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A common spectrum underlying brain
disorders across lifespan
revealed by deep learning on brain networks

Mianxin Liu,1,2,8,* Jingyang Zhang,1,8 Yao Wang,3 Yan Zhou,3 Fang Xie,4 Qihao Guo,5 Feng Shi,6 Han Zhang,1

Qian Wang,1 and Dinggang Shen1,6,7,9,*

SUMMARY

Brain disorders in the early and late life of humans potentially share pathological alterations in brain func-
tions. However, the key neuroimaging evidence remains unrevealed for elucidating such commonness and
the relationships among these disorders. To explore this puzzle, we build a restricted single-branch deep
learning model, using multi-site functional magnetic resonance imaging data (N = 4,410, 6 sites), for clas-
sifying 5 different early- and late-life brain disorders from healthy controls (cognitively unimpaired). Our
model achieves 62.6 G 1.9% overall classification accuracy and thus supports us in detecting a set of
commonly affected functional subnetworks, including default mode, executive control, visual, and limbic
networks. In the deep-layer representation of data, we observe young and aging patients with disorders
are continuously distributed, which is in line with the clinical concept of the ‘‘spectrum of disorders.’’ The
relationships among brain disorders from the revealed spectrum promote the understanding of disorder
comorbidities and time associations in the lifespan.

INTRODUCTION

The mental health of children and elders is frequently affected by a wide type of brain disorders (BDs), to which prevention, diagnosis, and

treatment remain challenging. With the development of understanding of BDs, the concept of ‘‘spectrum’’ is utilized to integrate different

BDs into a unified knowledge framework. Upon a ‘‘spectrum,’’ a group of different disorders can share certain features, and their symptoms

co-occur or occur on a continuum.1 Such conceptual tool empowers clinical studies and applications to go beyond the apparent heteroge-

neity in symptoms and to focus on a set of core biological manifestations, which fosters the understanding of relationships among different

disorders, the mutual learning of different fields, and the development of general treatment approaches.

Recently, researchers gradually realized that different BDs in early and late life may be located in their respective spectrums. Autism spec-

trum disorder (ASD)2,3 and attention-deficit/hyperactivity disorder (ADHD)4 are two representative BDs in the early life of humans, respec-

tively, affecting social interaction and attention abilities in typical cases. Studies have started to explore a potential common spectrum

underlying ADHD and ASD,5,6 as they could have similar symptoms, often co-occur with each other,7 and share certain genetic architectures.8

Meanwhile, mild cognitive impairment (MCI)9 and dementia frequently occur in elders, due to Alzheimer’s disease (AD),10 vascular dis-

eases,11,12 and other etiology. Akin to early-life developmental disorders, cognitive impairments in elders cover a broad range of heteroge-

neous behavior disabilities and are also associated temporally; for instance, vascular cognitive impairments (VCI) often promote the devel-

opment of AD.11,13 Thus, studies on the commonality among these late-life BDs have emerged, with a hypothesis on the existence of another

spectrum underlying late-life BDs.14,15

Although conventional views regard early development and aging as two dichotomized processes in human life, there has been a debate

in the past 20 years on a potentially common neurological process shared by them and the associated BDs.16,17 First, early- and late-life BDs

can show similar cognitive-behavioral symptoms. ASD and AD can both manifest memory deficits, language impairment, visuospatial ability

decline, and executive function alteration.18 Second, early- and late-life BDs exhibit strong temporal connections, even though the lapse may

span several decades. Patients with ASD can develop into dementia at 2.6 times more likely when compared to the general population.19
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Third, early- and late-life BDs can have common genetic factors involved in their progressions. A cohort study in Sweden suggested that

ADHD and AD are associated across generations, implying common genetic risks shared by them.20 The common transcriptomic alteration

in both early- and late-life BDs has recently been reported.21 Finally, separated large-scale neuroimaging studies suggested that ASD, ADHD,

AD, and other BDsmay have the samedeficits in the neural functional subsystem in the brain functional networks (BFNs). The ‘‘triple networks’’

are the typically detected common subsystems in different studies,22 including the default mode network, executive control network, and

saliency network.23–27

Enlightened by this evidence, when covering ASD, ADHD by an ‘‘early-life BD spectrum’’ and different MCIs and dementias in elders by a

‘‘late-life BD spectrum’’, we are curious about what knowledge we can obtain if the two spectrums are further integrated into an approximate

‘‘lifespan BD spectrum’’ spanning a majority of the time in the human life? In principle, building such a lifespan BD spectrum could potentially

offer a common target for treatment or interference of different BDs and a unified viewpoint to theoretically understand relationships among

early- and late-life BDs as the basis of their comorbidities. It could also help to integrate and reform the separate fields in aging, development,

and different BDs. However, few studies provide strong and direct neuroimaging evidence to explore this hypothesis, while the advance in

deep learning (DL) technology provides promise. Advanced DL models have been applied to analyze different BDs with high sensitivity in

feature extractions.28 In addition, the DL model shows a high capacity to represent large-scale data from different sources within the

same model architecture.29 When hypothesizing a set of common neural features among early- and late-life BDs exists, an advanced DL

model is promising to automatically identify the common features by learning from a large amount of neuroimaging data on different

BDs, as different assessments of the common information. The data representation extracted from themodel spacewill naturally inform about

the relationships among early- and late-life BDs in the lifespan BD spectrum.

In this work, we aim to implement a validated DL method to investigate the common neurological factor among early- and late-life BDs in

the BFN and explore the relationships of BDs depicted by the lifespan BD spectrum. We build a DL model based on multiscale BFNs from

4410 functional image data, including 2512 data from healthy controls (HCs), and 1898 data from patients suffering from ASD, ADHD, MCI,

AD, or VCI. Specifically designed biclassification and transfer learning experiments are performed to demonstrate the existence of common

features. Based on deep-layer features of the model, we further investigate the data representation space of multiple BDs for exploration on

an integrated lifespan BD spectrum.

RESULTS

A multiscale-BFN-based DL model learns to classify multiple BDs from HCs

We applied our previously established method, the ‘‘multiscale atlas-based hierarchical graph convolution network (MAHGCN)’’,30 to

perform a biclassification betweenHCs (i.e., cognitively unimpaired) and various BDs and also conduct a transfer learning experiment on func-

tional neuroimaging data from six sites (Figure 1A,N = 4,410). Note that the DLmethod, like multi-head encoder or decoder models,31,32 can

utilize different pathways (and corresponding mappings) inside its architecture to generate the predictions, which potentially influences the

extraction of common features and integrated representation space. We therefore restricted the model as a ‘‘single-branch architecture,’’ to

largely ensure an extraction of one set of features being diagnostic for all BDs in the same representation space. Upon the success of these

experiments, we expect to identify common features shared by the classification tasks and provide a unified framework to study these BDs.

The MAHGCN analyzing pipeline is shown in Figure 1C. Briefly, after building the BFNs at different spatial scales based on predefined

multiscale atlases and individual fMRI data, the MAHGCN extracts disease-related features from multiscale BFNs, based on stacked graph

convolution networks (GCNs) and atlas-guided pooling (AP) operations. Specifically, we implement multiscale atlases from Schaefer et al.,33

where brains are parcellated into coarse- and fine-scale regions of interest (ROIs), but a similar correspondence to the seven large-scale

resting-state functional networks (RSN)34 is preserved (Figure S1). The RSNs include visual network (VIS), somatomotor network, dorsal atten-

tion network, salience network (SAL), limbic network (LIM), executive control network (ECN), and default mode network (DMN). Therefore, the

spatial relationships among ROIs in thesemultiscale atlases can thus be regarded as a biologically meaningful brain hierarchy. Using this prior

of the hierarchical relationship between neighboring-scale atlases, the AP is designed to guide nodal feature integration between GCNs.

Furthermore, the extracted features fromeach scalewill join the individualized diagnosis decision via skip connections, feature concatenation,

and the process of multiple fully connected layers. In our previous works, we demonstrated the capability of this method in optimally classi-

fying AD, MCI, ASD, and VCI from HC, respectively.30,35,36 From the methodological aspect, our proposed method based on GCN has ad-

vantages over MLP and convolutional neural network (CNN) frameworks, where graph topology is preserved and optimally utilized to identify

disorder-related features in the brain functional network. In our previousmethodology paper,30 we comprehensively compared our proposed

method with advanced GCNmethods, multiscale atlas fusion methods, and state-of-the-art CNNmethods on brain disorder diagnosis tasks

and confirmed its superiority. Clues have been achieved by MAHGCN on shared BFN features among MCI, AD, and VCI.30,35,36 Therefore,

MAHGCN can be a promising choice for this work to effectively classify BD subjects from HC and explore the common BFN features among

multiple BDs.

Biclassification experiment

Figure 2A and Table S1 report the quantitative comparison of site-averaged classification results among different methods using a 10-fold

cross-validation (see STAR Methods). The competing methods include the single-scale-based GCN (with representative results of using

500 ROIs in Figure 2A and other results of using other scales in Table S1), three data-driven methods (called DIFFPOOL, gPOOL, and

SAGPOOL) for building hierarchical GCN, the conventional method (namely MAPGCN) for fusing multiscale BFNs, and our previously
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proposedMAHGCN (see STARMethods for details of the comparison). The site-averagedmetrics define the averageprediction performance

on each site and the corresponding task. In general, all competing methods achieve 58%–60% accuracies and areas under the curve (AUCs)

(Table S1). The three data-drivenmethods and the conventional multiscale BFN fusionmethod did not result in improvedmetrics than single-

scale-basedGCNs (Figure 2A). Thismight be reasonable that the noises and variations in BFNs increase the difficulty for a data-drivenmethod

to learn a generalizable hierarchical representation from 500-ROI BFN to capture the commonality among different BDs. The MAPGCN pro-

cesses multiscale BFNs independently in the feature extraction stage and the late-stage fusion may not be capable of reducing the feature

redundancy efficiently, introducing risks of overfitting. In contrast, our multiscale-based MAHGCN obtains an accuracy of 62.6 G 3.4%, a

sensitivity of 61.0 G 8.6%, a specificity of 66.8 G 3.5%, and an AUC of 63.9 G 4.3%. The performance from MAHGCN is significantly higher

than all the competing methods (Figure 2A; Table S1), underpinning that the MAHGCN could optimally detect generalizable common BFN

features of different BDs among all the considered methods.

In addition, Figure 2B andTable S2offer details of the site-specific diagnostic performanceofMAHGCN. Since theHC-to-BDclass ratio can

fluctuate andbe imbalanced in certain sites, we regard sensitivity andAUCasmore informativemetrics onpredictability. ForMCI, AD, andVCI,

ourmethodobtainsAUCsof 68.2G 9.5%, 68.9G 7.8%, 61.2G 3.4%, and 69.4G 6.1% in RENJI, HUASHAN,Alzheimer’s disease neuroimaging

initiative (ADNI), and Open Access Series of Imaging Studies (OASIS) datasets, respectively. For ASD and ADHD, the model results in lower

AUCs than MCI, AD, and VCI, with AUCs of 57.8 G 2.4% in Autism Brain Imaging Data Exchange (ABIDE) and 58.6 G 4.8% in ADHD-200. In

terms of sensitivity, the model achieves 48.3 G 14.1%, 62.9 G 16.4%, 61.9 G 16.1%, 57.2 G 5.6% 74.9 G 12.6%, and 58.9 G 16.0% for

Figure 1. The workflow of the main analysis pipeline

(A) The fMRI data from 6 sites. ABIDE andADHD-200 datasets are respectively for ASD andADHD studies. ADNI, OASIS, and HUASHANdatasets are forMCI and

AD studies. And RENJI dataset is for the VCI study.

(B) The BFN preparation steps. The construction of multiscale BFNs is based on the multiscale atlases shown in Figure S1.

(C) The neural network structure of the multiscale atlas-based hierarchical graph convolution network (MAHGCN), which hierarchically extracts and integrates

features from multiscale BFNs using stacked graph convolutional networks (GCN) and atlas-based pooling (AP) to make the diagnostic decision. The ‘‘BD’’

group includes ASD, ADHD, MCI, AD, and VCI, and the model performs biclassification tasks.

(D) After the model building, the ‘‘Grad-CAM’’ method is used to explore the common features among BDs encoded inside the MAHGCN model.

(E) The ‘‘Diffusion map’’ method is performed to investigate the deep-layer representation of different data in a potentially common spectrum under

different BDs.
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ABIDE, RENJI, HUASHAN, ADNI, OASIS, and ADHD-200. According to permutation tests, the predictabilities in terms of accuracy, sensitivity,

and AUC are all significantly higher than the chance level (Table S2, along with Figure S2 for supporting the significance of sensitivity for ASD).

Overall, these results validate a certain level of capability of MAHGCN in diagnosing multiple BDs using a single-branch neural network

architecture, which suggests that a set of informative common features among multiple BDs in BFNs have been detected by the model.

Transfer learning experiment

We further collect evidence for the shared features among BDs using additional transfer learning experiments. A MAHGCN model is

pre-trained using all datasets except ABIDE to learn features for MCI, AD, VCI, and ADHD. If the predictive features are shared, the model

is expected to possess certain knowledge about ASD and can be quickly transferred to identify ASDby fine-tuning themodel parameters with

a small number of training samples (e.g., N = 20) from the ABIDE dataset. The pre-trained model should exhibit significantly higher perfor-

mance than a model without pre-training. Different transfer learning schemes are designed to preserve different levels of learned features

during the pre-training (see STARMethods). A higher-level scheme allows less tuning of the parameters and keepsmore learned information.

In Figure 2C and Table S3, the predictability in terms of accuracy and AUC generally increases with the level of preservation of the learned

features. All pre-trained model gives higher accuracies and AUCs than the non-trained model. The level-4 scheme provides significantly

higher accuracy and AUC than the baseline, along with relatively balanced and stable sensitivity and specificity. The level-3 scheme also ex-

hibits increased accuracy, sensitivity, and AUC by roughly 3% when compared to the baseline. In addition, it can be also noted that, in levels 1

and 2, tuning the parameter with less preservation of the pre-trained information will significantly degrade the specificity and case-imbal-

anced sensitivity and specificity. Results using 50 and 100 training samples from ABIDE are shown in Tables S4 and S5, which also indicate

that high levels of preservation of learned information lead to increasing performances. All observations support diagnostic feature sharing

of the MCI, AD, VCI, and ADHD with ASD.

Figure 2. The detailed distributions of performances in different prediction experiments

(A) Boxplots for site-averaged performances of the biclassification experiment by different methods. The symbol * indicates a significantly higher performance of

MAHGCN than the competing methods at a significance level of p < 0.05. **: p < 0.01 and ***: p < 0.001 after FDR correction. The one-sided Wilcoxon signed-

rank test is used to assess the significance.

(B) Boxplots for site-specific performances of MAHGCN on the biclassification experiment. *: The performance metrics are significantly higher than the chance

level at a significance level of p < 0.05. **: p < 0.01 and ***: p < 0.001 after FDR correction. The one-sidedWhitney-Mann’s U test is used to assess the significance.

(C) Boxplots for the prediction performances in transfer learning experiments under no pre-training and different transfer learning schemes. *: The performance

metrics are significantly higher than the baseline performance at a significance level of p < 0.05. **: p < 0.01 and ***: p < 0.001 after FDR correction. The one-sided

Wilcoxon signed-rank test is used to assess the significance.
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Onewould be interested in further exploring relationships amongBDs using a similar transferring learning framework.Weperform transfer

learning between each pair of BDs, with results provided in Table S6. These results indicate that all configurations of pre-training lead to

certain improvements in the mean values of AUCs. However, significant improvement can only be found when ASD or ADHD is the target

BD. In addition, the improvement is not symmetric. For example, the significance can be identified during the transfer from VCI to ASD,

but not in the reversed way. The confusionmay be attributed to differences in levels of overfitting risks when using different pre-training data-

sets. It is also elusive to discuss inter-BD relationships when the source and target representation spacesmay not be fully aligned. Therefore, a

clear conclusion could be hard to establish from such analysis. This difficulty highlights the importance of constructing a unified representa-

tion space to more reliably explore relationships among BDs.

The common features encoded by DL models indicate shared neurological factors among early- and late-life BDs

We further explore the encoded features in the established models from biclassification experiments, aiming to capture the commonness of

various BDs with different etiology in BFNs (Figure 1D). We apply the Grad-CAM method to the DL model and evaluate the features. A high

Grad-CAM score indicates a high contribution to the prediction. Joint consideration of features learned in BD populations by models from

cross-validations is achieved by using a series of normalization and weighted averaging. As the Grad-CAM values can vary significantly across

different models and different datasets due to the multi-site nature, a normalization in value range is, respectively, applied to the Grad-CAM

values from different models and different datasets before averaging (see STAR Methods).

First, the normalized Grad-CAM values are averaged over all data to estimate the all-BD common features. In Figure 3A, the detected

diagnostic brain regions are not identical on different spatial scales. For 100- and 200-ROI scales, the predictive regions appear in the frontal

cortex, while, at 300- and 400-ROI scales, the features are distributed but are largely located in the parietal cortex. Using the language of brain

RSNs (Figure 3B, the RSN-wise averaged Grad-CAM value is used to evaluate the predictability of each RSN), the DMN and LIM are the most

predictive features for multiple BDs at 100-ROI scales. At the 200-ROI scale, the model relies more on DMN, ECN, and SAL. For 300- and

400-ROI scales, the model regards VIS, VAN, and ECN as the common diagnostic features, while, in the 500-ROI scale, the SAL is highlighted.

Note that though we introduced the skip connections in MAHGCN, the gradient value can still remarkably drop in the shallower layers, which

influences the inter-scale comparison (Figure 3B). For instance, the 500-ROI BFN is processed by the shallowest GCN layer and could thus be

weighted with the least gradient values, leading to the least Grad-CAM values.

In Figures 4, S3, and S4, we investigate the features identified by our model for early- and late-life BDs separately, as the common features

in Figure 3 are a mixture of the contributions from different disorders and cannot directly suggest commonness of early- and late-life BDs. In

Figures 4A and 4C, the brainmaps suggest that, from 100-ROI to 400-ROI scales, the locations of diagnostic brain regions in early- and late-life

BDs are quite consistent, despite certain variations in the amplitudes. There is little brain regional consistency on a 500-ROI scale.

Figure 3. Shared diagnostic brain regions and RSNs for all involved brain disorders learned by the deep learning model

(A) The brain maps showing common diagnostic regions identified by high Grad-CAM values; (B) Bar plots for common diagnostic RSNs indicated by RSN-wise

averaged Grad-CAM values. The data distributions behind B are offered in Figure S3A.
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Furthermore, in Figures 4B and 4D, it can be observed that the RSN-level features for early- and late-life BDs at 100-ROI scales agree with the

all-BD estimation, which regards the DMN and LIM as the most informative RSNs. For the 200-ROI scale, the common RSNs are DMN and

ECN, but note that the identification of early-life BDs relies more on the SAL and LIM. The feature distributions at 300- and 400-ROI scales

are relatively stable and consistent with the all-BD estimation, and VIS and ECN can be regarded as commonness. At 500-ROI scales, esti-

mations from different disorders exhibit large variations and identify different crucial RSNs (also different from the all-BD estimation).

The deep-layer presentation of the DL model for BDs suggests inter-BD relationships in a lifespan spectrum

Themodel has learned to recruit a set of robust common features as characterizing dimensions to perform the classification between HC and

various BDs. Moreover, deep-layer representations are capable of representing various disorders in a common space with meaningful struc-

ture. Then, we explore this deep-layer representation for an integrated ‘‘lifespan BD spectrum’’ and investigate the inter-BD relationships

upon this spectrum (Figure 1E).

We extract inter-subject relationships as the averaged inter-sample correlational distance matrix (Figure S6A) between features from the

models’ deep layers in the cross-validation. The high-dimensional relationship matrix is decomposed for obtaining the data representation

space using diffusionmap analysis (see STARMethods). The distribution of the explained variance of the gradients can be found in Figure S7.

According to the principle of the diffusion map algorithm, the closeness among the individual data in the space, spanned by the first two

decomposing dimensions (called gradient 1 and gradient 2, respectively), largely informs the similarity among the data in terms of the

abstracted RSN features (Figure 5A). It can be first observed that HC and BD data are roughly separately distributed at two ends of the

two gradients. We use the ADNI data (covering multiple stages of HC-to-dementia progression) to verify these HC-to-BD gradients encoded

Figure 4. Respective diagnostic brain regions and RSNs for early-life and late-life BDs

(A and B) The brain maps show common diagnostic regions and bar plots for common diagnostic RSNs for early-life BDs (ASD and ADHD data from ABIDE and

ADHD-200 datasets).

(C and D) The corresponding plots for late-life BD data from ADNI, RENJI, HUASHAN, andOASIS datasets. Detailed brain patterns are offered in Figures S4 and

S5. The detailed data distributions behind B and C are offered in Figures S3B and S3C.
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in our model. In Figures 5B and 5C, it can be found that, along with the increase of values in the gradients, the diagnosis decisions for subjects

gradually change fromHC to early-stageMCI (eMCI), late-stageMCI (lMCI), and AD, with statistical significance identified. eMCI and lMCI are

not significantly differentiable. These observations support the capability of these gradients to correctly encode the HC-to-BD variation

trends. Further, as we did not control age and gender when training themodel, one would suspect whether the gradients could be associated

with these factors besides the HC-to-BD variations. In Figure S8, it can be observed that, when considering all data, the variations along

Figure 5. A spectrum-like low-dimensional representation underlying multiple disorders emerges from deep learning and informs the inter-BD

relationships

(A) Two-dimensional space representation for the HC and BD data from the diffusion map analysis on the averaged deep-layer feature relationships from DL

models.

(B and C) Violin plots for distributions of subjects under AD progression in gradients 1 and 2, respectively.

(D) Averaged inter-sample distance matrix among different BD populations.

(E and F) Boxplots for ASD, ADHD, VCI, and MCI/AD distributions in gradients 1 and 2, respectively. ‘‘+’’ indicates the outliers of the distributions.

(G) The locations of ASD and ADHD data in the two-dimensional space. The ADHD-like ASD (being close to ADHD data) and the other ASD (not belonging to

ADHD-like ASD) can be identified.

(H) Bar plots for diagnosis proportions of autism and non-autism diagnosis in ADHD-like and other ASD populations, respectively. In B–G, *: p < 0.05, **: p < 0.01,

***: p < 0.001. Two-sided Whitney-Mann’s U test is used in B–F, and the chi-squared test is used in H to generate the p values.
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gradient 1 and gradient 2 are associated with age and gender changes, respectively. Gradient 1 is negatively associated with age with a cor-

relation of r =�0.19 and p = 2.7e-36, while gradient 2 is positively correlated with age with r = 0.46 and p = 3.8e-230. Females exhibit a signif-

icantly higher value than males in gradient 1, while there is no significant difference in gradient 2. However, these macroscopic correlations

among age, gender, and gradient do not reliably hold when using part of the BD datasets. Therefore, there may not exist generally strong

correlations among age, gender, and gradient. Other potential confounding factors, such as head motion, are not considered in this corre-

lational analysis, due to data limitations.

We then quantitatively explore relationships among BDs. First, using the original inter-sample distance matrix, we select the BD samples

out of all data (Figure S6B) and compute the averaged inter-sample distance within and between different BD populations (Figure 5D). It can

be observed that the within-population distances in VCI and ADHD are relatively small while those in ASD and MCI/AD are large. This is

consistent with the compact distribution of VCI and ADHD data, as well as the scattered distribution of ASD and MCI/AD. Both ASD and

VCI exhibit the lowest average distance to ADHD, whose values are relatively close. For MCI/AD, the closest BD appears to be VCI, for which

the value is even lower than the within-population distance in MCI/AD. Further, we inspect the data distributions of different BD populations

in the representation space (Figures 5E and 5F). When ranking BDs based on the populationmedian of the gradient values, gradient 1 depicts

a spectrumwith the order ofMCI/AD, ASD, ADHD, and then VCI, which does not clearly separate early- and late-life BDs. Also, while themean

inter-sample distance between ASD andMCI/AD exhibits the largest value, there is not enough evidence to reject the overlapping (i.e., non-

significant separation) between the data distributions of ASD and MCI/AD in gradient 1 (two-sided Whitney-Mann’s U test, p = 1.00, FDR-

corrected). Overall, observations in gradient 1 suggest early- and late-life BDs are connected. Gradient 2 puts ASD and ADHD on one

end and MCI/AD and VCI on the other end. There is not enough evidence to reject the overlapping between VCI and MCI/AD in gradient 2

(two-sided Whitney-Mann’s U test, p = 0.0668, FDR-corrected).

Notably, the ASD data concentrate on two centers in the space, and overlap not only the ADHD data but also other late-life BD data (VCI,

MCI/AD) (Figure 5G). To explore the potential different traits of these ASD subjects, we first define the ASD data falling within the major dis-

tribution of ADHD data (i.e., the 10%–100% percentile in gradient 1, and 0%–90% percentile in gradient 2) as ‘‘ADHD-like ASD’’, and all other

remaining ASD data as ‘‘other ASD’’. The defined ADHD-like ASDs strongly overlap with ADHD data in gradient 1 (two-sided Whitney-

Mann’s U test, p = 0.9848). Based on the diagnosis results from ABIDE datasets, the proportions of autism and other non-autism diagnoses

(‘‘Asperger’s syndrome’’ or ‘‘pervasive developmental disorder not specified’’) within ‘‘ADHD-like ASD’’ and ‘‘other ASD’’ are computed and

compared (Figure 5H). The ‘‘ADHD-like ASD’’ population shows a significantly higher proportion of autism as a diagnosis than the ‘‘other

ASD’’ population (chi-squared test, p = 0.0208). This indicates that the ‘‘ADHD-like ASD’’ population has a higher probability of exhibiting

autism as the key symptom, while the ‘‘other ASD’’ population overlapping with other BDs tends to show other manifestations in the ASD.

DISCUSSION

In this work, we build a DL model, based on a multiscale brain functional network, using 4,410 functional magnetic resonance data, to classify

healthy (i.e., cognitively unimpaired) populations fromASD, ADHD,MCI, AD, and VCI with 62.6% accuracy and 63.9%AUC, being significantly

higher than the chance levels. The results provide a foundation for this study to directly quantify the level of commonality and the relationships

among a wide range of BDs in a unified space. Previous studies consider identifying different BDs (or different facets of cognitive abilities)

using multiple models working on specific BD or multiple-head architecture under the multi-task framework31,32 and then checking the com-

mon and unique features from different (parts of) models. The classification performances on different sets of BDs are used as indications of

the effectiveness of feature extractions, but a nice performance for identifying specific BD could rely more on the extraction of specific fea-

tures. In addition, the conclusions about the commonality of different BDs could also be unreliable as these frameworks utilize different

embedding spaces and did not provide a reasonable basis to discuss relationships among BDs. On the contrary, our work using a single-

branch architecture is different from previous studies and prevents limitations of using different or biased embedding spaces. This constraint

essentially provides a set of common features and a unified representation space to investigate relationships among BDs with different eti-

ology. By this paper, we hope to draw attention from the field to the study of BD commonality using a similar framework. We expect future

studies using advanced methods, such as building large pre-trained models, may obtain higher performances and could validate our pre-

sented preliminary findings.

Despite the limited predictability, our model identifies a set of common features in the BFN, such as connectivity abnormalities with DMN,

LIM, ECN, and VIS on different spatial scales, which is consistent with previous findings in several independent studies. For example, ASD,

ADHD, MCI, AD, and VCI are all found to be associated with abnormal connectivity in the DMN and ECN.22,37 And, MCI, AD, and VCI are

related to damages within LIM.9,11,23 This consistency supports the effectiveness of our model learning. According to the neuroscience ev-

idence, the DMN and ECN are related to executive ability (sustained attention and working memory),22,38 the VIS is associated with the pro-

cessing of visual information, and the LIM is related to memory storage and retrieval.39–41 Our RSN-level finding also explains the overlapped

behavioral symptoms among BDs, as ASD, ADHD, MCI, AD, and VCI could all exhibit executive ability, visuospatial ability, attention, and

memory alterations.18 These observed neurological factors may also suggest a potential common target for drug delivery and other ways

of interferences and treatments in future studies. However, regarding the fact that the diagnostic network features emerge on different scales,

we admit that one should be careful when interpreting the results. On the one hand, this could be in linewith previous findings suggesting that

certain BD could affect the functional interactions in specific scales.42–44 On the other hand, we should also consider that methodological

reasons, such as feature redundancy and hierarchical processing of our neural network design, could induce inconsistency across the results

from different scales.
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In addition, our model learns to represent multiple early- and late-life BDs within a unified space. The inter-sample feature distance

analysis and the gradient analysis among the data help to understand the inter-BD relationships in a ‘‘lifespan’’ spectrum, connecting

disorders with different etiologies. First, we observed the MCI/AD and ASD exhibit high within-population sample distance and occupy

a large space without obvious concentration in the spectrum space. Such variation suggests heterogeneity in BFN deficits underlying

the MCI/AD and ASD, which is consistent with clinical observations that these brain disorders also show remarkable variations in cogni-

tive manifestations.9,45 The data distributions of ADHD and VCI are relatively compact and tend to be distributed close to ASD. The

distance from MCI/AD to other BDs is relatively even but slightly biased to VCI. These observations, together with the overlap among

ASD, VCI, and MCI/AD data distributions in gradients, could be in line with observations that VCI and ASD patients have a higher likeli-

hood of developing AD-type dementia.13 Also, it may explain the comorbidities of ASD, ADHD, and general cognitive impairments in

elders.6,19 Along the same direction, we explore two sub-populations of ASD exhibiting similarities, respectively, to ADHD and other

late-life BDs. The analysis of ‘‘ADHD-like ASD’’ and ‘‘other ASD’’ finds differences in the frequency of symptoms (diagnoses) between

two subpopulations. In theory, this may imply that the heterogeneity in ASD symptoms (diagnoses) could indicate a different tendency

to co-occur or develop into different BDs. The lifespan spectrum is thus a new and informative perspective to review ASD and poten-

tially other BDs.

Frommethodological aspects, the ability of our study to detect the common pathology in brain dynamics also paves the way for building a

general brain-disease diagnosis model. As demonstrated in our results, a model transfer is feasible among BDs. In the field of natural lan-

guage and image processing, pre-training a DL model based on multiple source tasks has become a widely accepted and powerful frame-

work to build generalizable models for multiple downstream tasks, with or without fine-tuning model parameters.46–48 However, this pre-

training framework has not been widely adopted in the brain image analysis field, and a generalizable pre-trained model is still lacking to

fit clinical usages. We hope our study can facilitate the exploration in this direction, toward the development of generalizable artificial intel-

ligence tools for brain imaging applications.

Limitations of the study

Firstly, themodel predictions suffer from inter-individual variations in large datasets, such as ADNI, ABIDE, and ADHD. Themodel could have

risks of bias toward late-life BDs than early-life BDs. In addition, due to the limitations in data collection protocol, the VCI group could poten-

tially contain subjects with mixed etiology of AD and vascular diseases. What’s more, to deal with the multi-site effects, we performed harmo-

nization over all the data before training the model. This study is thus built on a simplified condition. More advanced methods, such as

contrastive learning, can be investigated to ease multi-site effects and to enable real-world applications in unseen data. Finally, the currently

presented lifespan spectrum could be incomplete as our analysis did not sufficiently include BDs from middle-aged subjects. Further study

should be conducted by including the psychiatric disorders frequently observed in the middle ages.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Dinggang Shen (Dinggang.Shen@gmail.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data from ADNI, OASIS, ABIDE, and ADHD-200 datasets are publicly available. Data from RENJI and HUASHAN datasets are available

from the lead contact upon reasonable request due to privacy restrictions. DOIs/URLs are listed in the key resources table.
� All original code has been deposited at GitHub and is publicly available as of the date of publication; URLs are listed in the key resources

table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

From four public datasets and two private datasets, we include 4,410 data for training the model, which contains 2512 healthy controls (HC.

More specifically we refer to ‘‘cognitively unimpaired’’ subjects) and 1898 brain disorder (BD) subjects. The corresponding demographic in-

formation is provided in Table S7.

Early-life brain disorders

TheAutismBrain ImagingData Exchange (ABIDE) andADHD-200 datasets, containing neuroimaging fromASDandADHD subjects, are used

for early-life BD identifications.

ABIDE

From the Autism Brain Imaging Data Exchange (ABIDE-I),49 we select scans with a duration longer than 300s, yielding 512 HC and 499 ASD

subjects. As a multi-site dataset, the acquisition protocols and diagnostic criteria in ABIDE vary according to data collection sites (16 scan

protocols among the sites). Overall, the fMRI scanning parameters are: TR = 1.5-3 s, TE = 15-33 ms, in-plane resolution 3 3 3-3.438 3

3.438 mm2, slice thickness 3-4.5 mm, 28-40 axial slices, and 304-486 s in duration (120-300 volumes). A detailed protocol can be found at

https://fcon_1000.projects.nitrc.org/indi/abide/.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

ABIDE dataset Di Martino et al.49 https://fcon_1000.projects.nitrc.org/indi/abide/

ADHD-200 dataset Milham et al.50 http://fcon_1000.projects.nitrc.org/indi/adhd200/

ADNI dataset Jack et al.51 http://adni.loni.usc.edu/

OASIS dataset Marcus et al.52 https://www.oasis-brains.org/

HUASHAN dataset Ding et al.53 https://doi.org/10.1016/j.dadm.2016.03.004

RENJI dataset Liu et al.36 https://doi.org/10.1093/cercor/bhab507

Software and algorithms

MATLAB R2020b Mathworks https://www.mathworks.com/

Python V3.6 Python Software Foundation https://www.python.org

Deep learning algorithms This paper https://github.com/MianxinLiu/MAHGCN-code/tree/main/multisite

Combat Johnson et al.54 https://github.com/Jfortin1/ComBatHarmonization

Diffusion map Vos de Wael.55 http://github.com/MICA-MNI/BrainSpace
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ADHD-200

From ADHD-200,50 we use fMRI scans from 488 HC and 280 ADHD subjects, sampled from 8 sampling sites. Again, the acquisition protocols

significantly vary (9 scan protocols): TR = 1.5-2.5 s, TE = 15-40 ms, in-plane resolution 33 3-3.83 3.8 mm2, slice thickness 3.0-4.0 mm, and 29-

47 axial slices. The specific scanning parameters can be found at http://fcon_1000.projects.nitrc.org/indi/adhd200/.

Late-life brain disorders

The Alzheimer’s disease neuroimaging initiative (ADNI), Open Access Series of Imaging Studies (OASIS), and an in-house HUASHANdataset

contain neuroimaging data fromMCI (referring to the prodromal state of AD) or AD elderly subjects. And the in-house RENJI dataset contains

data from subjects with VCI. The four datasets are used for investigating late-life BDs.

ADNI

For the Alzheimer’s disease neuroimaging initiative (ADNI) dataset,51 a total of 1350 fMRI data are selected, which contains 565 HC and 785

MCI or AD subjects. Each fMRI data is acquired with TR = 3 s, TE = 30 ms, resolution = 3.33 3.33 3.3 mm3, 48 axial slices, and 420 s in dura-

tion (140 volumes). A detailed protocol can be found at http://adni.loni.usc.edu/.

OASIS

In the Open Access Series of Imaging Studies (OASIS) dataset,52 we include 634 HC and 83 MCI or AD subjects in the study. The fMRI acqui-

sition protocols are TR = 2.2 s, TE = 27 ms, resolution = 43 43 4 mm3, 36 axial slices, and 372 s in duration (169 volumes). More information

can be found at https://www.oasis-brains.org/.

HUASHAN

fMRI data from 167 HC and 100 MCI or AD subjects were obtained from Huashan Hospital in Shanghai.53 fMRI scans are obtained by using a

multi-slice single-shot gradient echo-planar imaging sequence: TR= 0.8 s, TE = 37ms, resolution= 23 23 2mm3, 72 axial slices, and 390.4 s in

duration (488 volumes). The participants are instructed to close their eyes but remain awake during the scanning.

RENJI

fMRI data from 146 HC and 151 VCI subjects were obtained from Renji Hospital in Shanghai. MRI scan is performed using a SignaHDxt 3TMRI

scanner (GE Healthcare, United States), with an eight-channel standard head coil with foam paddings to restrict head motions. The param-

eters of the echo-planar imaging sequence for the resting-state fMRI data collection are as follows: TR = 2 s, TE = 24ms, resolution = 23 23

2mm3, 34 axial slices, and 440 s in duration (220 volumes). The diagnostic criteria are reported in our previous publications.36,56 In brief, firstly,

two experienced radiologists identified the subcortical ischemic vascular disease (SIVD) by detecting white matter lesions as at least one

lacunar infarct on the T2-FLAIR image. Further, within SIVD population, a battery of neuropsychological tests is used to test the cognitive

abilities of participants, which covers attention, executive function, memory, language, and visuospatial function. The population distribution

of the scores was constructed based on the scores for each measure of normal-aged people in Shanghai, China. The SIVD participants with

scores falling beyond G1.5 standard deviations from the mean are regarded as VCI (MCI or dementia). Note that we utilize all participants

without cognitive impairments as HC (cognitively unimpaired) even if some of themexhibit SIVD, which could be reasonable as the brain func-

tional network could be normal (and thus the cognition is normal) under brain lesions. The VCI subjects did not receive positron emission

tomography (PET) scans to exclude the AD-related pathology, and thus the VCI group could potentially contain subjects with mixed etiology

of both vascular disease and AD.

METHOD DETAILS

fMRI preprocessing

We apply well-accepted toolboxes, AFNI57 (for ADNI) and DPARSF58 (for ABIDE, OASIS, HUASHAN, and RENJI datasets), to perform a stan-

dardized preprocessing procedure for fMRI data. In particular, the first several volumes (5–10, the exact number varies across datasets) of each

image are discarded due to potential non-equilibriummagnetization. The slice timing correction is done except for the HUASHANdataset as

the data was sampled with high temporal resolution. The rigid-body transformation is performed to correct the subject’s head motion. Sub-

jects with large head motions are excluded. We do not further perform scrubbing/censoring of data as it may introduce additional artifacts.

The signals of white matter, cerebrospinal fluid, and head motion are regarded as nuisance covariates and are regressed out from individual

data. The fMRI images are then normalized to theMontreal Neurological Institute (MNI) space and spatially smoothed with a Gaussian kernel

with full width at half maximum (FWHM) of 43 43 4 mm3. The BOLD signals are further band-pass filtered (0.01% f% 0.1 Hz) to remove the

neural-irrelevant high-frequency noises and low-frequency drift from the MRI machine. For the ABIDE dataset, since volumes of scans are

different among the collecting sites, we use its minimum common length, i.e., 115 volumes, around the middle volume of the preprocessed

fMRI sequence for further processing. We use preprocessed data for ADHD-200 provided in http://preprocessed-connectomes-project.org/

adhd200/, using the Athena pipeline.
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Multiscale functional network construction

Schaefer et al. provided a set of atlases for multiscale brain parcellation,33 which are used in this paper for generating multiscale BFNs and

guiding the node pooling across scales. The atlases are generated by FC-pattern-based clustering on voxel (or vertices) by considering both

global similarity and spatial proximity. Clustering in different resolutions results in brain functional parcellations at multiple scales, ranging

from 100 to 1000 regions of interest (ROIs). It can be observed that the seven RSN structures34 are largely preserved after parcellation at

all scales (Figure 1A). Therefore, the atlases at different scales can be viewed as coarse-to-fine parcellation of the seven RSNs. The spatial

relationship among the ROIs in these atlases at different scales thus characterizes a biologically meaningful functional hierarchy.

Given the atlas at a specific scale, the ROI-level signals can be obtained by averaging voxel-level BOLD signals within each ROI. The BFN at

the given scale S is then computed by Pearson correlation among all pairs of ROI-level signals and is denoted as BFNS . Consistent with our

previous study,30 we use the first five scales, i.e., from 100 to 500 ROIs.

Multi-site data harmonization

As we aim to explore the commonness and relationships among different BDs, the data distribution shifting caused by themulti-site effect is a

nuisance factor to be removed A statistical regression-based harmonization method, called ‘‘Combat’’,54,59 is thus applied to calibrate the

BFN data. The codes are publicly available at https://github.com/Jfortin1/ComBatHarmonization. In Combat, with a linear regressionmodel,

the variation of each functional connectivity across individuals is modeled as the sum of essential mean, effects of biological co-variates (i.e.,

age, gender, and brain BDs), site-related bias in mean, and site-related noise level. Therefore, functional connectivity without site effect can

be calculated by estimating the parameters of the regression model from data and removing site-related bias.

In this paper, we use a scanner-based harmonization since ABIDE and ADHD-200 contain data from multiple sites (ABIDE: 16 scanners;

ADHD: 9 scanners; In total, 28 scan protocols for all data). We preserve the effect of age, gender, and type of BDs.

The Combat is performed over all data. This may violate the conventional setting for an ‘‘out-of-sample’’ test as the testing data has been

first integrated with the training data during applications. However, as the effects of different brain disorders are theoretically preserved, the

analysis still ensures a fair test on whether one model could classify different brain disorders in the biclassification task and could perform an

‘‘out-of-disorder test’’ in the transfer learning task. The primate scientific question can still be sufficiently explored.

Deep learning architecture

The Multiscale-Atlas-based Hierarchical Graph Convolutional Neural Network (MAHGCN) is proposed and systematically tested in our pre-

vious study.30 Here we briefly review two crucial building blocks of MAHGCN, i.e., graph convolutional network (GCN) and the atlas-guided

pooling (AP). The MAHGCN is then built by hierarchically stacking GCNs and APs (Figure 1C), together with the skip connections and fully-

connected layers (FLs).

Graph convolutional network

The graph convolutional network (GCN)60 is an effective deep-learning method to abstract features from graph data (e.g., the BFN data). It

completes the convolutional operations via two steps, i) propagating nodal features via graph Laplacian, and ii) selecting features by applying

a learned kernel on the features. Formally, for a given adjacencymatrixA and nodal features h, one graph convolution layer updates the nodal

feature by following the equation below:

hGC = GC ðA;hÞ = s
�
~D� 1

2 ~A ~D� 1
2hW

�
; (Equation 1)

where ~A = A+ I, I is the identity matrix, ~D is the corresponding degreematrix of ~A,W is the estimated kernel weight matrix, and sð$Þ is a non-
linear activation function. Empirically, we skip the computation of graph Laplacian and directly use the adjacency matrix BFNS from scale S to

obtain optimal diagnosis performance.

Atlas-guided pooling

The AP operation is defined according to spatial overlapping among ROIs informed by atlases at different scales. The AP benefits information

integration and introduces inter-scale dependency during feature extraction. It aims to convert the nodal features defined by the atlas at scale

P into the nodal features for the atlas at scale Q (P >Q), based on the mapping matrix MP/Q :

MR/§ði; jÞ =
8<
:

1; r>Th

0;Otherwise
; (Equation 2)

where the overlapping ratio r is computed by size (i.e., the number of voxels) of spatially overlapping between ROI i in the atlas at scale P and

ROI j in the atlas at scale Q divided by the size of ROI i. And Th is a threshold applied to r for defining elements in MP/Q . We use Th = 0

according to the results in our previousmethodological paper.30 Through amatrixmultiplication withMP/Q, a featuremap hGC
P defined in the

atlas at scale P from GCN is converted into a new feature map hAPQ for the atlas at scale Q.

ll
OPEN ACCESS

14 iScience 26, 108244, November 17, 2023

iScience
Article

https://github.com/Jfortin1/ComBatHarmonization


Implementation

All models are implemented using the open-source framework ‘‘Pytorch’’ in Python.We choose the ReLU function as the non-linear activation

function for both GCN and FLs. An identity matrix (node3feature dimension, S 3S) is used as the initial nodal feature to make the MAHGCN

model focus on the topology of the BFNS . Therefore, for eachGCN, the input channel size is set as the node number of the graph (i.e. scale S)

and the output channel size as 1. For building a stacked network, we use the outputted feature from the previous GCN and AP layer as the

diagonal elements in a new diagonal matrix to resume the feature dimension from 1 to the matched scale. The GCN layers in MAHGCN are

attached with dropout functions (rate = 0.2), and the last GCN layer is followed by four FLs, whose output channel sizes are decreasing (i.e.

512, 256, 128, 2). Each FL is associated with a batch normalization and a ReLU activation function. The outputs from the last (the 4th) FL are

normalized by a Softmax function to generate the diagnostic probabilities for two classes. These configurations for GCNs and FLs are kept

consistent in the single-scale-based GCNmethods. The detailed implementations of all models can be accessed in our open codes (https://

github.com/MianxinLiu/MAHGCN-code/tree/main/multisite).

Biclassification experiments

The MAHGCNmodel first performs a conventional biclassification experiment using all BDs and HCs. The model is restricted to be a single-

branch architecture and thus forced to extract one set of features being diagnostic for all BDs. Thus, a successful classification demonstrates

common features among all BDs.

Training scheme

Since sample size and class ratio (i.e., HC-vs-BD ratio) are different in each dataset, a site-specific weight and a cross-entropy loss function are

used to supervise the training process. The weighted cross-entropy loss is based on the inverse of the HC-vs-disorder ratio for each site, esti-

mated in the training samples. For each update iteration, we randomly sample (equally, 100 samples) from each set, which are inputted to the

model to calculate their site-specific losses, respectively. The yielded site-specific cross-entropy loss is further multiplied with a penalty de-

signed by the square root of the inverse of the site sample size for re-weighting. All re-weighted site-specific losses are accumulated with the

linear summation, based on which the model parameters are finally updated.

The training parameters for neural network models are identically set as training epoch = 150, and learning rate = 0.01 for the first 50

epochs and then 0.001 for the remaining epochs. Adam61 with a weight decay of 0.01 is used as an optimizer. Other parameters of the neural

network models are initialized with random weights with the default setting of Pytorch.

Comparison methods

First, the single-scale GCN method is compared as baselines. The results from 500-ROI BFN are shown in the main text while results from

other scales are offered in Table S1. Secondly, three prevalent methods,62–64 namely DIFFPOOL (DP), gPOOL (GP), and SAGPOOL

(SAGP), building stacked GCN by learning the hierarchical representation from the graph are compared. In contrast, our MAHGCN builds

stacked GCNs based on priors from atlases without learning. To obtain reasonable comparison results, we apply DP, GP, and SAGP to

work on the 500-ROI BFN and generate the hierarchical representations in 400-, 300-, 200-, and 100-ROI scales, in the same manner as the

structure of MAHGCN with five scales. Besides similar processing of stacked GCN and pooling, skip connections and four FLs with the

same configurations are implemented. Finally, we compared our MAHGCN with a conventional method to integrate multiscale BFNs. We

train multiple GCNs to parallel process the inputs of multiscale BFNs, whose outputs are concatenated and fused via the following FLs.

As this network design implemented parallel processing rather than hierarchical processing onmultiscale BFNs, we call this method a ‘‘multi-

scale-atlas-based parallel GCN (MAPGCN)’’.

Validation scheme

A classical ten-fold cross-validation is performed. The data is randomly shuffled and equally split into ten folds. In each round of cross-vali-

dation, nine folds of data will be used as training samples and the remaining one as testing samples. Ten rounds of cross-validation are per-

formed until all folds play as testing samples once. Four metrics are adopted to evaluate performance in the testing samples, i.e., accuracy

(ACC), sensitivity (SEN), specificity (SPE), and area under the receiver operating characteristic curve (AUC). Since sample sizes in different dis-

orders from different sites are significantly varying, computing ‘‘global’’ statistics simply as the ratio of correct predictions against all samples

will assign larger weights to the sites with larger sample sizes. We thus compute four performance metrics for each site (‘‘site-specific’’ sta-

tistics) and then average over all sites (‘‘site-averaged’’ statistics) for each cross-validation. The mean and standard deviation of ‘‘site-specific’’

statistics and ‘‘site-averaged’’ statistics from cross-validation are reported.

Transfer learning experiments

We tested whether a model pre-trained using all data except the ABIDE dataset (N=3399) can be transferred to perform ASD identification in

ABIDE data (N=1011) with restricted samples. This experiment aims to provide additional evidence for the common features under different

BDs. We also explore the transfer learning between each pair of BDs using a similar framework.
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Training scheme

Themodel is trained on the five datasets until it converges with 250 epochs. This pre-trainedmodel is used as an initial model and further fine-

tuned using training samples from ABIDE with 50 epochs. For both pre-training and fine-tuning, other configurations are the same as the

settings in biclassification experiments. In addition, four levels of fine-tuning schemes are designed to test the model with different amounts

of preservation of the learned information during the pre-training. ‘‘Level 1’’ refers to fine-tuning all model parameters. ‘‘Level 2’’ refers to fine-

tuning all FLs and batch normalization layers (BN). ‘‘Level 3’’ refers to fine-tuning the last FL and all the BNs in the model. ‘‘Level 4’’ refers to

fine-tuning only the last FL and the last BN. Intuitively, higher level fine-tuning preserves more learned information during the pre-training.

Validation scheme

A ten-fold ‘‘K-shot’’ cross-validation is performed. For each round of cross-validation, the data are shuffled and split into training (N=100) and

testing sets (N=911). For the K-shot condition, training samples are the first K samples in the training set. In the main text, results using a

20-shot condition are depicted. In Tables S4 and S5, we offer the results under 50 shots and 100 shots, which are consistent with the results

under the 20-shot condition. The mean and standard deviation of ACC, SEN, SPE, and AUC in the testing set are used to assess the

performance.

Diagnostic feature identification

To reveal the predictive features of deep learning methods, we utilize a Gradient-guided Class Activation Map (Grad-CAM) algorithm65 and

analyze the established biclassification models. In short, the Grad-CAM regards the gradient between prediction outputs and the feature

maps at intermediate hidden layers (in this work, we used features from intermedia GCN layers for each scale) of the deep neural network

as the importance of features. This thus applies gradient values to weight elements in the featuremaps, i.e., the product between the gradient

map and feature map, which offers a visual map for spotting predictive features.

To investigate the common features of BDs, the Grad-CAM from correctly predicted BD subjects is extracted using different models from

cross-validations. However, the Grad-CAM values can vary significantly across different models and different datasets due to the nature of

usingmulti-sites. Therefore, we designed a double normalization procedure to relieve the Grad-CAM value heterogeneity across the models

and datasets to spot the common features more properly. First, all Grad-CAM values from a given model are normalized into a range from

zero to one according to the minimum andmaximum values. Then, all normalized Grad-CAM from subjects belonging to different datasets is

averaged respectively. To obtain a joint estimation of themodels from cross-validations, we utilize the prediction AUCs to perform aweighted

average on the normalized Grad-CAM. In this way, the normalized Grad-CAMs for every specific dataset are established.We again normalize

these dataset-specific Grad-CAMs into a range from zero to one to address amplitude differences in Grad-CAMs across datasets. For the all-

BD common features (Figure 3), we average all six double-normalized Grad-CAMs. For common features of early-life BDs (Figure 4A), the

double-normalized Grad-CAMs from ABIDE and ADHD-200 are averaged. For common features of late-life BDs (Figure 4B), the double-

normalized Grad-CAMs from ADNI, OASIS, HUASHAN, and RENJI are averaged.

Estimation of the spectrum representation under various BDs and quantification of the inter-BD relationship

To explore the potential common spectrum under different BDs and the inter-BD relationships on it, we investigate deep-layer data repre-

sentations from the established biclassification models during cross-validations. We regard each model as one expert of the inter-sample

relationship and integrate the inter-sample relationship, rather than the feature values, from each model’s latent space based on their pre-

diction performances. Based on the integrated inter-sample relationship matrix, individual data are embedded into a low-dimensional

Euclidean space with relationship preservation for visualization and quantitative analyses. By this approach, the inter-BD relationships can

be optimally preserved and explored.

Operationally, the encoded features of individuals are extracted from third-layer FL, and the sample relationships are computed by the

correlation distance based on these features. The inter-sample relationships from models under different rounds of validation are then

weighted-averaged using AUCs to provide an integrated estimation.We then use the diffusionmapmethod to embed the averaged relation-

ship matrix into an Euclidean space, which is in alignment with the brain gradient analysis.66 The diffusionmapmethod estimates a non-linear

mapping of the data into a new low-dimensional Euclidean space to ensure a distance-preserved mapping, so that the Euclidean distances

among individuals in the mapped space roughly keep the original distances reflected in the sample relationship matrix. The implementation

of the diffusion map is based on the open-source ‘‘BrainSpace’’ toolbox (http://github.com/MICA-MNI/BrainSpace),55 with default settings.

The diffusion map is usually regarded as the advanced non-linear version of the conventional multi-dimensional scaling (cMDS) method. We

have tested cMDS, whose results are depicted in Figure S9 and are similar to those from the diffusion map.

QUANTIFICATION AND STATISTICAL ANALYSIS

The differences in performance from different methods are tested by the Wilcoxon signed-rank test using a built-in function ‘‘signrank’’ in

Matlab. Other comparisons are performed by Whitney-Mann’s U test with ‘‘ranksum’’ in Matlab. Both the Wilcoxon signed-rank test and

Whitney-Mann’s U test are non-parametric. Under multiple comparisons, the raw p-values are corrected by the false discovery rate (FDR)

correction.
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To assess the significance of predictability during the biclassification, we conduct permutation to randomize the ground-truth labels and

re-calculate the performancemetrics to estimate the corresponding distribution under chance level (null model). As we use the ten-fold cross-

validation scheme, 100 times permutations are separately conducted on the prediction results fromeach roundof cross-validation. The results

from these 1000 permutations are then pooled to generate the estimation of the chance-level distribution. The significance (p-value) is then

obtained by statistically comparing the empirical distribution from trained models and the chance-level distribution, using a one-sided

Whitney-Mann’s U test.

ADDITIONAL RESOURCES

The data collection of the HUASHAN dataset has been registered as a clinical trial ‘‘ChiCTR2000036842’’ (URL of registry ‘‘http://www.chictr.

org.cn/showproj.aspx?proj=59802’’).
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