone to be cytotoxic.
The drug loading efficiency was 71% for HEC-coated nanoparticles and 89% for PVP-
coated nanoparticles. Examination of cytotoxicity was performed with the MCF-7 cell
line. Equal toxicity was observed for both DOX-loaded nanoparticles and pure DOX
at higher concentrations in the range of 400–200 µg/mL. PVP-coated nanoparticles with
doses <250 µg/mL showed no noteworthy toxicity towards normal cells (p > 0.05); however,
HEC-coated nanoparticles showed higher toxicity towards cancer cells, making them a
perfect candidate for drug delivery carriers [124].

Another DOX carrier was reported in 2019. Here, Fe3O4@SiO2 nanoparticles were
used for which their surfaces were modified by (NIPAM-co-GMA) (PNG) chains via
surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymeriza-
tion. Hydrazine was used to modify the polymer bushes. Encapsulation efficiency peaked
at 78%. At high concentrations of DOX-and DOX-conjugated nanoparticles, high cytotoxic-
ity was observed against the cancer cell line (HeLa cells). The study was performed with
stimuli-responsive nanocarriers showing enhanced biocompatibility [125].

Surface-modified superparamagnetic iron oxide nanoparticles (SPIONs) with non-
porous SiO2 (@SiO2), mesoporous SiO2 (m@SiO2), and a mixture of both have been reported
for targeting human lung cancer cells A549 and BEAS-2B. They used tetraethyl orthosilicate
as a precursor and hexadecyltrimethylammonium bromide as a pore former for m@SiO2
only. While treating cancer cells with SPIONs, we have to be cautious about one side
effect: Dissolution of SPIONs and its possible release of iron at the target site can encourage
tumor growth. These coatings significantly altered the surface morphology of SPIONs,
and during experimentation, it was evident that a single m@SiO2 coating constrained
iron release from the nanoparticles by more than 10-fold when compared to that observed
with unmodified SPIONs. Based on the AAS-ET measurements, it was evident that both
nanoparticles were effectively assimilated by these two cells. Both nanoparticles strongly
affected the proliferation of BEAS-2B cells; however, in both cases, no cytotoxicity was
observed. Therefore, it was concluded that both nanoparticles were cytocompatible with
lung epithelial cells [126].

Lipoamino acid-coated SPIONs have also been reported. Studies performed with
human hepatocarcinoma cell line Hep-G2 showed that compared to the naked SPIONs,
surface-modified cells showed less cytotoxicity and higher cell viability (more than 100%).
Cell viability increased in a time-dependent manner. Lipoamino acid-coated nanoparticles
showed growth-enhancing effects due to the supervised release of ionic iron into cells,
rendering them highly biocompatible and a good targeted delivery system for cancer
therapeutics [127].

CS-coated iron oxide MNPs with phytic acid (PTA) were reported in 2017 by Dena
Dorniani et al. to develop nanocarriers, which showed impressive anticancer activity
against human colon cancer cells and no toxicity towards healthy fibroblast cells. However,
the loading of PTA was significantly lower (12.9%), which was confirmed via spectroscopic
studies. The PTA release profile suggested that the release of PTA was significantly lower
than that of the physical mixture of PTA sodium salt of CS and MNP, corroborating the
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fact that the aforementioned nanocomposite can be used as a controlled-release drug
delivery carrier. The release, which follows pseudo-first-order kinetics, reached 93% within
56 h when the pH was 4.8 and 86% within 127 h when the pH was 7.4. These effects were
attributed to the instability of the compound in acidic media, which suggests a bias towards
the acidic pH environment. With respect to pure compound (IC50 = 188.5 µg/mL), the
nanocomposite shows much higher cytotoxicity against HT29 cells as well as lower IC50
value (IC50 = 45.63 µg/mL). Hence, this nanocarrier is both selective and more efficient
than pure PTA [128].

The cytotoxic, antiproliferative, and apoptotic effects of carboxylated quercetin-conjugated
SPIONs with surface modification with (3-aminopropyl) triethoxysilane (APTES), folic acid
(FA), and carboxylated PEG have been demonstrated against FA receptor-negative A549
and FA receptor-overexpressed MCF-7 and HeLa cells, which have paved the way for the
development of candidate nano drugs against breast and cervical cancer cell lines [129].
Heat shock protein inhibitor-loaded silica-coated Fe3O4 nanoparticles with carboxyl func-
tional group modification showed thermotherapeutic and chemotherapeutic effects against
lung cancer stem cells [130]. Temperature-dependent PTX release from magnetic solid
lipid nanoparticles based on iron oxide was reported, which showed increased BA of
the drug as well as controlled release under magnetic hyperthermia conditions [131].
Transferrin-modified PLGA nanoparticles loaded with PTX were reported for MCF-7 breast
cancer and U-87 glioma cells in vitro, showing the highest cytotoxicity with respect to free
nanoparticles and PTX [132].

By utilizing the magnetoelectric properties of nanoparticles, their use as nanocarriers
is also a smart approach in modern biopharmaceuticals that exploit magnetic and electric
field interactions during drug loading and delivery to a specific target site [133,134]. The
PTX-based drug carrier prepared using CoFe2O4 and BaTiO3 with surface functionalization
by glycerol-monooleate demonstrates a non-zero magnetic moment, which helps to move
the carrier in the circulatory system owing to the external magnetic field. In vitro and
in vivo studies demonstrate that upon treatment with an intravenous injection of the PTX-
loaded drug carrier followed by the application of an external magnetic field for three
weeks, nude mice with xenografted ovarian carcinomas were completely cured. This
claim was supported by IR imaging histology studies performed via energy-dispersive
spectroscopy and immunohistochemistry [135].

5. Electrospinning for Production of Nanofibers in Bulk

In order to understand the interaction between nanomaterials and biological systems
in terms of biocompatibility and minimal biological toxicity as well as to achieve desired
therapeutic efficacy, researchers have been investigating a diverse range of nanomateri-
als, such as zero-dimensional (carbon dots, quantum dots, and GQDs), one-dimensional
(nanowires, nanorods, nanotubes, and nanofibers), and two-dimensional (graphene oxide,
transition metal oxide, MXenes, etc.) nanomaterials along with polymer-based nanopar-
ticles for diagnosis, imaging, and therapy [136,137]. Among them, nanofibers have been
sought as promising delivery vehicles because of their tunable porosity and easy function-
alization with biological molecules. These remarkable characteristics make them a robust
and ideal candidate for water and environmental treatment, energy generation and storage,
and biomedical applications [138–142] (Scheme 2).

Electrospinning is a versatile technique that is easy to perform on a bulk scale with
a diverse range of sizes from nanometer to micrometer scale with a variety of materials
such as inorganic, hybrid (organic–inorganic), and natural and synthetic polymers [143].
This method is typically selected because of controllable particle diameter, minimum con-
sumption of solution, easy handling, and cost-effectiveness for large-scale production. The
physical characteristics of the electrospun nanofibers, such as fibrous structure, surface
morphologies (hollow, dense, or porous), fiber diameter, and surface-to-volume ratio,
can be monitored by using the following parameters: (i) processing parameters (electric
potential, feeding rate, and flow rate); (ii) solution properties (molecular weight of polymer,
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viscosity of solution, dielectric constant, conductivity, and surface tension); and controlled
post-processing parameters (heating rate and heating temperatures) [144,145]. Electrospin-
ning techniques can be categorized into five methods: (i) coaxial electrospinning, (ii) blend
electrospinning, (iii) melt electrospinning, (iv) emulsion electrospinning, and (v) gas jet
electrospinning. Nanofibers prepared by blend electrospinning can be used for bursting
release, while sustained release can be achieved by using coaxial and emulsion methods
with a core-shell structure. Nanofiber fabrication by melt electrospinning produces highly
ordered particles with relatively larger diameters [146].
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Nanofiber-based delivery systems have demonstrated to be potent candidates among
other delivery systems because of their superior loading capacity and high surface area
for the desired functionalization. In the last few decades, FDA-approved PTX has become
a vital and effective drug for cancer treatment. The delivery of PTX to accurate tumor
sites with higher loading efficiency for cancer treatment remains the most challenging
issue because of its poor solubility. In order to overcome this problem, Xu and co-workers
developed nanofibers fabricated using PTX and succinic acid, which showed the highest
loading efficiency of ~89% with a controlled release profile. Moreover, these nanofibers
significantly inhibited the proliferation of human lung adenocarcinoma cells in both in vitro
and in vivo evaluations [147]. Another study showed that PTX-loaded surface-modified
mesoporous hollow stannic oxide nanofibers (SFNFPs) enhanced anticancer activity in
liver cancer treatment. SFNFP significantly improved the dissolution of PTX in the release
experiment performed under in vitro conditions. The dissolution rate of SFNFP was
8.34-fold higher compared to that of free PTX within 5 min. The cumulative release rate of
free PTX was approximately 16.77 ± 2.00% within 1 h while it was 80.00 ± 2.64% for SFNFP.
In the in vivo study, SFNFP suppressed tumor growth significantly, and the inhibition rate
was 67.00 ± 0.40%, which could be an ideal delivery vehicle for liver cancer treatment [148].

Norouzi et al. demonstrated salinomycin-loaded electrospun nanofibers for the first
time during local glioblastoma therapy and tumor recurrence prevention. The nanofibers
were composed of biodegradable poly lactic-co-glycolic acid polymers developed via
electrospinning. These fibers were stable for approximately 30 days and showed a sustained
release of approximately 80% of salinomycin in 4 days, and the remaining drug was released
within two weeks of the initiation of nanofiber degradation. The sali-loaded nanofibers
were capable of generating intracellular reactive oxygen species and upregulating the
expression of Rbl1 and Rbl2 tumor suppressor genes as well as caspase 3, which can induce
cancer cell apoptosis. These nanofibers demonstrated significant cytotoxicity against U251
glioblastoma cells compared to free Sali, which could be a potential candidate for brain
tumor degradation [149].
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6. Conclusions and Future Perspectives

With continued innovation in medicinal chemistry, the development of nanomaterials
for biomedical applications has shown promise for applications in biological systems,
and nano DDSs have shown great potential in cancer research. Even though anticancer
drugs such as DOX, PTX, and curcumin are used for treatments, their performances are
limited when it comes to the targeted drug delivery to the tumor site. Stimuli-sensitive
nanocarriers for controlled drug release have garnered interest in cancer therapy. Bispecific
antibody-conjugated nanotherapeutics can be used to enhance targeting efficiency. Recently,
many approaches have been developed along with the design of inorganic nanoparticle-
mediated DDSs. Although a significant amount of research on smart nanocarriers has been
performed over time, improvements are needed for surface fabrication as well as enhanced
efficacy in order to push them further into clinical trials. Further research is required for
the design of smart nanosystems with stability and specificity. Lipid nanocarriers for RNA
delivery have also been developed. They can protect naked RNA and deliver RNA into
cells [150]. Smart immune-nanomedicines can play a role in cancer therapy as well as
COVID-19 management with minimized off-target side effects [151].

Electrospun nanofibers are attractive and promising candidates for cancer therapy
owing to the manufacture of nanofibers from the laboratory at the industrial level. Owing
to their remarkable properties, nanofibers have been used extensively in biomedical appli-
cations. Although production and applications are promising, further development and
improvements are required for enhancing the efficacy of therapeutic systems.
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