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Human gut microbiome is subject to high inter-individual and temporal

variability, which complicates building microbiome-based applications,

including applications that can be used to improve public health.

Categorizing the microbiome profiles into a small number of distinct

clusters, such as enterotyping, has been proposed as a solution that can

ameliorate these shortcomings. However, the clinical relevance of the

enterotypes is poorly characterized despite a few studies marking the

potential for using the enterotypes for disease diagnostics and personalized

nutrition. To gain a further understanding of the clinical relevance of the

enterotypes, we used the Estonian microbiome cohort dataset (n = 2,506)

supplemented with diagnoses and drug usage information from electronic

health records to assess the possibility of using enterotypes for disease

diagnostics, detecting disease subtypes, and evaluating the susceptibility for

developing a condition. In addition to the previously established 3-cluster

enterotype model, we propose a 5-cluster community type model based on

our data, which further separates the samples with extremely high Bacteroides

and Prevotella abundances. Collectively, our systematic analysis including

231 phenotypic factors, 62 prevalent diseases, and 33 incident diseases

greatly expands the knowledge about the enterotype-specific

characteristics; however, the evidence suggesting the practical use of

enterotypes in clinical practice remains scarce.
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1 Introduction

Large-scale human microbiome studies have shown how the gut microbiome reflects

our lifestyle and health (Zhernakova et al., 2016; Jackson et al., 2018; Gacesa et al., 2020;

Aasmets et al., 2022). The implications on health and disease have particularly fed the

growing interest in themicrobiome field with the possibility of using themicrobiome profile

as a novel tool for disease diagnostics and microbiome-informed personalized therapeutics

in mind (di Pierro, 2021; Zeevi et al., 2015). Moreover, recent studies show the potential of

using the microbiome as a prognostic marker for disease progression, leading to

personalized risk estimation (Aasmets et al., 2021; Liu et al., 2022; Ruuskanen et al.,

2022; H. Wang et al., 2022). Taken together, the microbiome carries relevant information
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about one’s health which can be exploited for the benefit of public

well-being. Nevertheless, there is no denying that the human

microbiome is an exceptionally complex system, which is

highly individualized, constantly undergoing changes and its

characterization is demanding (Bartolomaeus et al., 2021;

Vandeputte et al., 2021; Olsson et al., 2022). These properties

have become obstacles to identifying robust signals, whether it is

the identification of disease-associated microbes or the

generalization abilities of complex diagnostic models (Wirbel

et al., 2019; Nearing et al., 2022). A simple characterization of

the complex microbial landscape to a small number of distinct

clusters has been proposed as a possible solution (Arumugam et al.,

2011). Although there is no consensus about the number of such

distinct classes and even the existence of such clusters is being

debated, a three-cluster “enterotype” model is perhaps the most

well-known and discussed simplification of the inter-individual

variability of the gut microbiome (Costea et al., 2017). Since the

possibility of clusters of the gut microbiome was first described,

their connection to human health has been of great interest and the

knowledge is continuously growing. Additional motivation for

using enterotypes is their relative intra-individual and temporal

stability, which is a desired property for potential applications (di

Pierro, 2021; Vandeputte et al., 2021). Even so, the clinical

relevance of the enterotypes or related clusters is largely

unclear, and several directions have been highlighted that need

further research. Enterotypes have so far been considered for

disease diagnostics (Zeller et al., 2014), personalized nutrition

(Christensen et al., 2018), and implications for weight loss

(Song et al., 2020; Zou et al., 2020), but their usage for

estimating the risk of developing a condition, identifying

differences in disease aetiologies and their implications for drug

metabolism is poorly characterized (Costea et al., 2017).

Here, we provide a thorough phenotypic characterization of

the subjects according to their fecal enterotype using the Estonian

microbiome cohort dataset including shotgun metagenomic

sequencing data from 2,509 individuals. The Estonian

microbiome cohort takes advantage of electronic health

records (EHR), which allows the characterization of the health

and drug usage of the individual in great detail (Aasmets et al.,

2022). We evaluate the possibility of using enterotypes for disease

diagnostics, detecting disease subtypes, and evaluating disease

risk using the available follow-up health data from EHRs. In

addition, we proposed a 5-cluster model based on our data, which

further separates the samples with extremely high Bacteroides

and Prevotella abundances.

2 Materials and methods

2.1 Estonian microbiome cohort

The volunteer-based Estonian microbiome cohort (EstMB)

was established in 2017 with the aim of enriching the data of the

Estonian Biobank (EstBB) with microbiome data (Leitsalu et al.,

2015; Aasmets et al., 2022). Stool, oral, and blood samples were

collected from 2,509 EstBB participants (1,764 females and

745 males), aged 23–89 years. The detailed information about

the sample collection and available data are described in Aasmets

et al., 2022. All participants included in the EstMB provided

informed consent for the data and samples to be used for

scientific purposes. This study was approved by the Research

Ethics Committee of the University of Tartu (approval No. 266/

T10) and by the Estonian Committee on Bioethics and Human

Research (Estonian Ministry of Social Affairs; approval No. 1.1-

12/17). All participants have joined the Estonian Biobank on a

voluntary basis and have signed a broad consent form, which

allows receiving participants’ personal and health data from

national health registries and databases. The rights of gene

donors are regulated by the Human Genes Research Act

(HGRA) § 9–Voluntary nature of gene donation (https://

www.riigiteataja.ee/en/eli/ee/531102013003/consolide/current).

For the current analysis, arbitrary selection of diseases (based

on ICD10 categories) with at least 20 cases were chosen for

downstream analysis, resulting in 62 prevalent diseases and

33 incident diseases (Supplementary Table S1A). Medications

were grouped into categories based on Anatomical Therapeutic

Chemical classification (ATC codes) at the highest ATC level (up

to 7-digit code—ATC level 5). ATC categories with less than

20 cases were grouped into a higher level. ATC categories with

less than 20 cases at any ATC level were removed from the

analysis. In total, 122 medications or medication groups were

analyzed, out of which 81 were classified at the ATC level 5 (7-

digit code), 26 were classified at the ATC level 4 (5-digit code)

and 56 were classified at the ATC level 3 (4-digit code)

(Supplementary Table S1A). In addition to the electronic

health records data, the patients reported their diseases,

medications, medical procedures, and health behavior in

lifestyle and microbiome study-specific questionnaires, which

included questions about their diet (e.g., dietary frequency

questionnaire), physical activity, medical data, living

environment, delivery mode and stool characteristics (Bristol

stool scale). The analyzed factors are listed in Supplementary

Table S1A.

2.2 Microbiome sample collection and
DNA extraction

The participants collected a fresh stool sample immediately

after defecation with a sterile Pasteur pipette and placed it inside

a polypropylene conical 15 ml tube. The participants delivered

the sample to the study center where it was stored at -20°C until

DNA extraction. Microbial DNA extraction was performed using

QIAamp DNA Stool Mini Kit (Qiagen, Germany). For the

extraction, around 200 mg of stool was used as a starting

material following the DNA extraction kit manufacturer’s
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instructions. DNA was quantified from all samples using Qubit

2.0 Fluorometer with dsDNA Assay Kit (Thermo Fisher

Scientific). NEBNext® Ultra™ DNA Library Prep Kit for

Illumina (NEB, United States) was used for generating

sequencing libraries following the manufacturer’s

recommendations. Briefly, 1 μg DNA per sample was used as

input material. Index codes were added to attribute sequences to

each sample. The DNA sample was fragmented by sonication to

an average size of 350 bp, DNA fragments were end-polished,

A-tailed, and ligated with the full-length adaptor for Illumina

sequencing with further PCR amplification. Finally, PCR

products were purified (AMPure XP system) and libraries

were analyzed for size distribution by Agilent2100 Bioanalyzer

and quantified using real-time PCR.

2.3 Metagenomics data analyses

The shotgun metagenomic paired-end sequencing was

performed by Novogene Bioinformatics Technology Co., Ltd.,

using Illumina NovaSeq6000 platform resulting in 4.62 ± 0.44 Gb

of data per sample (insert size 350 bp, read length 2 × 250 bp). A

total of 2,509 samples were sequenced. First, the reads were

trimmed for quality and adapter sequences. The host reads which

aligned to the human genome were removed using SOAP2.21

(parameters: -s 135 -l 30 -v 7 -m 200 -x 400, Li et al., 2009).

Quality-controlled data of each sample was then used for

metagenomic assembly using SOAPdenovo (v. 2.04,

parameters: -d 1 -M 3 -R -u -F, Luo et al., 2012).

SOAP2.21 was then used to map clean data of each sample to

the assembled scaftigs (i.e., continuous sequences within

scaffolds). Unutilized paired-end reads of each sample were

put together for mixed assembly. MetaGeneMark (v.3.38,

http://exon.gatech.edu/meta_gmhmmp.cgi) was used to carry

out gene prediction (gene length > 100 bp) based on the

scaftigs (≥ 500 bp) which were assembled by single and mixed

samples. CD-HIT (v.4.6) was used to dereplicate the predicted

genes based on 95% identity and 90% coverage to generate gene

catalogues (parameters: -c 0.95, -G 0, -aS 0.9, -g 1, -d 0) (W. Li &

Godzik, 2006). The longest dereplicated gene was defined as the

representative gene (i.e., unigene). SoapAligner (v.2.21,

parameters: -m 200, -x 400, identity ≥ 95%) was then used to

map clean data to gene catalogs and to calculate the quantity of

the genes for each sample (Gu et al., 2013). The gene abundance

was calculated based on the total number of mapped reads and

normalized gene length. The taxonomic composition of

metagenomes was identified by comparing marker gene

homologs to an NR database (201810) of taxonomically

informative gene families using DIAMOND (v0.9.9.110,

Buchfink et al., 2014). The homologs were annotated based on

the sequence or phylogenetic similarity to the database

sequences.

2.4 Filtering and preprocessing
microbiome data

For downstream analysis, we removed three samples with an

exceptionally low number of reads resulting in 2,506 samples. In

total, 17,158 species were identified. Species that were detected

with > 10% prevalence at a relative abundance of 0.1% were used,

resulting in 1,231 species. Next, the taxonomic table was

aggregated to the genus level before community typing

resulting in 226 genera.

2.5 Statistical analysis

All statistical analyses were carried out using the R (v. 4.1.1)

software.

2.5.1 Identifying enterotypes and community
types

The Dirichlet Multinomial Mixture model was applied to the

genus level microbial community profiles using the

DirichletMultinomial package (v1.34.0) (Holmes et al., 2012).

Genus level taxonomy was used to allow compatibility with other

studies and because it is hypothesized that at genus level the

ecological niches are most clearly reflected (Dethlefsen et al.,

2006). Up to ten clusters were considered and the number of

clusters that best fit the data was determined using Laplace

approximation. As the number of optimal community types

selected by the model depends on the sample size, we

considered optimal the number of clusters after which there

was no significant improvement in the model fit (Figure 1B). For

detecting enterotypes, three clusters were chosen based on the

same methodology.

2.5.2 Association analysis
Logistic and linear regression models were used to associate

the binary and continuous factors with the community types

using the glm and lm functions. In addition to the enterotypes

and community types, the log-transformed Prevotella-

Bacteroides ratio was used for comparison to represent the

“gradient-model.” Categorical variables were associated with

the cluster composition using the chi-squared test. We

corrected for multiple testing using the Benjamini–Hochberg

FDR correction. Additionally, multivariate logistic regression

models adjusted for gender, age, body mass index (BMI), and

stool consistency were used for assessing the clusters for

diagnostic applications. Likelihood ratio tests were used to

analyze whether including the cluster in the model improves

the model fit. Furthermore, posthoc tests were carried out to test

whether drug usage confounds the associations between the

diseases and clusters. The disease-clusters association was

considered confounded if at least one drug was found such
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FIGURE 1
Clusters identified in the Estonian microbiome cohort metagenome data obtained by the Dirichlet Multinomial Mixture Model. (A) enterotypes
and community types on the PCoA biplot of the species-level microbiome profile based on the Bray-Curtis dissimilarity, (B)Model fit by the number
of clusters; 3 clusters represent the enterotype (ET) model and 5 clusters were selected as an optimal number (community type CT model), (C)
Correspondence of the clusters obtained by the CT model with the clusters obtained by the ET model, (D) relative abundances of the driving
genera by the community types and enterotypes.
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that the cluster did not further improve the model fit in addition

to the drug.

Associations between the incident diseases and clusters were

analyzed using the Cox proportional hazard models using the

survival package (v3.2.11) after adjusting for baseline age, BMI,

gender, and stool consistency. For each diagnosis analyzed, the

subjects with prevalent diseases were excluded from the analysis.

The median follow-up time is 3.1 years. The proportional

hazards (PH) assumption was tested using the cox.zph

function (Supplementary Table S4A). For analyzing

differences in the distributions of subdiagnosis, the chi-

squared test was used.

3 Results

3.1 Community types in the Estonian
microbiome cohort data

First, we aimed to identify clusters from the Estonian

microbiome cohort gut metagenomics data (N = 2,506). We

applied the Dirichlet Multinomial Mixture (DMM) model to the

genus-level taxonomic profile, as DMM can help to infer the

number of clusters in the data (Holmes et al., 2012). The selection

of the number of clusters can be influenced by the sample size.

Thus, we focused on the model that selected five clusters as there

was no further significant improvement in the model fit (Figures

1A,B). We refer to the 5-clusters as community types (CT) model

and indicate the clusters accordingly (CT1-CT5). In addition, we

analyze the 3-cluster enterotype (ET) model, which has been

most consistently reported to describe structures in the fecal

microbiome. The driving genera of the CTmodel and the relative

abundances of the most important genera Bacteroides, Prevotella,

and Clostridum by the community types are shown in Figure 1D

and Supplementary Figure S1. Comparing the clusters obtained

by the two models shows that community types CT1 and CT5

belong almost exclusively to enterotypes defined by the

dominance of Bacteroides (ET B) and Prevotella (ET P)

respectively. Community types CT2, CT3, and CT4 are

divided between multiple enterotypes with the enterotype

dominated by genera from Firmicutes (ET F) consisting of

samples from all 3 community types (Figure 1C). Taken

together, the community-type model further separates samples

with an extremely high relative abundance of Bacteroides (CT1)

and Prevotella (CT5). Differences in the microbiome

characteristics (e.g., observed species and Shannon diversity)

of the community types and enterotypes are consistent with

the enterotype—community type transition (Figure 1C,

Supplementary Figure S2). Consistent with previous results,

ET F shows the highest taxonomic and functional diversity,

but also the highest richness of antibiotic resistance genes

(ARGs) while ET B shows the lowest taxonomic and

functional richness (Supplementary Figure S2) (Costea et al.,

2017). Shannon diversity index was similar between ET B and ET

P. Being the most dominated by the Bacteroides and Prevotella

(Figure 1D), community types CT1 and CT5 show significantly

lower diversity compared to other community types. As

previously reported, enterotype ET B and ET P are associated

with looser stools and higher gut emptying frequency

(Supplementary Table S1B, Supplementary Figure S3). On the

other hand, ET F is associated with dry stools, less frequent gut

emptying and more self-reported constipation (Supplementary

Table S1B, Supplementary Figure S3). The gut emptying

frequency and stool consistency for community types follow a

concordant pattern regarding enterotype-community type

transitions with CT3 being associated with constipation and

less frequent gut emptying, CT1 and CT5 having loose stools

and higher frequency, and CT2 and CT4 falling consistently on

the gradient.

3.2 Characterization of the phenotypic
associations with the enterotypes and
community types

Next, we analyzed the associations between 231 phenotypic

factors, enterotypes and proposed community types

(Supplementary Table S1A). These factors include 62 diseases,

125 medications, 3 clinical procedures, 20 dietary items,

5 intrinsic factors, and 16 other factors characterizing the

lifestyle. We identified 36 factors associated with the

enterotypes and 42 factors associated with community types

after correcting for multiple testing (FDR≤0.1) and 53 and

60 factors respectively with nominal significance

(p-value ≤0.05) (Figure 2, Supplementary Figure S3,

Supplementary Table S1A). Out of the associations which

were significant with FDR ≤0.1, 25 factors were associated

with both enterotypes and community types, 11 associations

were specific to enterotypes, and 17 associations were specific to

community types.

The identified associations with enterotypes reveal a

homogenous picture of one’s health (Figure 2). Overall, ET B

is associated with deteriorated health represented by the highest

average number of prevalent diseases and highest number of

different medications used. The diseases showing the most

significant enrichment in ET B include gout, primary

hypertension, anxiety, and chronic tubulo-intestinal nephritis,

but suggestive evidence (nominal p-value ≤ 0.05) shows

enrichment in ET B similarly for several other diseases, most

notably for major depressive disorder (Supplementary Tables

S1A,B). Enterotype ET P on the other hand corresponds to best

health in terms of the number of prevalent diseases. Subjects

from ET P and ET B enterotypes show similar associations with

physical characteristics and lifestyle parameters such as high

blood pressure, BMI, waist-to-hip ratio (WHR), higher rate of

smokers, and higher frequency of drinking alcohol when
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compared to the subjects from ET F (Figure 2, Supplementary

Table S1B). Therefore, ET F seems to represent subjects with the

healthiest lifestyle, which is further supported by the least

number of medications used and a low prevalence of diseases

such as gout and primary hypertension. There is also a significant

association with gender and age with ET P showing a significantly

lower proportion of women and the subjects from ET F are

slightly older than the others. Importantly, the consumption of

antibiotics and especially long-term usage of antibiotics

characterized by the number of prescriptions bought in the

last 10 years before sample collection is associated with the

enterotype composition. The subjects from ET B have used

significantly more antibiotics in the previous years when

compared to the subjects from ET F and ET P (Figure 2,

Supplementary Table S1B).

Although the 3-cluster model of enterotypes clearly

corresponds to differences in health and lifestyle, the 5-cluster

community type model leads to even more distinct phenotypic

profiles. Notably, in addition to more factors being associated

with the community types when compared to enterotypes, the 5-

cluster CT model highlights a mixture of possible association

patterns. Some associations are specific to certain community

types, and some exhibit a gradient-like nature. For example, the

prevalence of type 2 diabetes shows a clear enrichment that is

specific to a community type CT1. Correspondingly, the

community type model for type 2 diabetes shows the best fit

in terms of the Akaike Information Criterion (AIC) when

compared to the enterotype model and the gradient model

(Supplementary Table S1A). Similarly, associations with

hypertensive heart disease, asthma, and even female fertility

show associations which are most concordant with the

community types (Figure 2). Importantly, age, BMI, WHR,

and blood pressure are also most concordant with the

community type model. On the other hand, some factors

associated with the microbiome in a gradient-like manner,

corresponding to the Bacteroides-Prevotella ratio

FIGURE 2
Phenotype associations with the enterotype (ET) model and community type (CT) model (unadjusted analysis). Coloured cells represent factors
associated with CT and ET models respectively (FDR ≤0.1), and white cells indicate no statistically significant association (FDR > 0.1). Mean values or
proportions (indicated by %) per cluster are shown. Blue colors indicate lower mean values or proportions for the cluster and orange color indicates
higher values. Asterix (*) in the names of the factors indicate that a subpopulation consisting of women was used for calculating the displayed
value.
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(Supplementary Figure S4). For example, the average number of

courses of antibiotics taken over the previous 10 years increases

from CT3 to CT1, with no clear-cut community type-specific

association as for type 2 diabetes, thus also best represented by

the gradient model in terms of AIC. Similarly, multiple dietary

factors and host-targeted medications were found to be

associated with enterotypes and community types that also

show signals specific to the clustering scheme used.

3.3 Assessing the clinical relevance of the
enterotypes and community types

Next, we aimed to assess the potential clinical relevance of the

enterotypes and community types, concentrating on the diseases.

The vast number of phenotypic associations is a valid motivation

for considering the diagnostic application. However, the

common risk factors (BMI, age, gender, alcohol, smoking) for

many complex diseases are also integral characteristics in

distinguishing the clusters. Also, drug consumption can

complicate the identification of disease-specific signals

(Forslund et al., 2021). Therefore, we adjusted the models for

prevalent diseases for age, BMI, gender, and stool consistency to

understand, whether the associations as shown can be

confounded by these covariates. After adjusting, only

associations with gout, disorders of lipoprotein metabolism,

essential hypertension, and chronic tubulo-interstitial nephritis

for the enterotype-model and gout and anxiety disorders for the

community type model remained statistically significant

(Supplementary Table S1A). Next, we asked, whether these

associations are confounded by drug usage. When further

adjusted for drug usage, associations with anxiety disorder

and tubulointerstitial nephritis were not detected

(Supplementary Table S2).

We further asked the question of whether the clusters can

identify differences in disease etiology. Instead of the 3-digit

ICD10 codes, we focused on the disease subcodes and analyzed,

whether there are differences in the distribution of the

occurrences between the identified clusters (Supplementary

Table S3A, Supplementary Figure S5). We found suggestive

evidence for differences in the sub-diagnosis distributions for

Gastritis and duodenitis (K29) with chronic superficial gastritis

(K29.3) being more prevalent in CT2 and for disorders of

lipoprotein metabolism (E78) with mixed hyperlipidemia

(E78.2) being more characteristic to ET F and pure

hyperlipidemia to ET P and ET B. Finally, we analyzed the

incident diseases with the aim assessing the enterotype-like

approaches for assessing the susceptibility for developing a

disease. We applied Cox proportional hazard models to the

incident cases, adjusting for baseline age, BMI, gender, and

stool consistency. After analyzing 33 incident diseases, we

found only suggestive evidence for predicting migraine using

the 5-cluster community type model (p-value: 0.0431) with

CT3 showing decreased risk when compared to the other

community types (Supplementary Tables S4A,B,

Supplementary Figure S6)

4 Discussion

High inter-individual and temporal variability of the gut

microbiome can undermine the development of microbiome-

based applications in personalized medicine. Thus, collapsing the

microbiome profiles into a small number of clusters has desirable

properties for summarizing and communicating the role of the

microbiome in human health. That is why the concept of

enterotypes is still being actively discussed and researched,

10 years after its first mention (Costea et al., 2017; di Pierro,

2021). Nevertheless, the prospect of using enterotypes for disease

diagnostics and disease risk estimation remains largely unknown.

Here, using the comprehensive gut metagenome and health data

from the Estonian microbiome cohort (EstMB), we characterized

the phenotypic differences between the subjects from different

enterotypes. Taking advantage of the electronic health records, in

addition to identifying novel associations between enterotype

composition and various lifestyle factors, we were able to show

that the enterotypes can discriminate disease subtypes.

Furthermore, our data suggest that a 5-cluster model can

provide a more comprehensive look on the lifestyle and health

by identifying subjects with elevated risks for developing incident

diseases while retaining simplicity and explainability. The

microbiome composition undergoes the most rapid

developments in early childhood and constantly changes

throughout the adulthood with diet and lifestyle being one of

the most influential factors for the underlying changes (Gilbert

et al., 2018; Dinsmoor et al., 2021). Similar dynamics and

influential factors go hand in hand with the enterotype

composition (Dinsmoor et al., 2021). Therefore, it is not

surprising that the dietary items such as the consumption of

porridge, fresh fruit, meat, and indications of lifestyle such as

drinking water origin, alcohol consumption, and smoking were

associated with the enterotype composition in the Estonian

microbiome cohort. The dominance of the ET B enterotype in

the urban region and the association of ET B with a diet rich in

animal proteins and saturated fats is well known (de Filippo et al.,

2010; Ley, 2016). Yet, our results regarding the diet are

conflicting. It is possible that the food-frequency questionnaire

doesn’t allow to characterize the diet in necessary detail. Also,

enterotypes have been associated with body composition. For

example, both ET P and ET B enterotypes have been associated

with a higher waist circumference and ET B with a higher BMI

(Breuninger et al., 2021). Our results confirm these observations,

but additionally, show that the ET P is associated with higher

BMI when compared to ET F. Interestingly, subjects belonging to

ET F tend to be slightly older than the subjects from ET B and ET

P and there was a significantly lower proportion of women in ET
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P. Furthermore, we show that the CT model further emphasizes

the differences in body composition and lifestyle. Taken together,

there are remarkable differences in diet and lifestyle between the

subjects from different enterotypes and community types, that

can have an impact on the enterotype-focused applications and

must be accounted for.

Besides the lifestyle, the associations between enterotypes

and complex diseases have gained special interest due to the

potential for direct diagnostic application. Previously,

enterotypes have been associated with numerous diseases such

as dementia (Saji et al., 2019) and colorectal cancer (Zeller et al.,

2014). It is noteworthy that in these studies the anthropometric

measurements and lifestyle factors, which are common

confounders in microbiome studies (Vujkovic-Cvijin et al.,

2020), are often not adjusted for. Correspondingly, after

adjusting for gender, BMI, age, and stool consistency, we were

able to confirm associations only with gout, disorders of

lipoprotein metabolism, essential hypertension, anxiety

disorder, and chronic tubule-interstitial nephritis.

Furthermore, recent studies show that the drugs used to

induce significant changes in the gut microbiome composition

and complicate the identification of disease-specific signals

(Forslund et al., 2021). After further adjusting for drug usage,

the associations with chronic tubule-interstitial nephritis and

anxiety disorders disappeared, but other associations remained

significant indicating a stronger disease-specific association with

the clusters. Thus, our data confirm that the enterotypes can have

the property of distinguishing the healthy from the diseased.

Moreover, our results indicate that the enterotypes and

community types can help to distinguish differences in disease

aetiologies, which is an important implication for future studies.

Nevertheless, the lifestyle and anthropometric differences

between the enterotypes need to be adjusted for to assess

whether the enterotypes are a viable option for diagnostics.

Also, given the same enterotypes and community types are

linked to different diseases, the enterotyping alone might not

be sufficient for diagnostic purposes (Costea et al., 2017).

In addition to considering enterotypes for disease

diagnostics, the electronic health records allowed us to assess

the susceptibility of developing a disease depending on the

clusters. The research on enterotypes and differing health

risks is rather scarce. Previously, ET B has been shown to be a

risk factor for type 2 diabetes due to decreased insulin sensitivity

(J. Wang et al., 2020). Also, ET P has been shown to have a lower

risk for developing Parkinson’s disease (Heinzel et al., 2021).

However, our analysis didn’t show any statistically significant

results with any of the analyzed conditions after the FDR

correction. Nominally significant differences in disease risk

were identified only for migraine in the case of the 5-cluster

model with CT3 showing the lowest risk for migraine. Therefore,

although a simple clustering scheme is attractive and easily

communicable, it might not be fit for estimating the disease

risks. The stability of the enterotype composition has been

considered its strength for risk assessment, but recent research

suggests that the enterotype composition might be less stable

than previously thought, which can explain our results (Olsson

et al., 2022).

The concept of enterotypes or distinct clusters in the gut

microbiome and the number of the clusters has been argued for

and against without a clear consensus (Costea et al., 2017).

Besides the original 3-cluster approach, several other

clustering strategies and methodologies have been used, which

have identified a varying number of clusters (Claesson et al.,

2012; Zhou et al., 2014). Different clusters on the other hand can

highlight distinct aspects of health. Therefore, criticism has

accompanied the clustering approach and even a gradient

model has been proposed instead (Koren et al., 2013).

However, different aims need to be kept in mind when

clustering microbiome data is carried out. First, whether there

are distinct clusters in the microbiome can be a viable question.

Second, we can ask whether the clusters we identify can be

beneficial for our cause? We argue that if the second cause is kept

in mind, then the replicability of the clustering is not the primary

aim, and we encourage carrying out a de novo clustering on the

dataset. It is possible that the clusters and therefore their practical

properties are specific to the study population. We identified a 5-

cluster model that provided amore distinctive characterization of

the phenotypic profile when compared to the enterotype model.

Even though we identify only weak signals for estimating disease

risks and differences in disease aetiologies, the 5-cluster model

implicated a more comprehensive approach for practical

purposes when compared to the enterotype model. Thus,

depending on the aim of the application, the CT model,

which further emphasizes the “extremes” of the Bacteroides-

Prevotella gradient, can be considered as an alternative to the

enterotype model. Taken together, the 5-cluster model can be

more beneficial for disease classification, disease risk estimation,

and provide additional value for evaluating the overall health

while maintaining simplicity.

Some limitations need to be acknowledged. Although the

data in the electronic health records are comprehensive and of

high quality, the subphenotypes are not that well-characterized

with a large proportion of the diseases classified to a subcode

indicating an unspecified condition. However, we were still able

to identify differences in the cluster composition for some

subphenotypes, which highlights the necessity for further

research. Electronic health records allow to track the

participant’s health over time and analyze incident diseases.

However, the median follow-up time for the participants of

our study is currently around 3 years, which allowed us to

study the short-term risk of disease occurrences. Future

studies can take advantage of the increased follow-up time

and the perspective of using enterotypes for disease risk

assessment can be revisited. Also, the Estonian microbiome

cohort currently includes only one timepoint, therefore the

potential enterotype or community type shifts cannot be
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studied. Undoubtedly, longitudinal data can improve the

understanding of the community structures and evaluating the

stability of the proposed 5-cluster model is necessary.

Taken together, clustering the microbiome data possesses

admirable properties and such simplification would be highly

valuable for communicating the microbiome science and for

giving microbiome-informed personalized health information.

Nevertheless, the evidence for using the enterotype-like clusters

for clinical applications remains fragile.
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