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Abstract

Background: Metabolic syndrome (MetS) is a major public health concern due to its high prevalence and
association with heart disease and diabetes. Artificial neural networks (ANN) are emerging as a reliable means of
modelling relationships towards understanding complex illness situations such as MetS. Using ANN, this research
sought to clarify predictors of metabolic syndrome (MetS) in a working age population.

Methods: Four hundred sixty-eight employees of an oil refinery in Iran consented to providing anthropometric and
biochemical measurements, and survey data pertaining to lifestyle, work-related stressors and sleep variables.
National Cholesterol Education Programme Adult Treatment Panel ІІI criteria was used for determining MetS status.
The Management Standards Indicator Tool and STOP-BANG questionnaire were used to measure work-related stress
and obstructive sleep apnoea respectively. With 17 input variables, multilayer perceptron was used to develop
ANNs in 16 rounds of learning. ANNs were compared to logistic regression models using the mean squared error
criterion for validation.

Results: Sex, age, exercise habit, smoking, high risk of obstructive sleep apnoea, and work-related stressors,
particularly Role, all significantly affected the odds of MetS, but shiftworking did not. Prediction accuracy for an ANN
using two hidden layers and all available input variables was 89%, compared to 72% for the logistic regression
model. Sensitivity was 82.5% for ANN compared to 67.5% for the logistic regression, while specificities were 92.2
and 74% respectively.

Conclusions: Our analyses indicate that ANN models which include psychosocial stressors and sleep variables as
well as biomedical and clinical variables perform well in predicting MetS. The findings can be helpful in designing
preventative strategies to reduce the cost of healthcare associated with MetS in the workplace.
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Background
Metabolic syndrome (MetS) is a clustering of interre-
lated non-communicable factors that is useful for identi-
fying individuals with an increased risk of developing
cardiovascular diseases, and type 2 diabetes mellitus
(T2DM) [1, 2]. To reduce high prevalence rates, and
improve the health of populations, better methods of
predicting MetS are urgently needed. The greatest im-
pact of MetS is seen in productive working age popu-
lations aged 45–64 years [1, 3, 4], even though the
burden of the chronic diseases is mainly over the age
of 65 years in most developed countries [3]. High
prevalence rates of MetS have been found in popula-
tion studies in Iran [1, 4], and notably, a comprehen-
sive nationwide study reported age-standardised
prevalence rates of 3024 participants aged 25–64 years
as 34.7%, with significantly higher rates in females
than males in all age categories [4].
Work-related risk factors and personal lifestyle habits

can contribute to the development of MetS [5, 6]. Evi-
dence that work-related stress (WRS) induces MetS is
found in a prospective study of 234 Police Officers in
Italy [7], and 30 years of Whitehall II studies in the UK
reliably indicate that WRS predicts CVD, although the
link with T2DM is less consistent [8–10]. The UK’s
Health and Safety Executive (HSE) developed an ap-
proach based on Management Standards [8, 11] to deal
with stress at work. The seven-factor Management
Standards Indicator Tool (MSIT) [11] is reliable for
identifying risks for WRS [12–14]. It has been translated
into many languages including Persian [14] making it an
appropriate measure for inclusion in a comprehensive
examination of predictors of MetS.
There is also evidence that shiftwork has significant

effects on MetS [6]. Shiftwork is driven by economic
efficiency, which generally outshines evidence that dis-
turbances to circadian rhythms and normal sleep pat-
terns can have negative health consequences. Similarly,
obstructive sleep apnoea (OSA), a sleep-related breath-
ing disorder, has been implicated in the development of
MetS [15, 16]. Most metabolic syndrome components –
central obesity, elevated plasma glucose, dyslipidaemia
and high blood pressure – are individually related to
OSA, in line with severity of OSA [17], with obesity and
abdominal fat accumulation known to be key factors in
developing OSA [1, 18]. Furthermore, upper airway
collapse and intermittent hypoxia increases glucose
intolerance, which contributes to the pathogenesis in co-
morbidities, including MetS [18]. Thus, it is important
that models to predict MetS in any working population
should include data on sleep disorders and work
schedules.
To our knowledge, no study to date has investigated

the simultaneous effects of work-related stressors and

sleep disturbance on MetS, using National Cholesterol
Education Program Adult Treatment Panel ІІI (ATPІІІ)
criteria [2]. The present study was designed to examine
this gap. The study focused on modelling MetS in a
community workforce in Iran incorporating feedforward
multilayer perceptron [19] artificial neural networks
(ANN) with resilient backpropagation as the training al-
gorithm. This algorithm is fast and does not require as
much tuning as classic backpropagation [20]. ANN are a
powerful tool for recognizing complex functional rela-
tionships between covariates and response variables via a
learning process [20] and are particularly suitable for
prediction of medical diagnoses, including diabetes and
pre-diabetes [21–27]. After training, an ANN system can
be applied to predict the output from a given input of
new data. There is evidence that ANN are better pre-
dictive models than linear models in several clinical
fields [28–31], including a demonstration that ANN are
superior to classical linear methods for an easy and low-
cost identification of MetS in patients treated with anti-
psychotics [28].
Following from this, the aim of this study was to assess

whether an artificial neural network can be used to ac-
curately predict MetS. The objective was to present an
examination of the separate and simultaneous effects of
a full range of predictive variables, including sleep and
work-related stress variables, as well as clinical variables,
to test ANN. In order to achieve an optimal ANN archi-
tecture, we considered ANN with different hidden layers
and different numbers of neurons in each hidden layer.

Methods
Design and participants
Using a census design, 503 employees at an oil refinery
in southern Iran in 2018 were invited to join the study.
All had at least 1 year of work experience. Thirty-five
people declined, yielding a final sample of 468 employees
who gave informed consent. Data was collected in three
stages: a survey instrument, anthropometric measure-
ments, and biochemical measurements.

Measures and procedure
Stage 1: A survey instrument was administered to collect
demographic characteristics (age, sex, education level,
and marital status), lifestyle habits (smoking, regular ex-
ercise, sleep duration), aspects of work time (job tenure,
work hours, shift schedule) and measures of work-
related stress and disturbed sleep.

� Smoking habit was defined as “current smoker”
or “non-smoker” (never smoked / quit smoking
> 1 year).
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� Exercise habit was determined as participation in
more than 30 min of moderate physical activity,
twice a week, for over a year.

� National Sleep Foundation recommendations of 7–8
h [32] were used to categorise sleep duration as
recommended or not.

� Work schedules outside of daytime hours were
considered as shiftwork.

� Work-related stress was measured using the
Management Standards Indicator Tool [11] which
comprises 35-items across seven dimensions:
Demands, Control, Management Support, Peer
Support, Relationships, Role, and Change. All items
were rated on a five-point Likert scale, and subscale
scores calculated from averages. Low scores repre-
sented stressful working conditions, while high
scores indicated a desirable situation. For each stres-
sor participants were classified according to MSIT
benchmarks (available at www.hse.gov.uk/stress):
very desirable (≥80th percentile); desirable (≥50th
percentile and < 80th percentile); undesirable (≥20th
percentile and < 50th percentile); and very undesir-
able (<20th percentile). MSIT is an appropriate and
valid measure for defining status in each category of
working conditions [12]. The Persian language ver-
sion used is valid and reliable [14]. In this study
Cronbach alphas for the seven subscales were con-
sistently good (range .77–.82).

� STOP-BANG [33] was used to screen for OSA. This
questionnaire comprises eight dichotomous items
associated with OSA: Snoring, Tiredness, Observed
apnoea during sleep, and high blood Pressure
(STOP); Body Mass Index> 35 kg/m2, Age > 50 years,
Neck circumference > 40 cm, and Gender (BANG).
Three positive responses indicate a high risk of
OSA. The Persian language version used is reliable
and valid [34].

Stage 2: Anthropometric measurements.
Weight and height were measured using calibrated

digital weighing scales and a rigid stadiometer; partici-
pants wore light clothing and no shoes. Body mass index
(BMI) was calculated as weight (kg) divided by height
(m2). Waist circumference was taken to the nearest 1
mm using a non-stretchable tape measure at the end of
normal expiration, at the midpoint between the lower
rib margin and the upper edge of the iliac crest, while
participants stood in a relaxed position with arms at
their sides. Blood pressure was measured using a cali-
brated standard mercury sphygmomanometer; each par-
ticipant was measured twice using their right arm in a
seated position after about 15 min of rest. An interval of
at least one minute separated the two recordings; the
average was used in analyses.

Stage 3: Biochemical measurements.
Baseline blood samples were collected from partici-

pants after 12-h of overnight fasting. Levels of serum
glucose and lipid profile revolving around plasma trigly-
ceride, total cholesterol, low-density lipoprotein choles-
terol (LDL-C), and high-density lipoprotein cholesterol
(HDL-C) were assayed using an enzymatic method kit.

Diagnosis of metabolic syndrome
The diagnostic criterion for MetS followed the modified
ATPІІІ definition [2]. Participants with at least three of
the following five criteria were classified as having MetS:

� Obesity (waist circumference > 102 cm (Male), > 88
cm (Female))

� Hyperglycaemia (fasting plasma glucose≥100 mg/dl)
� Dyslipidaemia (triglyceride≥150 mg/dl)
� HDL-C < 40 mg/dl (Male), < 50 mg/dl (Female)
� Hypertension (blood pressure > 130 mmHg systolic,

or > 85 mmHg diastolic).

Statistical analyses
All analyses were conducted using SPSS software, ver-
sion 22 (SPSS Inc., Chicago, IL, USA) and R-3.4 package.
A p-value ≤ .05 represented statistical significance.
Assumptions of normality were confirmed. To investi-
gate the separate and simultaneous effects of predictive
work-related risk factors and sleep variables on MetS as
dependent variables alongside other predictors of MetS,
a logistic regression with backward stepwise regression
analysis was used and the variables that remained in the
final model presented. Odds ratios (OR), with corre-
sponding 95% confidence intervals, were used to show
effect sizes in the model.
Not all methods of logistic regression can satisfactorily

predict the result from non-linear relationships. Regres-
sion models can become increasingly complex as more
and more variables are included in an analysis. More-
over, they can become excessively convoluted when de-
tails such as polynomials and interactions are explored.
Hence, we chose to use a hierarchical logistic regression
(HLR) methodology as a way to identify which predic-
tors make a significant statistical contribution to MetS
in our substantial model. Using a hierarchical regression
allowed us to ascertain the variables that make a statisti-
cally significant contribution to explained variance in
MetS after accounting for all other variables entered into
the model.

Artificial neural networks
Artificial neural networks (ANN) use computing systems
to mimic the learning pattern of the highly intercon-
nected neural networks in the human brain [35]. Whilst
there are various types of ANN architecture [36], we
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used the multi-layer perceptron type because this meth-
odology can be trained to approximate smooth measur-
able functions [37]. Multi-layer perceptron have been
shown to be more effective that traditional statistical
techniques [37]. They are set up to operate in a similar
way to biological neural networks. That is, a natural
neural wiring system has axons, dendrites and synapses,
which enable communication via electric pulses. De-
pending on the strength of the pulse a neuron receives,
it will produce an output signal and pass this through a
synapse to the axon of a proximal neuron. The multi-
layer perceptron is similarly a system of interconnected
artificial neurons (perceptron) with nodes representing a
non-linear mapping of an input layer and an output
layer. The nodes are like switches that receive input
from other nodes [35]. The weight of the switch corre-
sponds to the multiplication of input by the node.
Weights can be both excitatory and inhibitory. Output
signals emerge as a function of the sum of inputs to a
node and how they are modified by this non-linear acti-
vation function [37]. For us, the output is our estimate
of the probability of the input as a predictor of MetS.
To prepare for implementing a regression artificial

neural network (ANN), quantitative variables were
scaled to fall on the closed [0,1] interval, and categorical
variables were converted to dummy numeric variables.
Age was coded 0 when ≤45 years and 1 for older; marital
status was coded 0 for single and 1 for married; sex was
coded 0 for female and 1 for male; job tenure was coded
0 for up to 15 years and 1 when longer; education was
coded as 0 for High School level and 1 for higher levels.
Shiftwork, exercise and smoking habits were coded 0 if
“no” and 1 when “yes”.
As above, multilayer perceptron was used to develop

ANN to model the presence of MetS in our sample of
oil refinery workers. Multilayer perceptron architecture
is variable, and generally it will include several layers.
Thus, between the input and output layers there is one
or more hidden layers which allow the ANN to trans-
form the input space into h dimensions, where h is a
number chosen by us. We then perform a logistic re-
gression (sigmoid function) on this transformed space to
estimate output.
We partitioned the data randomly into training and

test subsets. Following convention and our experience,
training data comprised 75% of the sample (n = 351) and
the remaining 25% (n = 117) was used as test data. Arti-
ficial neural network training is about finding weights
that allow accurate prediction (here of MetS). A chal-
lenge in training ANN is that too little training will
underfit both the training and the test subsets, and too
much training – indicated by a significant decrement in
performance – means that the model is overfit, and this
will negatively impact upon the test set. We used the

Akaike Information Criterion, which penalises over
fitting, to determine the best-fitting model. Unlike
conventional statistical methods, several discretional ele-
ments are involved in building and training ANN. One
of these is determining the basic network architecture,
including the number of hidden layers and the number
of neurons within each hidden layer. Although some
texts propose that one hidden layer is usually sufficient
to model complex nonlinear patterns, others argue for
using ANN with more than one hidden layer. We believe
this is an empirical question best addressed with experi-
mentation so ANN with more than one hidden layer
were evaluated in our study.
As is usual, ANN training started with a set of ran-

domly generated weights, followed by backpropagation
to update the weights towards accurately mapping all in-
puts to outputs. Backpropagation is simply an algorithm,
commonly used for training ANN, to make an efficient
search for the optimal weight values. We then formu-
lated a complete backpropagation algorithm and tested
that it worked in arbitrary feed-forward networks with
differentiable activation functions at the nodes. To do
this, we first computed a linear combination of the co-
variates (X), using some weight matrices W ∈ R(d + 1) × h

,

where d denotes the dimension of the input variables
and h is the number of neurons in the hidden layers. We
set z = XW, then a logit function is applied to z (σ).
The hidden layer H can be considered a design matrix

which contains the output of a logistic regression, and is
able to classify each node according to whether it is acti-
vated or not: h = σ(z), and H ¼ ½1 h� ¼ 1 σðzÞ½ �
¼ 1 σðXWÞ½ �. For the output layer, we computed a lin-
ear combination of the hidden variables, this time using
another weight matrix, V ∈ R(h + 1) × (k − 1), where k is
the number of possible classes (here k = 2). Then we
applied one more function to get the output MetS∧

¼ σðuÞ, where u ¼ HV ¼ 1 h½ �V . This is a probabil-

ity vector, MetS
∧

i ¼ PðMetSi ¼ 1Þ . When combined:

MetS
∧

i ¼ σðHV Þ ¼ σð 1 σðXW Þ½ �V Þ.
The main goal of our training was to reduce error in

the network. In order to reduce error, we needed to
change weights values. The log-likelihood for a bin-

ary classifier is: l ¼
X

i

ðMetSi logMetS
∧

i þ ð1 −MetSiÞ

logð1 −MetS
∧

iÞÞ. We maximized this by using gradient
descent, a general-purpose optimization algorithm. It
calculates the gradient of the error function with re-
spect to the weights within a specific neural net-
work. The calculation proceeds backwards through
the network: Wt + 1 =Wt − γ ∇ f(Wt), where l = f(W),
Wt is the weight matrix at time t, ∇f is the gradient
of f with respect to W and γ is the “learning” rate.
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Using the chain rule, the gradient of the log-
likelihood with respect to the output weights is given
by ∂l

∂V ¼ ∂l
∂MetS

∂MetS
∂V . The backpropagation algorithm

calculated how much of the final output value is af-
fected by each of the weights. To do this, calcula-
tions of partial derivatives were made, going back
from the error function to the neuron that carried
the specific weight.
We created ANN from 16 rounds of learning. Network

architectures were varied by systematically reducing and
increasing the number of neurons in the hidden layers.
Each network used a backpropagation algorithm with
sigmoid function as the nonlinear activation function in
the hidden layers to predict the probability of the pres-
ence of MetS as an output. The training data supported

learning by changing connection weights to subse-
quently generate predicted outcomes. In a process simi-
lar to cross-validation, the test data represented a
holdout sample. Weights derived from training were ap-
plied to the test data and then predictions compared to
what was known [19].
Results from ANN were compared to those from re-

gression models using mean square error (MSE) ac-
quired from predicted and observed values for test data.
This approach provided assurance that the outcome was
a valid representation [20].

Results
Following ATPІІІ criteria [2] 37.6% participants were
classified as having MetS. The association between the

Table 1 Univariate comparisons of MetS components, demographic, occupational and lifestyle variables, according to MetS status
(n = 468)

Variables N (%) Metabolic syndrome p
value

OR (95% CI)

Absent (n = 292)
Mean (±SD)

Present (n = 176)
Mean (±SD)

Waist circumference (cm) 468 (100) 92.90 (9.35) 105.90 (9.97) <.001 1.15 (1.12–1.19)

Systolic blood pressure (mmHg) 119.12 (9.79) 127.47 (14.89) <.001 1.06 (1.04–1.08)

Diastolic blood pressure (mmHg) 78.60 (5.90) 83.80 (12.82) <.001 1.07 (1.04–1.10)

Fasting plasma glucose (mg/dl) 94.52 (17.83) 115.33 (26.28) <.001 1.06 (1.04–1.07)

Plasma triglyceride (mg/dl) 134.07 (70.54) 214.87 (80.53) <.001 1.01 (1.01–1.02)

HDL-C (mg/dl) 45.46 (11.37) 41.19 (8.14) <.001 0.95 (0.93–0.97)

BMI (kg/m2) 26.02 (3.31) 30.44 (3.04) <.001 1.51 (1.39–1.63)

Ageb (years) 40.31 (0.59) 46.03 (0.88) <.001 1.09 (1.07–1.12)

Job tenureb (years) 14.17 (0.63) 17.04 (0.30) <.001 1.05 (1.02–1.08)

Working hours per Shiftb 9.58 (0.76) 9.88 (0.17) .77 1.02 (0.88–1.17)

Marital statusa Married 406 (86.8) 267 (65.8) 139 (34.2) <.001 2.84 (1.64–4.91)

Single 62 (13.2) 25 (40.3) 37 (59.7)

Sexa Male 398 (85) 267 (67.1) 131 (32.9) <.001 3.66 (2.15–6.24)

Female 70 (15) 25 (35.7) 45 (64.3)

Education Levela University degree 229 (48.9) 144 (62.9) 85 (37.1) .83 1.04 (0.71–1.51)

High school graduate 239 (51.1) 148 (61.9) 91 (38.1)

Sleep time durationa Recommended 320 (68.4) 209 (65.3) 111 (34.7) .056 1.47 (0.99–2.80)

Not as recommended 148 (31.6) 83 (56.1) 65 (43.9)

Exercise habita Yes 300 (64.1) 218 (72.7) 82 (27.3) <.001 3.37 (2.27–5.03)

No 168 (35.9) 74 (44) 94 (56)

Smoking habita Current smoker 98 (20.9) 31 (31.6) 67 (68.4) <.001 0.19 (0.11–0.31)

Non-smoker 370 (79.1) 261 (70.5) 109 (29.5)

Shiftworka Yes 254 (54.3) 152 (59.8) 102 (40.2) .215 0.78 (0.54–1.14)

No 214 (45.7) 140 (65.4) 74 (34.6)

STOP-BANGa High risk 148 (31.6) 42 (28.4) 106 (71.6) <.001 0.11 (0.07–0.17)

Low risk 320 (68.4) 250 (78.1) 70 (21.9)
aN (%)
bMean (SD)
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components of metabolic syndrome, and demographic
and occupational variables, and MetS status via univari-
ate analyses are shown in Table 1. Of the MetS compo-
nents, BMI had the greatest impact on the prevalence of
MetS as with an average increase of one unit of BMI,
the risk of having MetS elevated 51%.
The mean age of participants was 42.46 ± 8.08 years

(range: 28–65 years) and the ratio of female to male was
3:17. An increase of 1 year of age and 1 year of working
experience, raised the risk of having MetS by 9 and 5%,
respectively. Among the socio-demographic variables,
marital status, sex, exercise and smoking habit were all
significantly correlated with MetS status. STOP-BANG
indicated that 31.6% of participants at high risk of OSA;
the risk of developing MetS among those at low risk of
OSA was 89% lower than those at high risk.
Regarding work-related stress, participants were cate-

gorized according to MSIT benchmarks and compari-
sons were made of those ≥80th percentile (very
desirable) with those <20th percentile (very undesirable)
on each of the seven dimensions of work-related stress.
These two categories accounted for most participants’
self-reported stress levels, making a focus on these two
levels appropriate. As reported in Table 2, the outcome
of univariate analyses was a significant difference in the
two levels for five of the seven WRS dimensions,
strongly suggesting that WRS increases the risk of MetS.
A hierarchical logistic regression (HLR) model for

multilevel analysis was used to determine the role of
significant variables on MetS. The best result was ob-
tained with the lowest mean squared error (MSE) value.
Variables were entered into the HLR model in three
stages: (1) demographic variables, (2) STOP-BANG and

(3) MSIT, using backward stepwise binary logistic re-
gression. As illustrated in Table 3, Step 3 is the model
with the least AIC value, and the most adequate of our
models. This included sex, one dimension of WRS –
Role, and STOP-BANG (ie risk of OSA), as predictors of
MetS.
As described earlier, analysing data with ANN is an

iterative process that involves experimentation with dif-
ferent network architectures and training parameters. To
develop the ANN model, we performed 16 rounds of
model learning using 17 input variables and one target
variable. The best model, as indicated by lowest MSE,
had 10 neurons in first hidden layer and 3 neurons in a
second hidden layer (see Table 4).
We found networks with fewer neurons in the hidden

layers hampered pattern recognition and reduced pre-
dictive accuracy, and networks with more neurons in the
hidden layers captured patterns in training data that
were not sustained on test data. After analysing the data,
an appropriate neural network structure was achieved
(see Fig. 1). The full set of weights of this neural network
is presented in Additional file 1.
To compare results from HLR and ANN, we fitted

HLR to the training data and computed MSE from the
differentiation of the testing data and their predictive
counterparts acquired from the fitted model. To
compare the estimation errors of HLR and ANN, MSE,
positive predictive values (PPV) and negative predictive
values (NPV) were calculated. MSE for HLR was .28
whereas MSE for ANN was .105. To clarify these results,
we also computed confusion matrices.
The confusion matrices suggested 89% accuracy for

ANN versus 72% accuracy for HLR in testing dataset

Table 2 Frequency distribution and association with metabolic syndrome by MSIT stressor level (N = 468)

Stressor Level N (%) Metabolic syndrome p
value

OR (95% CI)

Absent Mean(±SD) Present Mean(±SD)

Demand very desirable 256 (54.7) 162 (63.3) 94 (36.7) .18 1.32 (0.87–2.00)

very undesirable 145 (31) 82 (56.6) 63 (43.4)

Control very desirable 70 (15) 58 (82.9) 12 (17.1) <.001 4.73 (2.43–9.18)

very undesirable 258 (60.9) 144 (50.5) 141 (49.5)

Managerial support very desirable 178 (38) 139 (78.1) 39 (21.9) <.001 5.39 (3.40–8.55)

very undesirable 186 (39.7) 74 (39.8) 112 (60.2)

Peer support very desirable 143 (30.6) 116 (81.1) 27 (18.9) <.001 4.23 (2.62–6.84)

very undesirable 280 (59.8) 141 (50.4) 139 (49.6)

Relationships very desirable 232 (49.6) 157 (67.7) 75 (32.2) .20 1.36 (0.84–2.02)

very undesirable 104 (22.2) 63 (60.6) 41 (39.4)

Role very desirable 160 (34.2) 134 (83.8) 26 (16.3) <.001 5.67 (3.50–9.16)

very undesirable 271 (57.9) 129 (47.6) 142 (52.4)

Change very desirable 311 (66.5) 240 (77.2) 71 (22.8) <.001 7.32 (4.75–11.28)

very undesirable 152 (32.5) 48 (31.6) 104 (68.4)
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(see Fig. 2). The ANN was able to detect 85% of par-
ticipants who met the criteria for MetS whereas HLR
detected only 57%. Regarding sensitivity, PPVs were
82.5% for the ANN, and 67.5% for HLR; regarding
specificity, NPVs were 92.2% for the ANN system,
and 74% for HLR.

Discussion
Our findings show that ANN can be an effective tool for
predicting MetS. We developed an ANN system that

was able to capture functional relationships within data
that included psychosocial workplace variables and dis-
ordered sleep variables, as well as anthropometric and
biochemical clinical variables. Our results add to the lit-
erature in showing that work-related stress variables and
OSA are important in the accurate identification of
MetS status.
In line with previous literature [27, 29], we found

ANN outperformed HLR analysis. In our study, HLR
was powerful for identifying significant factors, but it did
not perform well for predicting outcomes because its
specificity was low. The ANN system had theoretical ad-
vantage over logistic regression and could effectively
capturing non-linearity between the factors and the out-
come. Interestingly, sensitivity and specificity of the
ANN system were similar, suggesting that we had suc-
cessfully generated appropriate predictions by applying
ANN.
Over one third of our working-age participants had

metabolic syndrome, according to ATPІІІ criteria [2].
This finding replicated the high prevalence of MetS
found in previous studies in Iranian working popula-
tions [1, 3]. High rates of MetS are not confined to
Iranian workers [1, 38–40]. In the United States [38],
and in Korea [39], reports of higher prevalence rates
in worker populations, implicate aspects of work as
precipitators of MetS, even if different occupations
present different levels of risk according to activity
demands of the job [40].
Many studies have reported that abdominal obesity is

a major risk factor for MetS and insulin resistance, as
well as its association with dyslipidaemia, high blood
pressure and hyperinsulinemia [1, 3, 5]. Our study

Table 3 Factors associated with metabolic syndrome using hierarchical multivariate logistic regression (n = 351)

Characteristics Step 1a Step 2b Step 3c

OR (95% CI) OR (95% CI) OR (95% CI)

Sex 0.25 (0.13–0.49)** 0.09 (0.04–0.20)** 0.10 (0.04–0.23)**

Exercise habit 0.56 (−1.11 - -0.03)* NS NS

Smoking habit 3.01 (1.60–6.05)** NS NS

Age (years) 3.19 (1.88–5.47)** NS NS

STOP-BANG 3.74 (2.41–6.11)** 2.63 (1.57–4.54)**

Control NS

Managerial support NS

Peer support NS

Role 0.55 (0.38–0.78)**

Change NS

AIC 398.53 358.98 349.64

NS not significant
*p < .05, **p < .01
acorrected for age, job tenure, sleep time status, marital status, sex, exercise habit, smoker
balso corrected for STOP-Bang score
cand also corrected for dimensions of work-related stress

Table 4 Comparison of predictive accuracy of artificial neural
networks

Neural network No. layers Neurons in hidden layer(s) MSE*1000

NN1 2 (10,3) 105

NN2 2 (10,2) 165

NN3 2 (9,3) 267

NN4 2 (9,2) 150

NN5 2 (8,3) 159

NN6 2 (8,2) 188

NN7 2 (7,3) 139

NN8 2 (7,2) 152

NN9 2 (6,3) 289

NN10 2 (6,2) 148

NN11 2 (5,3) 159

NN12 2 (5,2) 171

NN13 2 (4,3) 179

NN14 2 (4,2) 123

NN15 1 10 140

NN16 1 9 131
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Fig. 1 Plot of trained neural network including trained weights and basic information about the training process

Fig. 2 Test confusion matrices for HLR and ANN
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similarly found higher BMI and greater waist circumfer-
ence were associated with the probability of an increased
incidence of MetS. There are mixed views on whether
waist circumference or BMI is a better instrument for
measuring obesity. In our results, the odds ratio for BMI
was higher than waist circumference in determining the
increased risk of MetS. Our results also replicate other
studies which have found a high prevalence of other fac-
tors of MetS including blood pressure, fasting plasma
glucose, plasma triglyceride and HDL-C [1, 3], and in-
creased odds of MetS for females compared to males [1].
The sex difference can be partly attributed to the natur-
ally higher prevalence of abdominal obesity and weight
gain in females [41]. Similarly, our findings accord with
other studies that have inferred an increasing trend to-
wards developing of MetS with ageing [1, 2] which could
be associated with the typical accumulation of fat in the
abdominal area and increased insulin resistance as one
ages [1, 5]. It has to be considered that age may also be
an aspect of the greater risk of MetS we found in those
with higher work experience.
Regarding lifestyle behaviour, MetS status was higher

in those who smoked and did not exercise regularly. In
this context, previous studies have identified that
cigarette smoking increases triglycerides, lower HDL-C
and hyperinsulinemia [30, 32]. Besides our study, there
are other reports confirming that physical inactivity can
strongly predict MetS [5, 40, 41] supporting assertions
that the sedentary lifestyle of much of society is a causa-
tive factor in the high rates of MetS [4].
Work-related stress is a primary determinant of the

health status of workers 10], and the relative risk of
WRS positively predicts MetS [6]. Various measures
of job stress have been used to verify this association,
but to our knowledge this was the first study to refer
to HSE’s Management Standards [9, 11] to clarify the
impact of WRS on MetS. We found high levels of
very undesirable working conditions, and that Con-
trol, Management Support, Peer Support, Role, and
Change stressors independently increased the odds of
having MetS. Dissatisfaction with working conditions
is not unique to this workplace. Other population
studies have found stressful aspects of work to play
an important role in increasing the parameters of
MetS [7, 40]. This can be explained through consider-
ing that the normally adaptive acute stress response is
maladaptive in chronically stressful work situations
through persistent triggering of the autonomic ner-
vous system, and associated hormonal changes,
glucose intolerance, and weight gain [41]. Role stress
associated remained in the binary HLR model as in-
dependent predictors of MetS. Further exploring Role
components in this workforce, we found that the in-
formation necessary for effective performance was

ambiguous when presented to workers. In addition,
the nature of their construction projects meant
workers often faced changes to their work environ-
ment and ways of working. These observations add
face validity to the findings and suggest focused strat-
egies for stress management.
The impact of shiftwork, disturbed sleep, and OSA

on MetS was another important focus of this study.
Shiftwork is known to disrupt normal circadian
rhythms and associated biological functions [15, 42–
44]. Similarly, previous clinical and epidemiologic
reports indicated that OSA presents a risk of develop-
ing MetS [16]. In agreement, we found a lower risk
of OSA was associated with a lower probability of
having MetS. However, we found no significant rele-
vance of shiftwork to MetS, contrary to previous find-
ings [42]. In this study, all participants worked the
same number of hours regardless of whether on days
or on shifts. Shiftwork comprised three rotating 8-h
schedules. This meant no exposure to the longer
hours of typical night shifts [43]. That said, in their
systematic review, Canuto and colleagues, concluded
that that evidence of an association of shiftwork and
MetS was not robust [42]. They drew attention to
variation in definitions of both shiftwork and MetS
across studies. Critically, we cannot implicate 8-h
shift schedules as a risk factor for MetS.
Two noteworthy strengths of this investigation were

the recruitment of a community cohort, which permitted
investigation of lifestyle and psychosocial workplace fac-
tors relatively cleanly, and the use of a robust measure
of generic workplace stressors, which were found to con-
tribute to MetS status, and offer a focus for intervention.
The main limitation was its cross-sectional nature, and
our inability to look at some potentially pertinent vari-
ables; these include the level of income and eating and
drinking habits. As such, we recommend extension of
the study to develop a deep understanding of causal
relationships.

Conclusions
Our performance evaluation of ANN indicated our
model was highly efficient at predicting MetS. Following
16 rounds of model learning using 17 input variables
and one target variable, we developed a model that had
10 neurons in first hidden layer and 3 neurons in a sec-
ond hidden layer and was able to predict MetS with 89%
accuracy. Based on our findings, preventive public health
policies for reducing levels of MetS are necessary. These
should focus on modifying lifestyle practices such as
quitting smoking, having regular physical activity and an
appropriate sleep schedule. There is also a strong case
for effective risk assessment of WRS, and intervention
where necessary. We also recommend screening

Eyvazlou et al. BMC Endocrine Disorders          (2020) 20:169 Page 9 of 11



opportunities in the workplace to detect early risk fac-
tors for MetS. There is a business case for this, as the
high prevalence of MetS in working communities can be
a major economic and operational burden. We assert
that ANN are useful for identifying data patterns and
those at risk of MetS, who can then be prioritised in
terms of offering tests and interventions saving re-
sources, including health.

Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12902-020-00645-x.

Additional file 1. Weights of ANN variables.

Abbreviations
MetS: Metabolic syndrome; T2DM: Type 2 diabetes mellitus; ANN: Artificial
neural network; OSA: Obstructive sleep apnea; WRS: Work-related stress;
HSE: Health and Safety Executive; MSIT: Management Standards Indicator
Tool; ATPIII: National Cholesterol Education Programme Adult Treatment
Panel ІІI; BMI: Body mass index; LDL-C: low-density lipoprotein cholesterol;
HDL-C: High-density lipoprotein cholesterol; HLR: Hierarchical logistic
regression; MSE: Mean squared error; PPV: Positive predictive values;
NPV: Negative predictive values

Acknowledgements
The authors appreciate support from Shiraz University of Medical Sciences.

Authors’ contributions
All authors read and approved the final manuscript. VG, Conceptualisation
and Project Management; VG, RC, Methodology; VG, AB, Investigation and
data collection; HM, MH, NH, Data Curation, Formal Analysis, and Validation;
ME, VG, HM Writing – Original Draft; VG, HM, MJ, RC Writing – Review and
Editing.

Funding
This study was supported by travel grants from Shiraz University of Medical
Sciences.

Availability of data and materials
The datasets used and analysed during the current study are available from
either of the corresponding authors on reasonable request.

Ethics approval and consent to participate
Ethical approval of the study protocol was granted by Shiraz University of
Medical Sciences (IR.SUMS.REC.1399.737). All potential participants received
written correspondence comprising study information, assurance of
anonymity and confidentiality, and clearly explaining their right to withdraw.
Informed consent was given in written before stage 1 of data collection.

Consent for publication
Not applicable

Competing interests
All authors declare that they have no competing interests.

Author details
1Department of Occupational Health Engineering, School of Public Health,
Tehran University of Medical Sciences, Tehran, Iran. 2Center of Planning,
Budgeting and Performance Evaluation, Department of Environment, Tehran,
Iran. 3Department of Ergonomics, School of Public Health, Shiraz University
of Medical Sciences, Shiraz, Iran. 4Department of Occupational Health, School
of Health, Shiraz University of Medical Sciences, Shiraz, Iran. 5Department of
Psychology, Liverpool Hope University, Liverpool, UK. 6Social Determinants of
Health Research Center, Health Research Institute, Department of Biostatistics
& Epidemiology, Faculty of Medicine, Babol University of Medical Sciences,

Babol, Iran. 7Department of Occupational Health, School of Public Health,
Shahroud University of Medical Sciences, Shahroud, Iran.

Received: 12 May 2020 Accepted: 26 October 2020

References
1. Cornier M-A, Dabelea D, Hernandez TL, et al. The metabolic syndrome.

Endocr Rev. 2008;29:777–822.
2. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the

metabolic syndrome: an American Heart Association/National Heart, Lung,
and Blood Institute scientific statement. Circulation. 2005;112:2735–52.

3. Esteghamati A, Meysamie A, Khalilzadeh O, et al. Third national surveillance
of risk factors of non-communicable diseases (SuRFNCD-2007) in Iran:
methods and results on prevalence of diabetes, hypertension, obesity,
central obesity, and dyslipidemia. BMC Public Health. 2009;9:167.

4. Delavari A, Forouzanfar MH, Alikhani S, Sharifian A, Kelishadi R. First
nationwide study of the prevalence of the metabolic syndrome and
optimal cutoff points of waist circumference in the Middle East. The
national survey of risk factors for noncommunicable disease of Iran.
Diabetes Care. 2009;6:1092–7.

5. Kolovou GD, Anagnostopoulou KK, Salpea KD, et al. The prevalence of
metabolic syndrome in various populations. Am J Med Sci. 2007;333:362–71.

6. Watanabe K, Sakuraya A, Kawakami N, et al. Work-related psychosocial
factors and metabolic syndrome onset among workers: a systematic review
and meta-analysis. Obes Rev. 2018;19:1557–68.

7. Garbarino S, Magnavita N. Work stress and metabolic syndrome in police
officers. A prospective study. PLoS One. 2015;10:e0144318.

8. Cosgrove MP, Sargeant LA, Caleyachetty R, et al. Work-related stress
and type 2 diabetes: systematic review and meta-analysis. Occup Med.
2012;62:167–73.

9. Mackay CJ, Cousins R, Kelly PJ, et al. ‘Management Standards’ and work-
related stress in the UK: policy background and science. Work Stress. 2004;
18:91–112.

10. Stansfeld S, Head J, Marmot M. Work-related factors and ill-health: the
Whitehall II study. HSE contract research report 2000;266/2000. Sudbury:
HSE Books; 2000.

11. Cousins R, MacKay CJ, Clarke SD, et al. ‘Management standards’ work-related
stress in the UK: practical development. Work Stress. 2004;18:113–36.

12. Bevan A, Houdmont J, Menear N. The management standards Indicator tool
and estimation of risk. Occup Med. 2010;60:525–31.

13. Marcetto F, Colautti L, Filon, et al. Work-related stress risk factors and health
outcomes in public sector employees. Saf Sci. 2016;89:274–8.

14. Gharibi V, Mokarami H, Taban A, et al. Effects of work-related stress on work
ability index among Iranian workers. Saf Health Work. 2016;7:43–8.

15. Reynolds AC, Paterson JL, Ferguson SA, et al. The shift work and health
research agenda: considering changes in gut microbiota as a pathway
linking shiftwork, sleep loss and circadian misalignment, and metabolic
disease. Sleep Med Rev. 2017;34:3–9.

16. Koren D, Dumin M, Gozal D. Role of sleep quality in the metabolic
syndrome. Diabetes Metab Syndr Obes. 2016;9:281–310.

17. Wu W-T, Tsai S-S, Shih T-S, et al. The association between obstructive sleep
apnea and metabolic markers and lipid profiles. PLoS One. 2015;10:e130279.

18. Dewan NA, Nieto FJ, Somers VK. Intermittent hypoxemia and OSA:
implications for comorbidities. Chest. 2015;147:266–74.

19. Bishop CM. Neural networks for pattern recognition. New York: Oxford
University Press; 1995.

20. Günther F, Fritsch S. neuralnet: Training of neural networks. R J. 2010;2:30–8.
21. Alcalá-Rmz V, Zanella-Calzada LA, Galván-Tejada CE, García-Hernández A,

Cruz M, Valladares-Salgado A, Gaván-Tejada JI, Gamboa-Rosales H.
Identification of diabetic patients through clinical and para-clinical features
in Mexico: an approach using deep neural networks. Int J Environ Res
Public Health. 2019;16:381.

22. Alić B, Gurbeta L, Badnjević A, Badnjević-Čengić A, Malenica M, Dujić T,
Bego T. Classification of metabolic syndrome patients using implemented
expert system. In: Badnjevic A, editor. CMBEBIH 2017. IFMBE proceedings,
vol. 62. Singapore: Springer; 2017. p. 601–7.

23. Catic A, Gurbeta L, Kurtovic-Kozaric A, Mehmedbasic S, Badnjevic A.
Application of neural networks for classification of Patau, Edwards, down,
turner and Klinefelter syndrome based on first trimester maternal serum

Eyvazlou et al. BMC Endocrine Disorders          (2020) 20:169 Page 10 of 11

https://doi.org/10.1186/s12902-020-00645-x
https://doi.org/10.1186/s12902-020-00645-x


screening data, ultrasonographic findings and patient demographics. BMC
Med Genet. 2018;11:19.

24. Sarić R, Jokić D, Beganović N. Implementation of neural network-based
classification approach on embedded platform. In: International conference
on medical and biological engineering. Cham: Springer; 2019. p. 43–9.

25. Sejdinović D, Gurbeta L, Badnjević A, Malenica M, Dujić T, Čaušević A,
Mehmedović LD. Classification of prediabetes and type 2 diabetes using
artificial neural network. In: Badnjevic A, editor. CMBEBIH 2017. IFMBE
proceedings, vol. 62. Singapore: Springer; 2017. p. 685–9.

26. Spahić L, Ćordić S. Prostate tissue classification based on prostate-specific
antigen levels and mitochondrial DNA copy number using artificial neural
network. In: International conference on medical and biological
engineering. Cham: Springer; 2019. p. 649–54.

27. Sun Y, Zhang D. Machine learning techniques for screening and diagnosis
of diabetes: a survey. Technical Gazette. 2019;26:872–80.

28. Lin C-C, Bai Y-M, Chen J-Y, et al. Easy and low-cost identification of
metabolic syndrome in patients treated with second-generation
antipsychotics: artificial neural network and logistic regression models. J Clin
Psychiatry. 2010;71:225–34.

29. Abedi V, Goyal N, Tsivgoulis G, et al. Novel screening tool for stroke using
artificial neural network. Stroke. 2017;48:1678–81.

30. Hirose H, Takayama T, Hozawa S, et al. Prediction of metabolic syndrome using
artificial neural network system based on clinical data including insulin
resistance index and serum adiponectin. Comput Biol Med. 2011;41:1051–6.

31. Ivanović D, Kupusinac A, Stokić E, et al. ANN prediction of metabolic syndrome:
a complex puzzle that will be completed. J Med Syst. 2016;40:264.

32. Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation's sleep
time duration recommendations: methodology and results summary. Sleep
Health. 2015;1:40–3.

33. Farney RJ, Walker BS, Farney RM, et al. The STOP-Bang equivalent model
and prediction of severity of obstructive sleep apnea: relation to
polysomnographic measurements of the apnea/hypopnea index. J Clin
Sleep Med. 2011;7:459–65.

34. Sadeghniiat-Haghighi K, Montazeri A, Khajeh-Mehrizi A, et al. The STOP-
BANG questionnaire: reliability and validity of the Persian version in sleep
clinic population. Qual Life Res. 2015;24:2025–30.

35. Krough R. What are artificial neural networks? Nat Biotechnol. 2009;26:195–7.
36. Jain AK, Mao J, Mohiuddin KM. Artificial neural networks – a tutorial.

Computer. 1996;29:31–44.
37. Gardner MW, Dorling SR. Artificial neural networks (the multilayer

perceptron) – a review of applications in the atmospheric sciences.
Atmosph Env. 1998;32:2627–36.

38. Schultz AB, Edington DW. Metabolic syndrome in a workplace: prevalence
co-morbidities, and economic impact. Metab Syndr Relat Disord. 2009;7:
459–68.

39. Kang DR, Ha Y, Hwang WJ. Prevalence and associated risk factors of the
metabolic syndrome in the Korean workforce. Ind Health. 2013;51:256–65.

40. Strauß M, Foshag P, Przybylek B, et al. Occupation and metabolic syndrome:
is there correlation? A cross sectional study in different work activity
occupations of German firefighters and office workers. Diabetol Metab
Syndr. 2016;8:57.

41. Sapolsky RM. Why zebras don’t get ulcers. 3rd ed. New York: Henry Holt and
Company; 2004.

42. Canuto R, Garcez AS, Olinto MTA. Metabolic syndrome and shiftwork: a
systematic review. Sleep Med Rev. 2013;17:425–31.

43. De Bacquer D, Van Rissenhem M, Clays E, et al. Rotating shiftwork and the
metabolic syndrome: a prospective study. Int J Epidemiol. 2009;38:848–54.

44. Oh J-I, Yim HW. Association between rotating night shift work and
metabolic syndrome in Korean workers: differences between 8-hour and 12-
hour rotating shift work. Ind Health. 2018;56:40–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Eyvazlou et al. BMC Endocrine Disorders          (2020) 20:169 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Design and participants
	Measures and procedure
	Diagnosis of metabolic syndrome
	Statistical analyses
	Artificial neural networks

	Results
	Discussion
	Conclusions
	Supplementary Information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

