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Abstract

Background: Heterotachy is the variation in the evolutionary rate of aligned sites in different parts of the phylogenetic tree.
It occurs mainly due to epistatic interactions among the substitutions, which are highly complex and make it difficult to
study protein evolution. The vast majority of computational evolutionary approaches for studying these epistatic interactions
or their evolutionary consequences in proteins require high computational time. However, recently, it has been shown that
the evolution of residue solvent accessibility (RSA) is tightly linked with changes in protein fitness and intra-protein epistatic
interactions. This provides a computationally fast alternative, based on comparison of evolutionary rates of amino acid
replacements with the rates of RSA evolutionary changes in order to recognize any shifts in epistatic interaction.

Results: Based on RSA information, data randomization and phylogenetic approaches, we constructed a software pipeline,
which can be used to analyze the evolutionary consequences of intra-protein epistatic interactions with
relatively low computational time. We analyzed the evolution of 512 protein families tightly linked to
mitochondrial function in Vertebrates and created “mtProtEvol”, the web resource with data on protein
evolution. In strict agreement with lifespan and metabolic rate data, we demonstrated that different
functional categories of mitochondria-related proteins subjected to selection on accelerated and decelerated
RSA rates in rodents and primates. For example, accelerated RSA evolution in rodents has been shown for Krebs
cycle enzymes, respiratory chain and reactive oxygen species metabolism, while in primates these functions are stress-
response, translation and mtDNA integrity. Decelerated RSA evolution in rodents has been demonstrated for
translational machinery and oxidative stress response components.

Conclusions: mtProtEvol is an interactive resource focused on evolutionary analysis of epistatic interactions in protein
families involved in Vertebrata mitochondria function and available at http://bioinfodbs.kantiana.ru/mtProtEvol/. This
resource and the devised software pipeline may be useful tool for researchers in area of protein evolution.

Keywords: Epistatic interactions, Proteins, Database, Residue solvent accessibilities, Positive selection

* Correspondence: genkvg@gmail.com
1Center for Mitochondrial Functional Genomics, School of Life Science,
Immanuel Kant Baltic Federal University, Kaliningrad, Russia
3Center of Brain Neurobiology and Neurogenetics, Institute of Cytology and
Genetics SB RAS, Novosibirsk, Russia
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kuzminkova et al. BMC Evolutionary Biology 2019, 19(Suppl 1):47
https://doi.org/10.1186/s12862-019-1371-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-019-1371-x&domain=pdf
http://bioinfodbs.kantiana.ru/mtProtEvol
mailto:genkvg@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
An unevenness of the rates of molecular evolution is
typical for the vast majority of functional proteins. A
chance of any amino acid fixation in protein depends on
their effect on the structure, function and its interactions
with other proteins. This results in the observed uneven-
ness in the rates of molecular evolution in different line-
ages within the same orthologous protein family and in
different protein sites in various time intervals. This
phenomenon is commonly recognized as heterotachy.
Heterotachy is simply the variation in the evolutionary
rate of the aligned sites in different parts of the phylo-
genetic tree, mainly due to epistatic interactions among
the substitutions. Epistasis leads to coevolution of vari-
ous protein regions and even different proteins as well
as concerted changes [1–8]. Another interesting feature
of protein evolution that relates to heterotachy is called
“fixation bursts” - periods of molecular evolution during
which very important processes of fixation of the amino
acid substitutions unfold over a relatively short period of
time [9]. Fixation bursts were observed during analysis
of the divergence of mouse and rat [10] and of inser-
tional changes in Drosophila [11]. The above-mentioned
fixation bursts can be a result of the process of speci-
ation and/or adaptation to novel ecological niches. Due
to the fact that epistatic interactions in proteins are
common we can expect that multiprotein complexes can
evolve accordingly to fixation bursts: the fixation of one
amino acid substitution induces / allows for others etc.
Therefore, we decided to uncover such events in evolu-
tion of in protein families related to basal cellular func-
tions (e.g. mitochondrial) during the evolution of
mammals.
Because of the high complexity of epistatic interactions

in proteins, it has been difficult to study the evolution of
proteins, especially on deep tree branches. The common
pathway to elucidate the evolution of proteins on inner
tree branches is ancestral sequences reconstruction
(ASR) [12, 13]. The majority of currently available ASR
procedures require time reversibility and are based on
the general empirical substitution rate models such as
WAG [14], LG [15] or JTT [16], which are named after
the first letters of their authors’ surnames. However, the
main type of protein epistasis - when one mutation in-
teracts with several others, leads to evolutionary irrever-
sibility or to the gradual emergence of restrictive
epistatic interactions along the course of protein evolu-
tion (or in terms of evolutionary modelling, leads to
gradual limitation of general empirical substitution rate
model). This in turn makes the highly probable (in terms
of general empirical substitution rate model) ancestral
state deleterious [1, 3]. Recently various perspective
models have been suggested to describe protein evolu-
tion in terms of epistatic fitness interactions and/or

consequences of epistatic interactions [5, 17], for ex-
ample, structure-aware CASS model [18]. However,
these models are largely inapplicable in large studies due
to high computational costs for the protein molecular
mechanic and dynamic calculations. The same is true
for ancestral protein reconstruction tools that process
novel structure and folding stability (e.g. ProtASR [19]),
because there is still a lack of experimentally solved 3D
protein structures. Another perspective approach which
takes into account epistatic interactions in proteins to
elucidate their evolution on inner tree branches is the
Bayesian mixed (in terms of substitution rates and
branch lengths mixing across sequence and along evolu-
tionary time) framework for phylogenetic tree recon-
struction, that takes into consideration heterotachy
phenomena [20–25]. However, most of those approaches
require simultaneous estimation of dozens of parame-
ters, thus the computational effectiveness of such ap-
proaches is poor and, due to this obstacle, these
approaches are not applicable to large proteome-wide
studies.
Nevertheless, the accurate phylogenetic estimation

does not necessarily need huge computational efforts. A
good example is the usability of CAT protein evolution
model, that is entirely based on mixed substitution rate
approach. Interestingly, recent comparison between the
CAT protein evolution model and the data partitioning
with site-homogeneous substitution model clearly dem-
onstrates that the partitioning models are as accurate as
the CAT evolution model in spite of >10x computational
simplicity [26, 27]. As a very first approximation (with-
out covarion phenomena) the heterotachy phenomena
can be modelled via data partitioning, where each parti-
tion can have its own evolution rate and its own set of
branch lengths. This approach has recently been imple-
mented in a very computationally effective way in
IQTree software [28]. Additionally, this year, the branch-
unlinked mixture model incorporating heterotachy was
implemented also in IQ-TREE software [29, 30]. Thus, it
is now possible to analyze the evolution of hundreds of
protein families on inner tree branches, while taking into
consideration heterotachy, which represents changes in
epistatic interactions in proteins - all with reasonable
computational time.
Epistatic interactions in proteins are determined mainly

by steric and physico-chemical requirements for protein
folding in three-dimensional space. Therefore, we assume
that the amino acid replacements characterized by large
changes in solvent accessibility area, (a measure of solvent
exposure of the amino acid in the 3D protein structure)
are associated with abrupt changes in protein globule and
are expected to be driven by epistatic changes. However,
strictly said, such episodes of protein evolution are the
consequence (not cause) of epistatic changes and tell
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nothing new about the mechanism of intra-protein epistasis.
In other words, the evolution of residue solvent accessibility
(RSA) is anticipated to be tightly linked with changes in pro-
tein functions and fitness. Indeed, it was shown that the evo-
lutionary conservation of a protein site correlates with RSA
of this site [31–35] and this conservation is additionally
linked with the relative site position to the protein active
center [31, 32]. At the same time, it was shown that the evo-
lution of natural proteins is often associated with lowering
stability against misfolding, which in turn can shuffle parts
of the globule with respect to the solvent [34]. New soft-
ware and models have been developed to detect positive se-
lection of protein coding genes [33] and proteins [36] based
on these observations. Finally, it was recently shown, that
the acceleration of mutation fixations in various protein
families could fundamentally change the accepted pattern of
mutation fixations including permittance of fixations with
strong RSA changes [35]. Therefore, for the analysis of the
RSA evolution it is necessarily to take into account the
family-wise rate of protein evolution. Additionally, it was
shown that site-specific evolutionary rates at the level of
amino-acids are very similar with such estimations on codon
level [36]. Considering this, it is tempting to compare the
evolutionary rates of amino acid replacements with the rates
of RSA evolutionary changes. This type of comparison may
be useful to discriminate nearly neutral changes of protein
sequences from changes related to intra-protein epistatic
interaction alteration. Moreover, the development of effect-
ive phylogenetic computational software tools, such as
IQTree software [37], that could accommodate phylogenetic
framework into any symbol dictionary allow us to execute
ancestral sequence reconstruction procedures so without
large computational intensity and inaccuracy (due to usage
of standard empirical substitution rate models).
Here, using the robust randomization statistical proce-

dures, heterotachy and site partitioning models within
phylogenetic framework, we analyzed the evolution of 512
protein families on inner branches of the tree. The ana-
lyzed protein families were selected based on their associ-
ation with mitochondrial function in vertebrates. We
created the first web resource dedicated to analysis of the
evolutionary consequences of intra-protein interactions
changes in mitochondrial proteome (http://bioinfodbs.-
kantiana.ru/mtProtEvol/). We showed that site partition-
ing model, in contrast to heterotachy model, has limited
application to the description of RSA evolution. In strict
agreement with lifespan and metabolic rate data, we dem-
onstrated that different functional categories of
mitochondria-related proteins are subject to selection with
accelerated and decelerated RSA evolution rates in ro-
dents and primates. For example, in rodents accelerated
RSA evolution is associated with Krebs cycle enzymes, re-
spiratory chain proteins, ROS metabolism and mitochon-
drial transport, while in Primates these protein functions

are stress-response components, mtDNA integrity and
translational machinery.

Construction and content
Evolutionary analysis pipeline
Our pipeline has three stages: data preparation, jackknifing
and data summarizing. Data preparation stage consists of
five steps. At {step 1} we selected 514 HUGO gene names
list manually from MitoMiner 4 database [38]. After that
{step 2} we downloaded (and tested via simple ID concord-
ance test) from ENSEMBL Compara rel. 91 [39] 512 (2
protein names were controversial) protein trees and 512
protein alignments using ENSEMBL REST API [40]. At
{step 3} we tested all data for heterotachy effects by Procov
v. 2.0 software [41] in all tree and in Rodentia-Primata sub-
clades. Using SCRATCH-1D v.1.1 software package [42] at
the {step 4} we predicted RSA and 8 types of secondary
structure for each protein in each protein multiple align-
ment. We selected this software package for RSA predic-
tion because it is one of the best for structure-aware
solvent accessibility prediction [42, 43], and because it al-
lows the user to predict more than three classes of RSA
(comparing e.g. with RaptorX_Property_Fast [43]). Detailed
RSA prediction allowed us to convert RSA to 20 types and
encoded those types in pseudo-amino-acid alphabet (RSA
= PAA: -5(unknown) =A, 0 = R, 5 =N, 10 =D, 15 =C, 20 =
E, 25 =Q, 30 =G, 35 =H, 40 = I, 45 = L, 50 =K, 55 =M, 60
= F, 65 = P, 70 = S, 75 = T, 80 =W, 85 = Y, 90&95 =V). It
should be noted, that we track any reduction in the number
of types of amino acid residue, e.g. due to reduction in vis-
ible mutation number that is related to the increase in data
uncertainty (Supplementary information 1 on the mtProtE-
vol site). This in turn allowed us to work with PAA in the
same way as with canonical amino acids, for example,
translating the RSA numeric values to pseudo-amino-acids
in protein multiple alignments. At {step 5}, using FASTMG
software [44], we calculated relative rates of amino acid
substitution (REV-model or REV-matrix) and relative rates
of pseudo-amino-acid (or RSA) substitutions for each pro-
tein family (protein multiple alignment), using likelihood
statistics, approximated by PhyML [45].
The construction of matrices containing relative rates of

RSA type substitutions for each protein family allowed us
to analyze in general the evolution of RSA. In order to
perform this analysis we summarized (1) frequencies of
RSA type occurrence and (2) ranks of relative rates of
RSA type changes from all analyzed protein families (Sup-
plementary information 2 on the mtProtEvol site). We cal-
culated ranks of relative rates of RSA type changes for
each RSA type separately, in these calculations we filtered
out near zero relative rates of substitution using three
thresholds (Supplementary information 2 on the mtProtE-
vol site). A basic assumption of our approach is that sites
in a protein-coding sequence are independent. This
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assumption is commonly made, and it allows huge simpli-
fication of computation, even though it is clear that sites
in a protein sequence do not evolve independently. It
would be challenging for future studies to include effective
computations taking into consideration limited structural
constraints [34, 35] related to site dependence.
Jackknifing stage is needed for estimation of branch

length variations. For each protein tree analysis we used
100 random delete-half-jackknifed alignments, namely, the
pseudo-replicates generated 100 times from the data by
random sampling of alignment columns without replace-
ment from the original alignment, each pseudo-replicate
being a half of the original alignment. We studied branch
length variations using IQTree v 1.6 software because of
computational effectiveness [37] and possibility to use both
site partitioning model [28] and heterotachy model [29, 30]
of protein evolution. The last model is especially important
for investigating evolutionary consequences of intra-protein
interactions changes (see Background section) in protein
evolution, while the first can serve as a baseline for hetero-
tachy model due to model structure. In the both computa-
tions, we used (1) the constrained tree topology for each
protein family obtained from ENSEMBL Compara rel. 91
and (2) REV-models of amino acids or pseudo-amino-acids
relative substitution rates computed at the Data preparation
stage. We used the following options for IQTree computa-
tions: ‘-m model + F*H3’ for analysis using heterotachy
model [29, 30] and ‘model+ F’ for each edge-unlinked (‘-sp’
run option) site partition [28], model is the protein family
REV-models in PAML text format. We placed alignment
sites of both amino acids and pseudo-amino-acids into 8
categories (effectively on average not more than 4 categor-
ies (see Utility and Discussion section and Supplemen-
tary information 3 on the mtProtEvol site) by simple site
diversity measure as described in [46].
Data summarizing stage is intended for robust nonpara-

metric pairwise comparison between branch lengths, based
on alignment of amino acid sequences and on alignment of
pseudo-amino-acids (or RSA) for the same phylogenetic
tree topology of the protein family. The relative (comparing
to amino acid replacements rate) increase in the
pseudo-amino-acids evolutionary rate can be a hallmark of
evolutionary changes, which affect the position of amino
acid residues in 3D protein structure (inner residues be-
came outer or vice versa), while the relative decrease of this
metric indicates predominant fixations, which preserve the
position of amino acid residues in the 3D protein structure.
Thus, our metric may suggest new point of view on evolu-
tion of proteins, pointing out branches with intensive evo-
lution of 3D protein structure. In order to discriminate
these two evolutionary events we went through six compu-
tation steps. At {step 1} we gave each inner tree node a
unique label. Then in {step 2} we generated two lists of
branch lengths for each labelled branch: (laa) lengths based

on amino acid alignments analysis, and (lrsa) lengths based
on pseudo-amino-acids (or RSA) alignments analysis. In
{step 3} we calculated in pairs the ratio L = lrsa/laa for each
innertree branch of each protein family phylogenetic tree.
In {step 4} we compared the ln(L) value set of each inner
tree branch (1-set) to all ln(L) values for the all inner tree
branches in protein family phylogenetic tree (0-set) using
nonparametric U-test (Holm correcting for multiple com-
parisons [47]) and Cliff ’s delta effect size [48]. We used
comparable sets in this comparison forming (by random
value selection) 0-set size not more than 10 times bigger
than 1-set size. We did it in order to select inner tree
branches that have significantly higher or lower ln(L) values
than ln(L) values across all branches of the tree or, in other
words, to select evolutionary events with relative gain and
loss of intra-protein interaction changes. At {step 5} we
checked the protein names in trees and linking protein
names with species names and taxonomy using mygen-
e.info [49] and newick tools [50] with NCBI taxonomy [51].
This allowed us to juxtapose inner tree branches with taxo-
nomic clades and subsequently concentrate our attention
on the selected taxonomic clades. At the last {step 6} we
summarized the results from all proteins under analysis. In
doing so we filtered out all near zero internal branches
(branch length < 5*10− 5) based on RSA and, finally, color-
ized tree branches with statistically significant accelerated
and decelerated RSA change rates.

Making of the web-interface
In order to give structure to the results, make them
interactive and freely available we created a web service
(http://bioinfodbs.kantiana.ru/mtProtEvol/), contain-
ing all analyzed data and all results. We did this using
Apache web server, MySQL 5, Perl 5.24 (CGI module),
HTML5, and JavaScript for generating web pages dy-
namically. We used special applications for interactive
multiple sequence alignment (MSAViewer [52]) and for
phylogenetic tree visualization (Archaeopteryx.js [53]).

Construction and analysis of the protein networks
At the last step we summarized our data in protein net-
work framework using STRING [54] and GENEMANIA
[55] internet resources. In both resources, for our study
we used human datasets as the most functionally anno-
tated dataset. We used Cytoscape 3.5.0 [56] for STRING
protein-protein interactions network structure analysis.
In this analysis we used three standard measures to
characterize the node importance: degree, betweenness
centrality (the number of shortest paths that pass
through the node), and closeness centrality (reciprocal
of the sum of the length of the shortest paths between
the node and all other nodes in the graph). For descrip-
tion of protein-specific functional features we used Gen-
eCards resource [57].

Kuzminkova et al. BMC Evolutionary Biology 2019, 19(Suppl 1):47 Page 26 of 99

http://mygene.info
http://mygene.info
http://bioinfodbs.kantiana.ru/mtProtEvol


Utility and discussion
With the aim to analyze evolutionary consequences of
intra-protein epistatic interactions in mitochondrial prote-
ome we focused on molecular evolution of 512 protein
families, involved in mitochondrial function. For this pur-
pose, as well as to take into consideration the importance
of RSA evolution in determining intra-protein interaction
shifts, we explored the evolutionary rates of amino acid re-
placements and RSA changes. We compared these rates,
using two models of protein evolution: heterotachy and site
partitioning, implemented in one software package -
IQTree v. 1.6 [37]. Our investigation is split into two parts:
first, we analyzed how meaningfulness transitions between
all 20 RSA categories are; and, second, we tested the applic-
ability of two models in describing amino acid and RSA

evolution; third, we applied best model and investigation
strategy for comparative analysis of RSA evolutionary rates
in 512 protein families. We did this, using data
randomization by jackknife procedure to analyze the sensi-
tivity of results to data variation.

The reasons for considering 20 RSA categories as a
measure of protein evolution
How many categories are enough for evolutionary ana-
lysis that is robust to data variation? To answer this
question, we analyzed two types of data by random
delete-half-jackknifing (see Construction and content
section): amino acid residues classified in 20 classes (20
canonical amino acids or 20 classes of RSA), and amino
acid residues classified in 8 classes based on protein

A B

Fig. 1 Median length distributions of inner tree branches resulting from heterotachy (a) and site partitioning (b) models. Colors: blue, trees
reconstructed based on amino acid replacements; orange, trees reconstructed based on RSA changes

A B

Fig. 2 The number of effective (see text) data categories in site partitioning model (a) and their cumulative fraction (b)
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Fig. 3 Interquartile range (Q3-Q1) of the ln(L) branch measures in heterotachy and site partitioning models

Fig. 4 The distribution of differences between the number of branches with positive and negative Cliff’s delta of ln(L) (see text) in heterotachy
and site partitioning models
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secondary structure. Obviously, fewer residue classes makes
evolutionary analysis more coarse-grained, or, in other
words, fewer residue classes makes evolutionary analysis
deaf to many mutations. This mutation-deafness in turn
should lead (1) to the occurrence of phylogenetic tree
branches with zero lengths and (2) to the whole branch
lengths shortening. Yes, we demonstrated these two effects
when analyzed data based on 8 classes of residues (Supple-
mentary information 1 on the mtProtEvol site). Additionally,
using the interquartile range (Q3-Q1) of the ln(L) measure
for each inner tree branch of each protein family tree, we
have shown, that reduction of number of residue type cat-
egories to 8 classes, tightly associated with increasing num-
ber of tree branches, demonstrates incongruence between
length obtained from amino acid alignments analysis, and
length obtained from secondary structure alignments ana-
lysis (Supplementary information 1 on the mtProtEvol site).
Another reason for considering 20 residue classes is the
non-zero frequencies of occurrence of all 20 classes of RSA
in proteins (Figs. S2.1-S2.2 in Supplementary information 2
on the mtProtEvol site). Thus, the reduction of residue class
number is biologically unmeaningful and enhances sensitiv-
ity of phylogenetic tree topology to data variation, which in
turn leads to an increase in phylogenetic tree uncertainment.
Therefore, in this work we track any such reduction of the
number of amino acid residue types.
Another interesting question associated with evolutionary

analysis of 20 RSA (PAA) categories is “What is the meaning
of transitions from one RSA state to another?”. To solve this
problem, we carefully analyzed all matrices containing rela-
tive rates of RSA type substitutions for each protein family.
Summary of these matrices is shown in Supplementary infor-
mation 2 on the mtProtEvol site. It is of note, that 20 RSA
categories include one uncertain RSA category (− 5(un-
known) =A), that is useful for protein structure flexibility

description and for describing residues, located in disor-
dered protein regions. We demonstrated that this particular
RSA category may be substituted by nearly all RSA categor-
ies that is in a full agreement with data about disordered
protein regions [58]. Frequent substitutions of other RSA
categories confined to near nearest RSA states (Figs.
S2.3-S2.5 in Supplementary information 1 on the mtProtE-
vol site), for example frequent substitutions of R category of
RSA (corresponds to 0 value of RSA or inner position in
protein globule) confined to N, D, C, E, and Q categories of
RSA (corresponds to 5–25 values of RSA or inner/inter-
mediate position in protein globule). This is anticipated as
usually the evolution of protein 3D structure is quite conser-
vative. However, there are 5 outer RSA categories (S, T, W,
Y, and V with values of RSA from 70 to 100) which are char-
acterized by another type of frequent substitutions. In these
categories most frequent substitutions to intermediate RSA
categories correspond to 15–40 range of RSA values. Once
again, it is anticipated, as most outer RSA categories corres-
pond to partially or fully unfolded protein regions, which
tend to be folded at least in evolutionary terms. Thus, the
classification of RSA in 20 values is biologically meaningful
and reflects the nature of protein globules. However, despite
of this meaningfulness, it should be mentioned that 20 RSA
categories are not natural measures describing protein sur-
face elements and the number of such categories can be
changed in order to fine tune the description of peculiar
structural properties of specific proteins.

Comparison amino acid replacements and RSA changes
rates based on heterotachy and site partitioning models
To check the applicability of models it is necessary to
analyze branch lengths distribution. We analyzed the
distributions of median lengths obtained by random
delete-half-jackknifing procedure on 512 protein families

A B

Fig. 5 Correlation of natural logarithms of median lengths of inner branches of trees reconstructed using heterotachy and site partitioning
models. Correlation of branch lengths in trees reconstructed based on amino acid replacements data (a) and on RSA change data (b)
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Fig. 6 STRING [54] protein-protein interactions for proteins evolved with accelerated RSA change rate on Primata clade branches. a analysis using
heterotachy model, all data considered; b analysis using heterotachy model, protein structure-aware data considered; c analysis using heterotachy
and site partitioning models, consensus, all data considered
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Table 1 Functional enrichment summary of protein-protein interaction network of proteins evolved with accelerated RSA change
rate in Primata clade (based on STRING [54] data; see Fig. 6)

Function Heterotachy model Heterotachy and Site
partitioning models
intersection, all data

All data Protein structure-aware data

FDR Colora FDR Colora FDR Colora

fatty acid beta-oxidation 0.0001 – 3.9E-05 blue 0.0493 blue

oxidation-reduction process 1.9E-08 red 3.9E-05 yellow 0.0106 red

mitochondrion organization 4.1E-05 violet 0.0002 – 0.0493 green

carboxylic acid catabolism 0.0003 – 3.9E-05 green 0.0493 yellow

carboxylic acid metabolism 3.9E-06 yellow 2.3E-05 red – –

single-organism metabolism 2.4E-07 blue 9.0E-05 violet – –

small molecule metabolism 0.001 – 0.0002 – – –

α-amino acid metabolism 0.009 – 0.0015 – – –

cellular respiration 1.0E-06 green – – – –

negative regulation of RIG-I signaling 0.0102 – – – – –

mitochondrial transport 0.015 – – – – –
aprotein colors shown on the Fig. 6

Table 2 Functional enrichment summary of protein-protein interaction network of proteins evolved with accelerated RSA change
rate in Primata clade (based on GENEMANIA [55] data; see Fig. 6)

Function Heterotachy model, FDR Heterotachy
and Site
partitioning
models
intersection,
all data, FDR

All data Protein structure-
aware data

carboxylic acid catabolism 0.000188 2.53E-12 0.000269

organic acid catabolism 0.000188 2.53E-12 0.000269

small molecule catabolism 0.000812 2.32E-11 0.000768

fatty acid beta-oxidation 0.000812 1.46E-11 0.004036

alpha-amino acid metabolism 0.000888 0.000142 0.008642

monocarboxylic acid catabolism 0.00394 1.46E-11 0.009869

mitochondrial matrix 1.37E-14 3.24E-18 –

mitochondrial nucleoid 9E-06 6.57E-07 –

mitochondrial membrane 2.82E-06 9.28E-06 –

water-soluble vitamin metabolism 0.000812 4.74E-06 –

cellular respiration 5.87E-07 – 0.001263

mitochondrial inner membrane 0.000888 0.00178 –

carnitine transmembrane transport – 0.003698 0.004036

amino-acid betaine transport – 0.004428 0.004036

carnitine transport – 0.004428 0.004036

cofactor metabolism 0.002887 0.006798 –

fatty acid transmembrane transport – 0.005223 0.004663

quaternary ammonium group transport – 0.00747 0.006053

Kuzminkova et al. BMC Evolutionary Biology 2019, 19(Suppl 1):47 Page 31 of 99



under analysis (see Construction and content section). The
variance and asymmetry descriptions of major mode (peak)
of the branch length distribution can be used as a proxy for
the sensitivity of model [59]. Figure 1 shows that major
peak describing branch lengths based on RSA data differ
significantly between heterotachy model and site partition-
ing model: (1) distribution obtained by heterotachy model
have smooth thin tails while distribution obtained by site
partitioning model have huge right tail containing branches
with IQTree hard upper limit of lengths (heterotachy:
skewness = − 0.88, kurtosis = 1.81; site partitioning: skew-
ness =− 0.17, kurtosis = − 0.45); (2) distribution obtained by
heterotachy model have smaller variance than that obtained
by site partitioning model (heterotachy: variance = 0.65; site
partitioning: variance = 0.8). Thus, the comparison of data
distributions in major peak describing RSA evolutionary
changes between heterotachy model and site partitioning
model demonstrates that heterotachy model is better suited
for RSA evolution description. However, in both models,
the branch lengths of RSA-based trees were slightly but sig-
nificantly (Welch t-test, p < 1E-5) higher comparing with
amino acid replacement-based trees, indicating that the
evolution of RSA is more evolutionary fast process than the
amino acid substitutions (we made this comparison only to
roughly analyze the relative rates of RSA evolution compar-
ing to amino acid evolution).
For each class from the defined number (we used 3) of

classes of the branch lengths, heterotachy model imple-
mented in IQTree v 1.6 dynamically optimizes residue fre-
quencies, and substitution rates [29, 30]. Site partitioning
edge-unlinked model implemented in IQTree v 1.6 have no
capacities of site categorization by branch types, however
site partitioning model allows manual site categorization
[28]. For each defined site category, site partitioning model
separately optimizes residue frequencies and substitution
rates as in the heterotachy model [28]. Therefore, in order
to compare heterotachy model with site partitioning model,
it is necessary to implement analogous dynamic
categorization of sites. We categorized alignment sites by
simple site diversity measure as described in [46]. We fitted
the number of site diversity categories (Supplementary in-
formation 3 on the mtProtEvol site) so that essential num-
ber of these categories (1) should be equal to the number
of site classes in the heterotachy model (3 classes) and (2)
these essential categories encompass vast majority (> 90%)
of alignment. In order to do so we calculated the fraction of
alignment sites (in alignments of 512 protein families) be-
longing to each of site diversity categories (both for amino
acid alignments and pseudo-amino-acid alignments), and,
after that, calculated the number of categories encompassed
et least 5% of alignment sites and total share of alignment
sites belonging to these categories. Figure 2 shows that
when the number of site diversity categories equals 8, the
vast majority of protein families have about 3 (not more

than 4) effective site diversity categories in their alignments,
that is comparable (by the number of degrees of freedom)
to heterotachy model with 3 rates-unlinked site categories
and these effective site categories describes more than 90%
of alignment sites.
Additionally, we compare site partitioning and hetero-

tachy models in terms of sensitivity of ln(L) value (see
Construction and content section) to data variation that
is simulated by random deletion half-jackknifing.
1) We calculated the interquartile range (Q3-Q1) of

the ln(L) measure for each inner tree branch of each
protein family tree and analyzed the frequencies of inter-
quartile ranges. Ideally, the jackknife randomization will
have no significant effect on the variation the ln(L)
measure and, evidently, the interquartile range of the
ln(L) measure for the branch should seek to zero. On
the contrary, if interquartile range of the ln(L) measure
is large enough, then the model is non-robust to data
variation and the results should be considered with care
and should be adopted by consensus only. The last is
strictly a case of site partitioning model (Fig. 3). This is
anticipated because the vast majority of protein trees (as
well as Primata-Rodentia subtrees) have strong statistical
support of heterotachy (covarion), that are observed by
Procov 2.0 [41] tests (see mtProtEvol web resource).

Table 3 Central components of protein-protein interaction
network of proteins evolved with accelerated RSA change rates
in Primata clade (based on Cytoscape [56] analysis)

Node name Degree Betweenness
Centrality

Closeness
Centrality

HADH 11 0.278204 0.467532

MTHFD1L 8 0.163688 0.428571

ECHS1 7 0.02646 0.395604

NDUFA4 7 0.181265 0.395604

MCCC2 6 0.068717 0.423529

ACSS3 6 0.083957 0.409091

MUT 6 0.049849 0.404494

LONP1 6 0.172386 0.433735

DECR1 6 0.143368 0.423529

TUFM 5 0.077237 0.378947

CHCHD2 5 0.095212 0.367347

C1QBP 5 0.09109 0.4

POLRMT 5 0.099379 0.371134

CPT1A 4 0.096617 0.387097

MTIF2 4 0.032023 0.339623

THNSL1 4 0.06254 0.371134

ME2 4 0.110317 0.336449

IVD 3 0 0.352941

NME4 3 0.024974 0.336449

HTRA2 3 0.107937 0.371134
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However, results based on heterotachy model, are charac-
terized by the long right tail of distribution for interquartile
ranges of the ln(L). Thus, to filter out the majority of pos-
sible methodological artifacts we took into consideration
only inner tree branches with interquartile range of ln(L)
lower than 6 (the inflection point, see Fig. 3) for both het-
erotachy and site partitioning models. We selected this
threshold, because the meaningful minimum of branch
length is 5E-5 (see Construction and content), therefore the
cases, when abs(ln(L)) > 6, reflect the comparisons of smal-
lest branch length with biggest ones. A closer inspection of

cases, forming the second peak of interquartile range distri-
bution (both in heterotachy and site partitioning models),
have confirmed, that the vast majority of such cases reflect
such incongruent or partially incongruent comparison
branch lengths (incongruent in terms of the branch length
difference in pairwise comparison of results based on
amino acids and RSA categories). Additionally, in order to
discriminate inequalities in numbers of analyzed branches
between heterotachy and site partitioning models after ap-
plying various interquartile range thresholds, we calculate
the fraction of branches that correspond to the specified

Fig. 7 STRING [54] protein-protein interaction for proteins evolved with accelerated RSA changes rate on Rodentia clade branches. a analysis
using heterotachy model, all data considered; b analysis using heterotachy model, protein structure-aware data considered; c analysis using
heterotachy and site partitioning models, consensus, all data considered
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threshold for both models. At all checked (4, 5, and 6)
interquartile range thresholds the fractions of analysed
branches in heterotachy and site partitioning are nearly
equal (6: heterotachy, 37,694 branches; site partitioning:
41891; 5: heterotachy, 36,704 branches; site partitioning:
39553; 4: heterotachy, 35,282 branches; site partitioning:
35216). Thus the imposed threshold of interquartile range
does not lead to significant inequalities in analyzed
branches under heterotachy and site partitioning models.
2) For all 512 protein family trees we calculated the differ-

ence between the number of branches with positive and
negative Cliff ’s delta of ln(L) values (see Construction and
content section). In other words, in each tree, we calculated
the difference between the number of inner branches with
accelerated and decelerated RSA evolution. For each pro-
tein family tree, we used several Cliff ’s delta thresholds (0.3,
0.4, 0.5, 0.6, and 0.7). If there is an asymmetry in distribu-
tion of differences between the number of branches with
positive and negative Cliff ’s delta of ln(L) values than the
model systematically over- or under-estimate cases with ac-
celerated or decelerated RSA evolution. Both models have
symmetrical and normal (KS p-value< 0.0001, Shapiro-Wilk
p-value< 0.000001) distributions of these differences, thus
there are no significant biases in both models in discrimin-
ating inner tree branches with faster or slower RSA change

rate (Fig. 4). Additionally, this analisis demonstrates that se-
lection of inner tree branches with significantly higher or
lower ln(L) values comparing to ln(L) values of all branches
in the tree is statistically unbiased.
3) Finally, we correlated natural logarithms of median

lengths of inner branches between these two models. We
constructed two correlations separately for the cases of
amino acid replacements study and for RSA change study
(Fig. 5). Figure 5 clearly demonstrate that the branch
lengths correlation is stronger when the amino acid replace-
ments is under analysis. Moreover, the detailed inspection
of branch lengths correlation in the case of RSA evolution
(Fig. 5b) demonstrates that phylogenetic trees reconstructed
by site partitioning model usually faces on a IQTree hard
upper limit of inner branch lengths. Thus, once again we
inferred that RSA evolution is poorly modeled by site parti-
tioning model and the results of this model should be con-
sidered with care and should be adopted by consensus only.

Results deposition and user interface
The mtProtEvol, to the best knowledge of the authors, is
the first resource that stores the evolutionary conse-
quences of intra-protein interactions changes in mito-
chondrial proteome. This time only the 512 protein
families were annotated in our resource. All protein

Table 4 Functional enrichment summary of protein-protein interaction network of proteins evolved with accelerated RSA change
rate in Rodentia clade (based on STRING [54] data)

Function Heterotachy model Heterotachy and
Site partitioning
models intersection,
all data

All data Protein structure-aware data

FDR Colora FDR Colora FDR Colora

mitochondrial ATP synthesis coupled electron transport 0.00036 red – – 0.00053 green

mitochondrial electron transport, NADH to ubiquinone 0.00147 yellow – – 0.00053 blue

oxidative phosphorylation 0.00331 – – – 0.00053 red

ATP metabolism 0.00399 – – – 0.00053 violet

cellular respiration 0.00478 – – – 0.00053 yellow

oxidation-reduction 0.00615 – – – 0.0389 –

small molecule metabolism 0.00147 violet – – 0.0493 –

catalytic activity – – 5E-06 red – –

mitochondrion organization 0.00078 blue – – – –

purine ribonucleoside triphosphate metabolism 0.00119 green – – – –

single-organism metabolism 0.00147 – – – – –

protein targeting to mitochondrion 0.00258 – – – – –

mitochondrial transport 0.00328 – – – – –

ketone body catabolism 0.00692 – – – – –

nucleotide binding – – 0.0167 blue – –

ribonucleotide binding – – 0.0167 green – –

purine ribonucleoside binding – – 0.033 yellow – –

purine ribonucleotide binding – – 0.033 violet – –
aprotein colors on the Fig. 6
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family-specific information is available through a simple
interactive web interface. The results of the analysis are
separated in two major groups: individual protein ana-
lysis and integrative (by-clade) analysis.
For each analyzed protein family two interactive multiple

alignments (multiple alignments of amino acids and RSA
values encoded in 20-letter alphabet) and four phylograms
(two phylograms for each multiple alignment reconstructed
using heterotachy and site partitioning models) were avail-
able. The interactivity of alignments and phylograms were
provided by MSAViewer [53] and Archaeopteryx.js [54] ap-
plications, respectively. The benefits of MSAViewer and
Archaeopteryx.js user interfaces are well-known simplicity
and usability. Additionally, for each protein family we pro-
vided two pairwise tree comparisons, for heterotachy and
site partitioning models. We did this comparison in
branch-by-branch manner (inner branches only) in order
to find branch-outliers with maximum and minimum ln(L)
values representing cases with accelerated and decelerated
RSA changes relative rate (compared to amino acid replace-
ments rate). Other important features deposited for each
protein family are heterotachy (covarion) test results ob-
tained by Procov 2.0 [41], results of BLAST screening for
sufficient 3D structure homologs in Scratch-1D dataset
[42], and various alignment variation features.
The integrative (by-clade) analysis is represented by

interactive summary Table (ST) including: taxa (clade)
name; frequency of branches with maximum (Na) and
minimum (Nd) of ln(L) values; lists of proteins (protein
families) in which branches are listed in Na and Nb sets;
Cliff ’s delta thresholds for inner branches selection and
Na and Nd sets generation; model of evolution; and pro-
tein structure awareness. Clicking on the taxa (clade)
name leads to generation of integrative results (GR)
across all methods and Cliff ’s delta thresholds. These re-
sults subdivided into three categories: the number of
mitochondrial proteins and species under analysis, the
two lists of protein families with accelerated and deceler-
ated RSA evolution. The last two data categories repre-
sent: the information about the heterotachy weights
(obtained by IQTree v. 1.6 [37]) shown as the ratio be-
tween heterotachy weight of RSA changes and heterota-
chy weight amino acid replacements; p-values of
heterotachy (covarion); and the measures of model sen-
sitivity (robustness) to data variation for heterotachy and
site partitioning models. The model sensitivity measures
shown for each protein family. These are the median of
ln(L) values and shift of mean of ln(L) values compared
to median of ln(L) calculated as (mean-median)/median.
The lower the median of ln(L) values, the higher the
model robustness to data variation is. The higher the
shift of mean of ln(L) the more the multimodal the dis-
tribution of ln(L) in protein family is. Working with the
GR and ST data accompanied by the ability to generate

protein lists for subsequent STRING [54] and GENE-
MANIA [55] analysis.

Integrative data analysis on Rodentia and Primates clades
Two clades were selected for detailed analysis. These are
Rodentia and Primata, having common evolutionary origin
and strictly different ecological strategies (R- and K- respect-
ively), tightly related with housekeeping energetic metabol-
ism carried out by the mitochondrial compartment. Here
we describe the integrative results that take into consider-
ation all data as well as data supported by available 3D pro-
tein structures only. For in-detail characterization of
mitochondrial function evolution we studied two opposite
evolutionary cases: cases with accelerated and decelerated
RSA evolution (20 RSA categories were used for main ana-
lysis; we additionally checked the heterotachy model results
using 10 RSA categories (-5(unknown)=A, 0..5=R, 10..15=D,
20..25=E, 30..35=G, 40..45=I, 50..55=K, 60..65=F, 70..75=S,
80..95=W), as a result we found agreement for >90% pro-
teins that were selected based on 20 RSA categories by ac-
celerated RSA evolution – see Supplementary information 4
on the mtProtEvol site). We used the following thresholds
and limitations on the results: in heterotachy model cases,
Cliff ’s delta of ln(L) for branch selection is greater than or
equal to 0.7 and U-test p-value<1E-4 (see Construction and
content section); in site partitioning model cases results
must agree with the results from heterotachy model, Cliff ’s
delta of ln(L) for branch selection must be greater than or
equal to 0.6 and U-test p-value<1E-4.

Accelerated evolution of RSA
Figure 6 shows STRING protein-protein interaction net-
work topologies composed of proteins evolved with accel-
erated RSA change rate on Primata clade branches. We
obtained these networks using human as a target species.
Recall that these cases reflect events of evolutionary
changes in intra-protein interactions (see Background sec-
tion). Note that protein network contains only one cluster
(in the cases B and C) surrounded by single proteins. This
demonstrates that the majority of genes encoding these
proteins co-regulated in human in a coherent manner.
Statistically significant enrichment of protein functions in

biological process Gene Ontology (BP GO) category in
these networks shown in Tables 1 and 2 in which functional
characteristics obtained either based on only proteins
evolved with accelerated RSA change rate, in STRING data
enrichment, or with 20 nearest (detected by human
protein-protein interaction network) proteins, in GENE-
MANIA data enrichment. Both STRING and GENEMA-
NIA show that the majority of protein-protein interaction
network represented by various metabolic functions, espe-
cially by fatty acid beta-oxidation components. Additionally
to the various metabolic functions the network includes
mitochondrial organization components.
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In order to analyze protein-protein interaction net-
work for proteins evolved with accelerated RSA changes
rate on Primata clade we did standard analysis of net-
work topology by Cytoscape software. For this analysis,
we used most full network (Fig. 6a) obtained by analysis
of all data using heterotachy model. The results of this
analysis are shown in the Table 3.
Let’s compare the molecular functions of some key pro-

teins in the protein-protein interaction network composed
of proteins characterized by faster RSA change rate than
amino acid replacements rate on Primates clade (Table 3).
This network enriched by metabolic functions. The central
element of this network is the HADH protein (Hydroxya-
cyl-CoA Dehydrogenase) that plays an essential role in the
mitochondrial beta-oxidation of fatty acids and in pathway
of tryptophan utilization. This protein functions in the mito-
chondrial matrix. ECHS1 protein (Enoyl-CoA Hydratase,
Short Chain 1) functions in the two pathways, in mitochon-
drial fatty acid beta-oxidation and in tryptophan utilization.
It has hydratase/isomerase activity and localizes into the
mitochondrial matrix as HADH. DECR1 protein

(2,4-Dienoyl-CoA Reductase 1) also participates in the fatty
acids beta-oxidation. The CPT1A protein (Carnitine Palmi-
toyltransferase 1A) participates in carnitine-dependent
transport across the mitochondrial inner membrane and
oxidation of long-chain fatty acids. Co-central element of
this network is the MTHFD1L protein (Methylenetetrahy-
drofolate Dehydrogenase (NADP+ Dependent) 1 Like) that
is also located in the mitochondrial matrix and involved in
the synthesis of tetrahydrofolate, involved in the purine syn-
thesis. The MCCC2 protein (Methylcrotonoyl-CoA Carb-
oxylase 2) involved in leucine and isovaleric acid catabolism.
The ACSS3 protein (Acyl-CoA Synthetase Short Chain
Family Member 3) located in membrane (by prediction) and
involved in acetate activation. MUT protein (Methylmalo-
nyl-CoA Mutase) involved in the degradation of several
amino acids, odd-chain fatty acids and cholesterol. The
ME2 enzyme (Malic Enzyme 2) catalyzes the oxidative de-
carboxylation of malate to pyruvate. The IVD enzyme (Iso-
valeryl-CoA Dehydrogenase) involves in leucine catabolism.
One protein is significantly different from all of the above
mentioned. This is NDUFA4 protein (NADH-Ubiquinone

Table 5 Functional enrichment summary of protein-protein interaction network of proteins evolved with accelerated RSA change
rate in Rodentia clade (based on GENEMANIA [55] data)

Function Heterotachy model, FDR Heterotachy
and Site
partitioning
models
intersection,
all data, FDR

All data Protein structure-aware data

oxidoreductase complex 3.89E-30 1.17E-21 5.48E-13

mitochondrial membrane 3.06E-26 3.40E-22 9.94E-13

mitochondrial inner membrane 3.06E-26 7.17E-20 1.25E-11

cellular respiration 3.06E-26 7.00E-21 2.81E-10

NADH dehydrogenase (quinone) activity 1.91E-23 2.33E-24 2.91E-09

mitochondrial respiratory chain complex I 4.80E-23 2.87E-24 3.74E-09

oxidoreductase activity, acting on NAD(P)H, quinone or similar as acceptor 1.15E-21 6.05E-23 1.53E-08

mitochondrion organization 5.79E-10 1.62E-09 1.53E-08

energy derivation by oxidation of organic compounds 1.79E-20 6.56E-16 1.31E-07

mitochondrial electron transport, NADH to ubiquinone 2.02E-21 1.44E-22 1.56E-07

oxidoreductase activity, acting on NAD(P)H 9.36E-19 3.95E-20 2.96E-07

mitochondrial ATP synthesis coupled electron transport 1.79E-20 1.17E-21 3.64E-07

respiratory electron transport chain 2.02E-21 5.28E-21 8.52E-07

oxidative phosphorylation 5.21E-25 2.87E-24 1.57E-06

mitochondrial matrix 1.49E-16 3.74E-06 9.09E-15

regulation of acetyl-CoA biosynthetic process from pyruvate 2.19E-10 – 4.13E-06

acetyl-CoA biosynthetic process 6.16E-10 – 7.52E-06

protein targeting to mitochondrion 2.17E-06 – 2.30E-05

pyruvate metabolic process 4.33E-08 – 9.78E-05

thioester biosynthetic process 1.29E-07 – 0.000188

mitochondrial transport 7.79E-06 – 0.000921
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Oxidoreductase MLRQ Subunit). It is located in membrane
(by prediction) and has NADH dehydrogenase and oxidore-
ductase activities. It transfers electrons from NADH to the
mitochondrial respiratory chain, immediately to ubiquinone.
The most interesting (in evolutionary case) network parts

are the LONP1 protein (Lon Peptidase 1, Mitochondrial) a
mitochondrial matrix chaperone protein (ATP-dependent
serine protease) and POLRMT protein (RNA Polymerase
Mitochondrial). The first one mediates the selective degrad-
ation of misfolded or damaged proteins. Among its sub-
strates, there is a very important mitochondrial DNA
integrity protein helicase TWNK. Additionally it participates
in the regulation of mitochondrial gene expression and
maintenance of mtDNA because it was shown that it binds
to DNA and RNA in a single-stranded, site-specific, and
strand-specific manner. The second one (POLRMT) cata-
lyzes the transcription of mtDNA and provides RNA
primers for initiation of mtDNA replication. Another inter-
esting network component is TUFM protein (Tu Transla-
tion Elongation Factor, Mitochondrial) participating in
mitochondrial translation, namely in the GTP-dependent
binding of aminoacyl-tRNA to the A-site of ribosomes. The
MTIF2 protein (Mitochondrial Translational Initiation Fac-
tor 2) also participates in translation initiation promoting
formylmethionyl-tRNA binding to the 30S ribosomal
subunits.
The protein-protein interaction network of proteins

evolved with accelerated RSA rate in Primata have
stress-response components. For example, CHCHD2 pro-
tein (Coiled-Coil-Helix-Coiled-Coil-Helix Domain Contain-
ing 2) translocates from the mitochondrial intermembrane
space to the nucleus in response to stress, activates gene
transcription under hypoxic conditions, and negatively reg-
ulates the mitochondria-mediated apoptosis. The C1QBP
protein (Complement C1q Binding Protein) is a multifunc-
tional protein involved in inflammation, ribosome biogen-
esis, apoptosis regulation, transcriptional regulation, etc. In
mitochondria it is involved in translation, namely formation
of 55S ribosomes. The NME4 protein (NME/NM23 Nu-
cleoside Diphosphate Kinase 4) participates in the synthesis
of nucleoside triphosphates other than ATP, it is also in-
volved in pro-apoptotic signaling by the redistribution of
cardiolipin between the mitochondrial inner and outer
membrane. Additionally, HTRA2 protein (HtrA Serine
Peptidase 2) induces apoptosis by binding the apoptosis in-
hibitory protein and relocating from endoplasmic reticulum
to mitochondria.
Thus, the proteins evolved with accelerated RSA change

rate on Primata clade can be characterized as various en-
zymes participated mainly in fatty acid beta-oxidation,
stress-response components and components of mtDNA
integrity and protein synthesis machinery.
Rodentia clade is also characterized by proteins with ac-

celerated RSA change rate comparing to amino acid

replacements rate. Figure 7 shows STRING protein-protein
interaction network topologies composed of proteins
evolved with accelerated RSA change rates on Rodentia
clade branches. We obtained these networks using human
as a target species yet again. We select human as a target
species because only humans have the most complete and
thorough protein interaction dataset in STRING.
Statistically significant enrichment of protein BP GO

functions in these networks is shown in Tables 4 and 5
again with functional characteristics obtained either based
on only proteins evolved with accelerated RSA changes
rate, in STRING data enrichment, or with 20 nearest (de-
tected by human protein-protein interaction network) pro-
teins, in GENEMANIA enrichment. Both STRING and
GENEMANIA show that the majority of protein-protein
interaction network represented by respiratory chain com-
ponents, various enzymes, and mitochondrial transport ele-
ments. Thus, Rodentia clade is different from Primata clade
at least by the accelerated evolution of respiratory chain
and mitochondrial transport.
In order to analyze protein-protein interaction net-

work in details we again conducted the standard net-
work topology analysis by Cytoscape software. We
selected the most complete network (Fig. 7a). The re-
sults of this analysis are shown in the Table 6.
In protein-protein interaction network of proteins

evolved with accelerated RSA change rate on Rodentia
clade there are two tightly physically-linked central ele-
ments, the NDUFV1 protein (NADH:Ubiquinone Oxido-
reductase Core Subunit V1) and NDUFA4 protein
(NDUFA4, Mitochondrial Complex Associated), and two
peripheral elements, NDUFB6 protein (NADH:Ubiqui-
none Oxidoreductase Subunit B6) and NDUFA1 protein

Table 6 Central components of protein-protein interaction
network of proteins evolved with accelerated RSA change rate
in Rodentia clade (based on Cytoscape [56] analysis)

Node name Degree Betweenness
Centrality

Closeness
Centrality

NDUFV1 7 0.382456 0.512821

NDUFA4 7 0.273684 0.444444

PDHX 5 0.389912 0.465116

ACO2 5 0.212281 0.454545

ACAT1 4 0.095175 0.392157

OXCT1 3 0.029386 0.384615

NDUFB6 3 0 0.392157

NDUFA1 3 0 0.392157

UQCRC1 3 0.013158 0.408163

PAM16 3 0.202632 0.392157

PITRM1 3 0.194737 0.344828

ME2 3 0.110526 0.377358

ALDH7A1 3 0.022368 0.37037
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(NADH:Ubiquinone Oxidoreductase Subunit A1). All
these proteins are subunits of core complex I of respira-
tory chain that transfers electrons from NADH and to
ubiquinone. The UQCRC1 protein (Ubiquinol-Cyto-
chrome C Reductase Core Protein 1) is another compo-
nent of respiratory chain it is a component of the
ubiquinol-cytochrome c reductase complex (complex III),
it mediates formation of the cytochromes c / c1 complex.
This protein-protein interaction network also has

metabolic components. The PDHX protein (Pyruvate
Dehydrogenase Complex Component X) is located in
the mitochondrial matrix in pyruvate dehydrogenase
(PDH) protein complex as a regulatory subunit and acts
as linker-enzyme between glycolysis and Krebs cycle by
catalyzing the conversion of pyruvate to acetyl coenzyme
A. The ACO2 protein (Aconitase 2) catalyzes the second
step of the Krebs cycle, the conversion of citrate to
isocitrate. The ACAT1 protein (Acetyl-CoA Acetyltrans-
ferase 1) is the enzyme plays a crucial role in ketone
body metabolism. The OXCT1 protein (3-Oxoacid
CoA-Transferase 1) also involves in ketone body metab-
olism, it catalyzes the transfer of coenzyme A from
succinyl-CoA to acetoacetate. The ME2 protein (Malic
Enzyme 2) involved in decarboxylation of malate into
pyruvate.
One of the most interesting part of this network are

the PAM16 protein (Presequence Translocase Associated
Motor 16) and PITRM1 protein (Pitrilysin Metallopepti-
dase 1). First regulates protein translocation into the
mitochondrial matrix and plays a role in reactive oxygen
species (ROS) homeostasis, while the second is a

protease that degrades dissected mitochondrial transit
peptides and other unstructured peptides.
Thus, the proteins evolved with accelerated RSA

change rate on Rodentia clade can be characterized as a
components of respiratory chain, ROS and peptide
homeostasis components and enzymes participated in
Krebs cycle and ketone body metabolism.

Decelerated evolution of RSA
Figure 8 shows STRING protein-protein interaction net-
work topologies of human proteins evolved with deceler-
ated RSA change rate on Primata clade branches. Recall
that these cases reflect events of evolutionary conservation
of intra-protein interactions (see Background section). Note
that here and below we do not show consensus network
obtained by heterotachy and site partitioning model. We do
so because these networks have no node connections.
Statistically significant enrichment of protein functions in

these networks is shown in Table 7, here only functional
characteristics obtained based on GENEMANIA enrichment
(with 20 additional nearest proteins) were demonstrated. We
did not find any statistically significant (FDR < 0.01) enrich-
ment in BP GO functional categories based on STRING net-
works constructed both based on protein structure-aware
data and on all data. Thus, STRING do not allow us to dis-
criminate biological functions of Primata proteins evolved
with decelerated RSA change rate. However, GENEMANIA
shows (Table 7) that the majority of protein-protein inter-
action network represented by respiration and metabolism.
In order to analyze structure of protein-protein

interaction network (Fig. 8a) composed of proteins

Fig. 8 STRING [54] protein-protein interaction for proteins evolved with decelerated RSA changes rate on Primata clade branches. a analysis using
heterotachy model, all data considered; b analysis using heterotachy model protein structure-aware data considered
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evolved with decelerated RSA change rate on Primata clade
in details we applied Cytoscape software. Some key proteins
from this network are shown in the Table 8. There are two
key proteins in this network MDH2 (Malate Dehydrogen-
ase 2) and ALDH7A1 (Aldehyde Dehydrogenase 7 Family
Member A1). Both proteins are enzymes. First one cata-
lyzes the oxidation of malate to oxaloacetate, second - me-
tabolizes a number of lipid peroxidation-derived aldehydes
and participates in lysine catabolism. The OXCT1 enzyme
(3-Oxoacid CoA-Transferase 1), that is involved in ketone
body metabolism, evolved with accelerated epistatic interac-
tions changes in rodent clade and decelerated epistatic
changes in primates clade. This is also true for the PDHX
protein (Pyruvate Dehydrogenase Complex Component X).
The SUCLG2 protein (Succinate-CoA Ligase
GDP-Forming Beta Subunit) is the enzyme catalyzing

reaction of the formation of succinyl-CoA and succinate in
the citric acid cycle (TCA).
There are two components of respiratory chain ter-

minal point in the network. The MT-CO1 protein
(Mitochondrially Encoded Cytochrome C Oxidase I) is
the terminal component of the respiratory chain that
catalyzes the reduction of oxygen to water. The COX4I1
(Cytochrome C Oxidase Subunit 4I1) is another protein
from this terminal respiratory chain component.
There are two carriers in the network the SLC25A3

protein (Solute Carrier Family 25 Member 3) catalyzes
the transport of phosphate from cytosol into the mito-
chondrial matrix and the SLC25A5 protein (Solute Car-
rier Family 25 Member 5) that catalyze the translocation
of cytoplasmic ADP from cytoplasm into the mitochon-
dria and ATP from mitochondria into cytoplasm across
the mitochondrial inner membrane.
Thus, the list of proteins evolved with decelerated

RSA change rate on Primata clade is small and proteins
do not characterized by similar functions (except general
metabolic function).
Unlike primates, rodents clade characterized by the

big number of proteins that characterized by slower RSA
change rate comparing to amino acid replacements rate.
Figure 9 shows STRING protein-protein interaction net-
work topologies of proteins evolved with decelerated
RSA change rate on Rodentia clade branches. We once
again obtained these networks using human as a target
species. We do so because only humans have the most
complete and thorough protein interaction dataset.
Statistically significant enrichment of protein functions

in these networks is shown in Tables 9 and 10. The en-
richment analyses were done either based on only

Table 7 Functional enrichment summary of protein-protein interaction network of proteins evolved with decelerated RSA changes
rate in Primata clade Functional enrichment summary (based on GENEMANIA [55] data)

Function All data, FDR Protein structure-
aware data, FDR

mitochondrial matrix 7.41E-25 1.85E-20

cellular respiration 7.41E-25 6.65E-20

energy derivation by oxidation of organic compounds 1.18E-20 1.15E-16

mitochondrial inner membrane 3.40E-18 1.28E-15

respiratory electron transport chain 6.77E-16 6.00E-11

hydrogen ion transmembrane transport 1.26E-06 1.20E-10

tricarboxylic acid cycle 1.85E-08 1.47E-06

aerobic respiration 3.07E-07 1.44E-05

oxidoreductase complex 1.70E-10 –

mitochondrial electron transport, NADH to ubiquinone 1.07E-06 –

mitochondrial respiratory chain comp. I 1.26E-06 –

mitochondrial ATP synthesis coupled electron transport 1.73E-06 –

oxidoreductase activity, acting on NAD(P)H, quinone or similar as acceptor 3.86E-06 –

regulation of acetyl-CoA biosynthesis from pyruvate 1.10E-05 –

Table 8 Central components of protein-protein interaction
network of proteins evolved with accelerated RSA change rate
in Primata clade (based on Cytoscape [56] analysis)

Node name Degree Betweenness
Centrality

Closeness
Centrality

MDH2 7 0.295861 0.514286

ALDH7A1 6 0.322876 0.514286

OXCT1 5 0.14488 0.4

PDHX 5 0.140959 0.514286

SLC25A3 5 0.245098 0.461538

MT-CO1 4 0.284314 0.473684

COX4I1 4 0.160131 0.428571

SUCLG2 3 0.035294 0.418605

SLC25A5 3 0.022876 0.428571
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Fig. 9 STRING [54] protein-protein interaction for proteins evolved with decelerated RSA change rate on Rodentia clade branches. a analysis
using heterotachy model, all data considered; b analysis using heterotachy model protein structure-aware data considered
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proteins evolved with accelerated RSA change rate, in
STRING enrichment, or with 20 additional nearest (by
human protein-protein interaction network) proteins, in
GENEMANIA enrichment. Both GENEMANIA and
STRING show that the majority of protein-protein inter-
action network represented by metabolism and mito-
chondrion organization.
As described above, in order to analyze protein-pro-

tein interaction network (Fig. 9a) for proteins evolved
with decelerated RSA change rate in Rodentia, we ap-
plied Cytoscape software. Central proteins in this
protein-protein interaction network are shown in
Table 11. There are two key proteins in this network:
DECR1 protein (2,4-Dienoyl-CoA Reductase 1), OXCT1
protein (3-Oxoacid CoA-Transferase 1), which are both
mitochondrial matrix enzymes. DECR1 is involved in the
beta-oxidation and participates in metabolism of unsat-
urated fatty enoyl-CoA esters; OXCT1 is involved in ke-
tone body metabolism, epistatic changes in its evolution
are often observed in both primates and rodents (see

above). The DHTKD1 protein (Dehydrogenase E1 And
Transketolase Domain Containing 1) is involved in the
conversion of 2-oxoglutarate to succinyl-CoA and CO2.
The ALDH5A1 protein (Aldehyde Dehydrogenase 5
Family Member A1) catalyzes the degradation step of
the gamma-aminobutyric acid (GABA) neurotransmitter.
This network is characterized by the presence of oxida-

tive stress response proteins. The TXNRD2 protein
(Thioredoxin Reductase 2) is a pyridine nucleotide-disul-
fide oxidoreductase which retains thioredoxin in a re-
duced state, that in turn is a well known key element of
oxidative stress response. The GPX4 protein (Glutathione
Peroxidase 4) is another oxidative damage protection pro-
tein. It protects cells from the toxicity of ingested lipid hy-
droperoxides. The ALDH7A1 protein (Aldehyde
Dehydrogenase 7 Family Member A1) metabolize a num-
ber of lipid peroxidation-derived aldehydes, convert beta-
ine aldehyde to betaine and involved in lysine catabolism.
This network is also characterized by the presence of

mitochondrial ribosomal protein: MRPS22 (Mitochon-
drial Ribosomal Protein S22), MRPL21 (Mitochondrial
Ribosomal Protein L21), MRPS35 (Mitochondrial Ribo-
somal Protein S35), MRPS11 (Mitochondrial Ribosomal
Protein S11). One of these proteins is a 39S subunit pro-
tein (MRPL21), the others are 28S subunit proteins.
Thus, the list of proteins evolved with decelerated

RSA change rate on Rodentia clade is characterized by
the presence of mitochondrial ribosomal proteins and
oxidative stress response components.

Conclusions and future directions
We constructed a software pipeline, which allowed us to
analyze evolutionary consequences of intra-protein inter-
actions changes and implemented all the results into the
web resource. We will regularly update the resource by
adding (at least once a year) new mitochondrial machinery
proteins and, also, by adding new quicker methods for
finding evolutionary changes in intra-protein epistatic in-
teractions. In our analyses we focused on the RSA change
rate normalized by amino acid replacements rate. We

Table 10 Functional enrichment summary of protein-protein interaction network of proteins evolved with decelerated RSA change
rate in Rodentia clade (based on GENEMANIA [55] data)

Function All data, FDR Protein structure-
aware data, FDR

mitochondrial matrix 3.41E-13 1.44E-11

mitochondrial transport 0.000165 0.002027

mitochondrial membrane 0.000113 0.0022

small molecule catabolism 0.000348 0.0022

protein homotetramerization 0.000191 0.003698

mitochondrion organization 0.000595 0.003698

negative regulation of mitochondrion organization 0.001061 0.048293

mitochondrial outer membrane 0.000348 –

Table 11 Central components of protein-protein interaction
network of proteins evolved with accelerated RSA change rate
in Primata clade, based on Cytoscape [56] analysis

Node name Degree Betweenness
Centrality

Closeness
Centrality

DECR1 6 0.440171 0.619048

OXCT1 5 0.247863 0.541667

TXNRD2 5 0.307692 0.565217

MRPS22 4 0.166667 1

MRPL21 4 0.166667 1

MRPS35 3 0 0.8

MRPS11 3 0 0.8

GPX4 3 0.153846 0.5

DHTKD1 3 0.029915 0.448276

ABHD11 3 0.179487 0.481481

ALDH7A1 3 0.025641 0.481481

ALDH5A1 3 0.025641 0.481481
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have demonstrated, for the first time, that site partitioning
model, in contrast to heterotachy model, has limited ap-
plication for the description of RSA change rate.
We tested our software pipeline on a protein family set,

involved into the mitochondrial metabolism. To gain some
biological insights we used two model groups of mammals
with a common evolutionary ancestor: rodents and pri-
mates, different in their level of basal metabolism, body
mass, longevity as well as effective population size. We ob-
served that in rodents and primates different categories of
proteins were selected towards accelerated / decelerated
RSA changes. For example in rodents accelerated RSA evo-
lution has been shown for Krebs cycle enzymes, respiratory
chain, ROS metabolism and mitochondrial transport, while
in primates these functions were metabolism of fatty acids,
stress-response components, translational machinery and
mtDNA integrity. Interestingly these categories seem to be
in line with ecological strategies of the compared groups:
short-lived quickly reproducing rodents optimize protein
categories involved in the maintenance of high level of me-
tabolism (respiratory chain, ROS metabolism and mito-
chondrial transport), while long-lived and slow-reproducing
primates optimize the stability of the metabolism (protein
synthesis, stress-response components and mtDNA integ-
rity protection). If so, future large scale comparisons of eco-
logically different mammalian groups may shed light on
causes of correlation between the life history traits and
functional categories of the most optimized proteins.
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