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Abstract: Reconstruction-based change detection methods are robust for camera motion. The methods
learn reconstruction of input images based on background images. Foreground regions are detected
based on the magnitude of the difference between an input image and a reconstructed input image.
For learning, only background images are used. Therefore, foreground regions have larger differences
than background regions. Traditional reconstruction-based methods have two problems. One is
over-reconstruction of foreground regions. The other is that decision of change detection depends on
magnitudes of differences only. It is difficult to distinguish magnitudes of differences in foreground
regions when the foreground regions are completely reconstructed in patch images. We propose
the framework of a reconstruction-based change detection method for a free-moving camera using
patch images. To avoid over-reconstruction of foreground regions, our method reconstructs a
masked central region in a patch image from a region surrounding the central region. Differences
in foreground regions are enhanced because foreground regions in patch images are removed by
the masking procedure. Change detection is learned from a patch image and a reconstructed image
automatically. The decision procedure directly uses patch images rather than the differences between
patch images. Our method achieves better accuracy compared to traditional reconstruction-based
methods without masking patch images.

Keywords: change detection; background subtraction; convolutional neural network; free-moving camera

1. Introduction

Change detection, which is used in many vision systems, is one of the fundamental techniques
for various security tasks, such as video surveillance. Change detection methods can automatically
summarize long videos from surveillance cameras to reduce employee workload and the cost for
security tasks. The main concept of change detection is to define a background and detect foreground
regions as differences between the defined background and a current observation. The background
represents a normal or majority state in change detection. For example, a background is typically
an image without moving objects. Moving objects are detected as foreground objects when the
background image is compared to a current image. Change detection methods can detect objects of
any shape, unlike specific object detectors, such as vehicle detectors, because change detection focuses
only on image differences without modeling a specific object. This is appropriate for surveillance tasks
because foreground regions cannot be defined directly when there are no priors of foreground objects.

Change detection methods are categorized into two methods: those for stationary cameras and
those for moving cameras. In stationary camera methods, the background is represented for each
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pixel based on observed pixel values, which are compared to current pixel values to detect foreground
regions via background subtraction [1]. Stauffer et al. [2] estimated a color distribution at each pixel.
The estimated distribution was used for the background representation. Stationary camera methods
obtain accurate background representations for change detection ignoring camera motion. Recently,
drones and robots equipped with cameras have become increasingly available. These moving devices
can expand surveillance areas and enhance the flexibility of surveillance systems. Some moving camera
methods [3,4] compensate for camera motion to process images from a moving camera. A visual
motion estimated between two successive images consists of camera motion, or motion of a moving
object. Camera motion is used for background representation because we need not detect camera
motion as a foreground in video surveillance. These methods can detect the foreground based on
motion differences, but are specialized for moving object detection because of use of camera motion.

The other type of moving camera method, called a one-shot-based method [5,6], is not affected by
camera motion. One-shot-based methods prepare background images for target scenes in advance. In a
naive implementation of one-shot-based methods, a background image is selected based on appearance
similarity between a current image and background images, and the current image is compared to
the selected background image for change detection. The one-shot-based methods can also detect
stationary objects because of no use of camera motion. This preparation scheme is reasonable for
surveillance systems using security robots because robots can routinely observe the backgrounds in
a target scene. This naive implementation is strongly affected by instances of background images.
For example, many false positives are caused in a detection result when the illumination in a current
image is different from one in background images. To solve this problem, we need to estimate a
background image from a current image adaptively.

One solution is to reconstruct a background image from a current image. The solution, called a
reconstruction-based approach, is a learning-based algorithm [7]. The goal is to obtain a transformation
function f satisfying f (x) = x, where x is an input. The learning procedure uses only background
images for the reconstruction. Therefore, foreground regions cannot be accurately reconstructed
from current images because foreground regions are not contained in the background images.
The foreground regions in a reconstructed image thus create larger errors than background regions.
In the detection step, the reconstruction-based approach distinguishes areas with large reconstruction
errors as foreground regions.

In the case of a reconstruction algorithm such as an autoencoder [8], errors in foreground regions
often have similar values to ones in background regions. Figure 1 presents a reconstructed image
by an autoencoder and the differences between the original image and the reconstructed image.
We trained the autoencoder in Figure 1 using patch images. Note that another possibility is to
reconstruct entire images directly. In fact, we tried the approach, but the reconstructed images were
inaccurate. The reconstruction-based methods learn a transformation function f (x) = x using only
background images. An ideal f is an identity function if the input image contains background regions
only. However, such a function causes over-reconstruction when the input image partially contains
foreground regions. In other words, foreground regions are also completely reconstructed by the
identity function. Therefore, it is necessary to reduce over-reconstruction while keeping the quality of
background reconstruction as high as possible. We hypothesize that over-reconstruction of foreground
regions is possible through the use of complete patch images, as f approximates an identity function
in this case. The over-reconstruction causes difficulty in distinguishing the foreground based on the
magnitude of differences between a current image and a background image, as illustrated in Figure 1c.
Traditional one-shot-based methods use only the magnitude of differences for decision of change
detection. In Figure 1, some regions of the house and the edges are background regions. However,
errors in the background regions are similar to errors for a car. According to the magnitudes of the
errors in Figure 1, the background regions may be detected as foreground regions because of similar
errors. Therefore, other criteria are needed for more accurate detection.
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(a) Input (b) Reconstructed image (c) Differences

Figure 1. Reconstruction using an autoencoder. We trained the autoencoder using patch images as
reference images. We cropped patch images for a current image in (a) and reconstructed each patch
in (b). It is difficult to select a threshold value to distinguish the foreground clearly using the differences,
as shown in (c).

We propose a framework of a reconstruction-based change detection method for a free-moving
camera. Our method solves over-reconstruction of the foreground region and introduces other criteria
for change detection. For our implementation, we combine two convolutional neural networks
for image completion and change detection. The image-completion network is applied to a patch
image in a current image and generates a reconstructed patch image. The change-detection network
then compares the reconstructed patch image to the current patch image to detect changes in
appearance. It should be noted that our method is a patch-based method for easily preparing various
training images.

To solve the over-reconstruction problem, we mask the central regions of patch images
and reconstruct these regions from surrounding regions using the image-completion network.
Our image-completion network cannot approximate an identity function because the learned function
f satisfies f (m(x)) = x′|m(x) 6= x′, where m(x) is a masked patch image and x′ is the central region
of x as shown Figure 2. The red line in Figure 2 represents reconstruction of a foreground region. A car
wheel is masked and the color and the texture of the wheel cannot be used for our reconstruction
procedure. The car wheel is not reconstructed because the image-completion network does not learn
how to reconstruct the car wheel from the road surface and the front part of the car. As the blue line in
Figure 2 illustrates, background regions can be reconstructed more accurately than foreground regions.
It is difficult to reconstruct foreground regions from surrounding regions because masked foreground
regions negatively affect reconstruction performance.

Patch 
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Masked patch 
𝑚𝑚(𝑥𝑥)

Reconstructed 
central region
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Figure 2. Examples of a reconstruction procedure by our image-completion network. m is a function for
masking patch images and f is a function for our image-completion. In Figure 2, the moving car is not
included in background images used for training our image-completion network. The image-completion
network learns how to reconstruct central regions using only background images. Red and blue lines
represent reconstruction of a foreground region and a background region, respectively. The background
region is reconstructed from a region surrounding the masked central region. A car wheel in the
foreground region is not reconstructed in the red line path. The image-completion network cannot use
color and texture of the car wheel. Therefore, errors in the car wheel are emphasized.
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The change-detection network uses a current patch image and its reconstructed patch image,
and estimates a foreground probability of the current patch image. Patch images with foreground labels
and background labels are used for supervised learning. As shown in Figure 1, there is a difference
between a patch image and the reconstructed patch image, even if the patch image is a background
region. The change-detection network learns criteria to accept the differences as background regions
through supervised learning. Patch images are used for inputs of the change-detection network.
The learning procedure is performed based on the patch images for change detection. Therefore, the
change-detection network can obtain criteria in addition to the magnitudes of the differences between
the patch images.

2. Related Work

It is essential for change detection to define normal situations because “change” is defined by
differences from normal situations. Many researchers have discussed what constitutes a normal
situation according to various aspects, such as appearance information, including colors and textures,
and motion information, including optical flows and the trajectories of feature points. We discuss
related studies from the perspectives of stationary and moving camera methods.

2.1. Stationary Camera Methods

One efficient approach is background subtraction [1], which was proposed for the computer
vision field. Most simple methods of background subtraction define a background image as a
normal situation and detect differences in appearance between the defined background image and an
observed image. In the case of background subtraction, normal situations are called “background”.
Otherwise, they are called “foreground”. These methods attempt to avoid detecting illumination
changes based on the time of day, as well as dynamic backgrounds, such as waving trees. However,
simple background subtraction detects these changes as foregrounds. Statistical methods [2,9] and
case-based methods [10,11] were proposed to model efficient backgrounds for each pixel to handle the
problems mentioned above. The definition of a background follows the assumption that background
features are frequently observed, while foreground features are rarely observed.

Other background definitions are based on frame-wise information [12] and motion information [13].
Moving objects can be detected from image sequences, as shown in [12]. Background sequences
can be represented using a low rank subspace if they change linearly, which is the case in gradual
illumination changes. Sequences with foreground regions, such as moving objects, do not satisfy low
rank constraints. In [12], a matrix with each row corresponding to a frame in an image sequence
was decomposed into a low rank matrix for representing background regions and a sparse matrix for
representing foreground regions by using robust principal component analysis. In [13], background
dictionaries with prior sparsity were constructed from background features using spatial and temporal
information. Therefore, foreground features were not represented by the learned dictionary. In [13],
foreground regions were detected based on the errors between an observed feature and a reconstructed
feature from a learned dictionary.

Recently, some researchers have proposed approaches using deep neural networks to better utilize
feature representations and automatically learn background features. Smeureanu et al. [14] used a
pre-trained network for an image classification task to extract higher-level features. They detected
anomalies using a one-class support vector machine (SVM) that was trained using features extracted
by a pre-trained network. A background subtraction framework using a convolutional neural network
(CNN) was proposed in [15]. This CNN-based method could automatically learn background features
from training data, unlike previous handcrafted approaches. This method requires background and
foreground labels as supervised signals to train a CNN. Autoencoder-based methods were proposed
in [7,16] to utilize unsupervised learning methods. The authors of [7,16] used only background regions
as training data, which were represented by image sequences, trajectories of feature points, and optical
flows. A trained autoencoder cannot clearly reconstruct foreground sequences because it only knows



Sensors 2018, 18, 1232 5 of 19

how to reconstruct background sequences, similar to the method in [13]. In [7], change detection was
performed by directly comparing input data to reconstructed data. In [16], a one-class SVM was used
for learning background features obtained from a trained autoencoder to detect anomalies. However,
these studies only discuss the case of using a stationary camera because these methods obtain temporal
information from image sequences. Our method also utilizes a framework of deep neural networks to
automatically learn background features from training data.

2.2. Moving Camera Methods

The main issue in stationary camera methods is that they ignore the selection of new backgrounds
after a camera is moved. For example, in [2], a background i was modeled based on each pixel i,
where each pixel i always has access to the background i. This model collapses in the presence of
a moving camera. We must find an appropriate background x for the pixel i after the camera is
moves. Xue et al. [17] proposed an extension of the Gaussian mixture model for a pan-tilt-zoom
camera. Gaussian mixture models were constructed using panoramic coordinates projected from
image coordinates. Therefore, this method can access appropriate Gaussian mixture models using
panoramic coordinates, even if the camera moved. To handle other camera motions, such as translation,
other methods have used multiple homographies for different planes [3] and optical flows [4].
These methods could perform registration on continuous frames to find the appropriate background x.
However, these methods specialize in moving object detection because ego-motion is defined as
background content. Our study detects the differences in appearance between a current image and
reconstructed background, regardless of the movement of objects.

More general approaches for moving cameras project images captured from various viewpoints
into 3D coordinate space and select appropriate background images or features based on 3D positioning.
Additional devices utilizing GPS and 3D information, such as 3D models and camera poses, have also
been used. In [6], GPS data was used for matching viewpoints in a current image and background
image. In [18], a dense 3D model of the target scene was used for the registration of each image
in a 3D coordinate space. In [19], the authors used the camera poses of captured images for image
localization. These methods are flexible for camera motion, but it is difficult to calibrate certain devices
and data. Furthermore, devices are not always available in all circumstances, such as GPS in indoor
environments. Our study focuses on using only images with no additional devices and accepting
free-moving cameras.

Lawson et al. proposed a case-based approach [5] in which they constructed a background
dictionary from only background features. Foreground regions were detected by comparing a current
feature to the background features in the dictionary. The computational cost depends on the size of the
dictionary because the method must match all background features to the entries in the dictionary.
Our method avoids this issue because it reconstructs backgrounds directly from a current image.

3. Change Detection with Image Completion

Our method consists of one network for image completion and another for change detection,
as illustrated in Figure 3. A patch image is cropped from a current image and the central region
is masked. The masked patch image is passed to the image-completion network to complete the
patch image. The image-completion network reconstructs textures and colors in the masked regions.
The network learns how to reconstruct backgrounds from training images, which contain only
background images. The network does not reconstruct foregrounds such as the chair in Figure 3
because it does not learn any foreground regions. Therefore, foreground regions will have larger
differences between the reconstructed image and original patch image compared to background
regions. Change detection is performed using the reconstructed patch image and original patch image.
Following reconstruction, the reconstructed patch image and original patch image are concatenated
as inputs for the change-detection network. The change-detection network classifies the difference
between the original patch image and reconstructed patch image as a background or foreground.
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Figure 3. Proposed networks. A patch image is cropped from a current image. After masking the
central region of the patch image, the image-completion network receives the masked patch image
as an input. The output of the image-completion network and central region of the patch image are
concatenated to create the input for the change-detection network. The change-detection network then
determines the foreground probability of the patch image.

3.1. Network for Image Completion

Our method is inspired by image completion methods from Pathak et al. [20] and Satoshi et al. [21].
These authors performed an estimation of realistic textures and colors in a masked region selected by a
user. Their methods estimated the realistic images based on the context and semantics of real images.
To reconstruct backgrounds, our network uses the structure for a completion network proposed
by Satoshi et al. [21]. A completion network based on a fully convolutional network consists of
dilated convolution layers [22] and transposed convolution layers. The dilated convolution operation
resizes the kernel of a traditional convolution operation by padding k− 1 zeros between each element
of the kernel, where k is the dilation rate. A dilated convolution layer can perform a convolution
operation for large regions of inputs without losing input resolution. Dilated convolution layers
work more efficiently for learning the features of regions without masks compared to traditional
convolution layers.

Our completion network learns how to reconstruct background images during the training phase.
Pathak et al. and Satoshi et al. used generative adversarial networks (GANs) [23] to obtain realistic
images. However, the purpose of the completion networks by Pathak et al. and Satoshi et al. was not
to obtain true background images from the training images. Therefore, the terms for the GAN are
removed from the cost function and only the reconstruction errors of background images are used in
our cost function EIC. In our study, a central region of input I is filled with a specific value and our
network reconstructs this central region, called Ic, as follows:

EIC( f ) = ∑ | f (Im)− Ic|, (1)

where Im is a patch image I whose central region is masked by a specific value, f (Im) is the estimated
central region, and | · | represents the L1 distance. The size of Im is w×w and the size of Ic is 0.5w× 0.5w.
The cost function is similar to that for an autoencoder. However, the textures and colors in the central
region are not used for the reconstruction of the central region, unlike the autoencoder.

3.2. Network for Change Detection

A naive change detection method is to set a threshold for the magnitude of differences between
f (Im) and Ic directly. However, this naive method may detect differences as changes in background
regions incorrectly when the magnitudes of differences in the backgrounds regions are similar to those
in the foreground regions.

We use a background subtraction framework based on a convolutional neural network [15].
The network detects changes based on not only the differences between a current image and its
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corresponding background image but also the context of the two images. For example, shadows are
defined as backgrounds in video surveillance systems. Shadow regions cause differences between a
current image and its corresponding background image, as with foreground regions. False positives
occur in shadow regions when change detection is performed based on only evaluating the differences.
The network was able to classify shadow regions into backgrounds because the network learned
shadows as backgrounds through supervised learning [15]. Therefore, the network can perform
change detection based on more efficient criteria for target scenes than change detection methods
based on only a simple strategy such as thresholding of the difference.

This method requires pre-defined background images, which are created using the temporal
median filter proposed in [15], for each scene. Images reconstructed by the image-completion network
are used instead of pre-defined background images. Our network works even if a camera moves
because our method facilitates both image completion and change detection.

In each convolution layer and fully connected layer, other than the final layer, we use the rectified
linear unit (ReLU) activation function. A sigmoid function is used in the final layer to obtain a
foreground probability. We also use a cross-entropy function, similar to [15], for training the weights
W of the network.

ECD(g) = −∑(t log(g(x)) + (1− t) log(1− g(x))) + 0.1|W|2, (2)

where x is the input created by concatenating f (Im) with Ic along an axis of channels, t is a supervised
signal for the input, and g(x) is the foreground probability in x. |W|2 is an L2 regularization term for
avoiding overfitting.

3.3. Training Data

According to Equation (2), to train the change-detection network, training images must contain
regions of both background and foreground classes because the network is based on a supervised
learning strategy. However, we cannot prepare foreground class images because we cannot define any
foreground class. A previous article [24] reported that a change-detection network could detect cars
when it was trained using training images containing people as foreground objects. The training images
did not contain cars as foreground objects. This implies that a change-detection network can learn
what changes are without depending on the shapes and colors of foregrounds in the training images.

Based on this insight, foregrounds from other scenes were used to train our change-detection
network. We prepared two types of training images: target images to learn the reconstruction of
backgrounds in a target scene, and detection images to learn differences. The target images do not
contain any foregrounds, while the detection images contain both foregrounds and backgrounds.
To minimize Equation (1), only background images from the target images and detection images are
used by the image-completion network. Additionally, we minimize Equation (2) by using all training
images from both the target images and detection images to train the change-detection network.

3.4. Training

Initially, the image-completion network is trained with a mini-batch size of 24 training samples
over 10 epochs. The mini-batches consist of 16 patch images from the target images and eight
patch images from the backgrounds of the detection images. The change-detection network is then
trained using the reconstructed images with a mini-batch size of 32 training samples over 10 epochs.
The mini-batches consist of 16 patch images from the target images and eight patch images from
the backgrounds and foregrounds of the detection images. Patch images with rare textures among
the training images make it more difficult to train our networks. After training the change-detection
network, the foreground probability is computed for each patch image among the target images.
Patch images with a foreground probability greater than 0.1 are stored as challenging images. We train
our networks again over 10 epochs by randomly selecting 32 data samples from the training images
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and challenging images. The challenging images thus have a better chance of being learned by
our networks.

The filters in our network are initialized using a Xavier initialization [25]. We use an ADAM
optimizer [26] to train our networks with parameters β1 = 0.9, β2 = 0.999, and a learning rate of 0.0001.
RGB color images are used as inputs. Pixel intensities are divided by 255 to obtain normalized
intensities between 0 and 1. We used 2.0 as the specific value for masking a central region in the patch
image because the value 2.0 is not included in the range of the normalized intensities.

4. Experimental Setting

4.1. Dataset

One type of surveillance system discovers changes based on differences between an observation
from a particular day and observations from the past several days. In such a surveillance system,
detected changes representing situations requesting caution are communicated to security officers.
The surveillance system requires observations from the past several days to contain only background
images to define a background for a target scene. There are many datasets available for change
detection based on images. However, few open-source datasets contain pure background images of
training data for moving cameras.

We created a new dataset for our experiments based on the characteristics of the surveillance
system. The training data in our dataset includes only background images to learn the characteristics
of backgrounds, and the evaluation data has viewpoints similar to the training data. Additionally,
changes between the training data and evaluation data are caused by new objects or moved objects in
our dataset. Our dataset contains four image sequences we captured and one sequence provided by
Changedetection.net [27]. Figure 4 presents examples from our dataset and Table 1 contains a summary
of the configurations in the dataset. We created patch images with a stride of 16 and patch size of
64× 64. We shifted the location of cropping by ±3 and ±7 pixels along the x- and y-axes, respectively,
as a method of data augmentation when we cropped the patch images.

Detailed descriptions of the sequences are provided below:

• Continuous pan: This image sequence came from [27] and was captured by a panning camera.
Moving cars appear as foreground objects in this sequence. We divided this sequence into
two sub-sequences for training and evaluation. To obtain training data without moving cars,
we dropped frames with moving cars from the sub-sequence for training.

• Translation: A camera moves straight ahead in this sequence, unlike in the continuous pan
sequence. This sequence was captured in a corridor. The evaluation data contains an orange chair
as a foreground object and the chair does not appear in the training data.

• Scene change: We turned a corner in a corridor to capture this sequence. After turning the corner,
the appearance of the scene is very different. Using the appearance information from before
turning the corner is not effective after turning the corner. In the evaluation data, foreground
objects are umbrellas and the training data do not contain the umbrellas.

• Moved object: This sequence contains potted trees in both the training data and evaluation data.
However, the positions of the potted trees are different between the training data and evaluation
data. It may be difficult to detect moved potted trees as foreground objects if a method learns
potted trees as background objects. In this sequence, the moved potted trees are considered to be
foreground objects, as described above.

• Illumination change: After capturing training data for the above sequences, we captured evaluation
data immediately afterwards. In contrast, the training data and evaluation data for this sequence
were captured on different days. Environments change based on the sunlight during the day and
fluorescent lights at night. In this sequence, boxes on a cart are foreground objects.

Changedetection.net
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Table 1. Summary of our dataset.

Name Foreground Training Frames Evaluation Frames Resolution

Continuous pan Moving cars 232 500 352× 240
Translation Orange chair 350 309 320× 180

Scene change Umbrellas 501 267 320× 180
Moved object Moved potted trees 235 101 320× 180

Illumination change Box and cart 240 58 320× 180

(a) Continuous pan: training (b) Continuous pan: evaluation

(c) Translation: training (d) Translation: evaluation

(e) Scene change: training (f) Scene change: evaluation

(g) Moved object: training (h) Moved object: evaluation

(i) Illumination change: training (j) Illumination change: evaluation

Figure 4. Example images from our dataset.

We used foreground images provided by Changedetection.net [27] for the detection images
described in Section 3.4 to train the change-detection network. Changedetection.net also provides
pixel-wise manually labeled ground truth data. The supervised signals that are used to train
the change-detection network are provided for each patch image because the network provides
a foreground probability for each patch. Background labels are provided for patch images that do not
contain foregrounds. Foreground labels are given to patch images that contain foreground objects in
the centers of the patch images. We chose approximately 100 images from “highway” and “pedestrians”
sets for training. We created patch images with a stride of 4 and patch size of 64× 64. We resized the

Changedetection.net
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images to H ×W, 0.8H × 0.8W, 0.6H × 0.6W, and 0.4H × 0.4W for data augmentation, where H and
W are the height and width of the original images, respectively. The chosen images contain cars and
pedestrians as foreground objects. Our dataset for the continuous pan sequence also contains moving
cars, but the sizes of the cars vary significantly.

4.2. Compared Methods

We compare existing methods using only information from images to the proposed method.
However, there are a few existing methods to detect foregrounds from a single image. To the best of
our knowledge, nearly all existing methods use stationary cameras and temporal information obtained
from multiple frames. Therefore, for the sake of comparison, we modify existing methods to detect
foregrounds from a single image.

The baseline method for comparison is a case-based method. It uses a dictionary constructed from
background patch images as training data. To detect foregrounds, we provide a test patch image and
search for candidates in the corresponding background patch images from the constructed dictionary.
We compute the sum of squared differences (SSD) between the test patch image and candidates, and
then select the background patch image with the lowest SSD among the candidates. The foregrounds
are then detected by setting a threshold on pixel-wise differences between the test patch image and
nearest candidate. We constructed the dictionary by using a local sensitive hash to search through
candidates for background patch images efficiently. We used a 10-bit hash code with cosine distance.
Additionally, we used principal component analysis (PCA) to obtain image representations for the local
sensitive hash. The dimension of representation is determined by the number of principal components
to retain 99% of the total variance. We chose 100,000 patch images for PCA based on the limitations of
our PC memory. This method is denoted as CASEBASED.

A one-class SVM-based anomaly detection method was proposed in [14] for frame-level and
pixel-level detection. We modified the detection strategies because the original method leveraged
multiple frames for the localization of detected changes. We applied patch images to the method
to obtain detection results for each patch region. For each patch image, we calculate the signed
distance from the hyperplane learned by the SVM and threshold the distance for the detection of
foregrounds. In [14], a pre-trained VGG-f [28] was used for feature extraction. The VGG-f was trained
using the ILSVRC benchmark [29] and extracted superior image representations for classification
tasks. We utilized the VGG-f provided by the Caffe Model Zoo. Our parameter settings follow those
defined in [14]. To use large-scale data to train our one-class SVM classifier, we used a random
sampling consensus (RANSAC)-based method [30] for optimization. Note that the computational
complexity for training SVMs depends on the cube of the number of training data samples N for a
naive implementation [31]. We apply the methodology for RANSAC-SVM proposed in [31] to train
our one-class SVM classifier. We briefly describe the training procedure below. We first optimize the
classifier using a randomly selected subset of training data. We then evaluate the classifier on all of
the training data. We conclude the training procedure if the number of training data classified as
anomalies is approximately equal to νN, where ν is the regularization parameter for the one-class
SVM and νN training data are accepted as outliers. Otherwise, we update the subset and optimize the
classifier using the updated subset iteratively until the condition is satisfied or the number of iterations
reaches a user-defined value. We reduce the computational time for training because the size of the
subset is much smaller than the size of the entire training dataset. We set the number of samples in a
subset to 1000. This method is denoted as OCSVM.

The autoencoder-based anomaly detection method (AE) was first proposed in [7]. In [7], multiple
frames were used as inputs to the autoencoder to leverage spatial and temporal information. In our
preliminary experiments, we attempted to utilize only a single frame as the input to the autoencoder.
However, the trained autoencoder provided low-quality reconstructed images in the case of a moving
camera. One of the reasons for this is the diversity of viewpoints of a moving camera. The trained
autoencoder reconstructed background regions accurately and eliminated foreground objects when
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the viewpoints of the camera were limited, such as the viewpoints when using a stationary camera or
pan-tilt camera. In this experiment, we utilized patch images cropped from one observed image as the
input for the autoencoder to reduce differences in appearance caused by the diversity of viewpoints.
We considered two methods to calculate differences between a current patch image and a reconstructed
patch image. The first method simply computes the Euclidean distance (ED) between the two patch
images based on the RGB value of each pixel. The second method uses the change-detection network
(CDNET), as described in Section 3.2. After executing each method, we applied a threshold to the
output to obtain a binary image as a final result. The two methods are denoted as AE-ED and
AE-CDNET, respectively. The architecture of the autoencoder is described in Table 2.

Table 2. Architecture of the autoencoder. “Stride” is the rate of up/down sampling. When “Stride” is
2× 2, the size of the activation map is reduced by half. “fc” in Type indicates a fully connected layer.

Type Kernel Stride Channelout

conv 3× 3 2× 2 64
conv 3× 3 2× 2 128
conv 3× 3 2× 2 256
conv 3× 3 2× 2 512
conv 2× 2 1× 1 512

fc - - 512
transposed conv 1× 1 1/2× 1/2 512
transposed conv 3× 3 1/2× 1/2 256
transposed conv 3× 3 1/2× 1/2 128
transposed conv 3× 3 1/2× 1/2 64
transposed conv 3× 3 1/2× 1/2 3

The architectures of the image-completion network (ICNET) and the change-detection network are
also described in Table 3. We compared two versions of our method (ICNET-ED and ICNET-CDNET)
to evaluate the effectiveness of the change-detection network. ICNET-ED uses ED instead of the
change-detection network to compare a current patch image and reconstructed patch image from the
image-completion network, similar to AE-ED. ICNET-CDNET includes all of the procedures described
in Section 3.

Table 3. Architecture of our networks. “Stride” is the rate of up/down sampling. When “Stride” is
2× 2, the size of the activation map is reduced by half. “fc” in Type indicates a fully connected layer.
In the “conv” type of (b), the “Kernel” is 2× 2 and the “Stride” is 1× 1. In the “maxpooling” type
of (b), the “Kernel” is 2× 2 and the “Stride” is 2× 2.

(a) Architecture of ICNET (b) Architecture of CDNET

Type Kernel Dilation Rate k Stride Channelout Type Channelout

conv 3× 3 1 2× 2 32 conv+maxpooling 64
conv 3× 3 1 2× 2 64 conv+maxpooling 128
conv 3× 3 1 1× 1 128 conv+maxpooling 256

dilated conv 3× 3 2 1× 1 128 fc 512
dilated conv 3× 3 4 1× 1 128 fc 256

conv 3× 3 1 1× 1 256 fc 128
conv 3× 3 1 1× 1 256 fc 1

transposed conv 1× 1 1 1/2× 1/2 128
conv 3× 3 1 1× 1 64
conv 3× 3 1 1× 1 32
conv 3× 3 1 1× 1 3

In all compared methods, as well as the proposed method, the stride of the sliding window for
cropping patch images from a frame was 16. The results of the overlapped regions were averaged
before applying a threshold to obtain a final decision for each method.
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4.3. Evaluation Metric

We used precision, recall, and F-measure as performance metrics to evaluate the accuracy of
foreground detection results. These metrics are defined as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F-measure =
2× Precision× Recall

Precision + Recall
, (3)

where true-positive (TP) is the number of pixels correctly detected as foreground, false-positive (FP) is
the number of pixels incorrectly detected as foreground, and false-negative (FN) is the number of pixels
incorrectly detected as background. We manually constructed bounding boxes for the ground truth in
all frames and used them in our evaluations. Pixels inside of bounding boxes are foreground pixels.

We modified the threshold value to evaluate the precision–recall curves. CASEBASE, AE-ED,
and ICNET-ED are based on a comparison of Euclidean distances in the RGB color space.
These methods used the same set of threshold values {10, 20, ..., 90}. The outputs of AE-CDNET
and ICNET-CDNET are probabilities of the foreground class. We used {0.1, 0.2, ..., 0.9} as the set of
threshold values in AE-CDNET and ICNET-CDNET. OCSVM uses the signed distances during the
training phase as threshold values. We computed the signed distances from the subset of training
data and selected the p-th percentile of the computed signed distance as the threshold value. We set
p = {2, 4, ..., 20}.

5. Results

We evaluated both of our methods and the existing methods using the five sequences described
in Section 4.1. Some examples of the results of each method are presented in Figure 5. Additionally,
Figure 6 illustrates the reconstructed images from ICNET, AE, and CASEBASE. Note that CASEBASE
is not a reconstruction-based method, but obtains patch images of backgrounds from the dictionary for
change detection. Figure 6 presents the obtained images for CASEBASE.

Firstly, we discuss the accuracy of the foreground detection results of each method in terms of
precision, recall, and F-measure. We then investigate the changes in accuracy caused by the effects of
image completion. For a quantitative evaluation of the results in these experiments, we list the best
F-measure for each sequence in Table 4. Additionally, precision–recall curves for the varying threshold
values are presented in Figure 7.

Table 4. Detection accuracy in terms of precision (P), recall (R), and F-measure (F) based on the best
parameters for the F-measure. The red and blue numbers denote the best and second-best score in each
sequence, respectively.

Method
Continuous Pan Translation Scene Change

P R F P R F P R F

ICNET-CDNET 0.672 0.682 0.677 0.441 0.579 0.501 0.470 0.691 0.560
ICNET-ED 0.246 0.278 0.261 0.269 0.472 0.342 0.408 0.498 0.449
CASEBASE 0.302 0.362 0.329 0.223 0.282 0.249 0.156 0.651 0.252
OCSVM 0.004 0.067 0.008 0.145 0.351 0.205 0.213 0.540 0.305
AE-CDNET 0.698 0.301 0.421 0.661 0.169 0.269 0.559 0.748 0.640
AE-ED 0.043 0.256 0.073 0.231 0.280 0.253 0.292 0.648 0.403

Method
Moved Object Illumination Change Mean

P R F P R F P R F

ICNET-CDNET 0.808 0.633 0.710 0.557 0.636 0.594 0.590 0.644 0.608
ICNET-ED 0.591 0.721 0.649 0.580 0.736 0.649 0.419 0.541 0.470
CASEBASE 0.518 0.772 0.620 0.600 0.609 0.605 0.360 0.535 0.411
OCSVM 0.343 0.229 0.275 0.483 0.630 0.547 0.237 0.363 0.268
AE-CDNET 0.541 0.096 0.163 0.575 0.251 0.350 0.607 0.313 0.369
AE-ED 0.661 0.419 0.513 0.638 0.751 0.690 0.373 0.471 0.386
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ICNET-CDNET ICNET-ED CASEBASE OCSVM AE-CDNET AE-ED

(a) Change detection: Continuous pan

ICNET-CDNET ICNET-ED CASEBASE OCSVM AE-CDNET AE-ED

(b) Change detection: Translation

ICNET-CDNET ICNET-ED CASEBASE OCSVM AE-CDNET AE-ED

(c) Change detection: Scene change

ICNET-CDNET ICNET-ED CASEBASE OCSVM AE-CDNET AE-ED

(d) Change detection: Moved object

ICNET-CDNET ICNET-ED CASEBASE OCSVM AE-CDNET AE-ED

(e) Change detection: Illumination change

Figure 5. Results of change detection using different methods. Resulting images represent the input
images overlaid with red and blue pixels to represent foreground and background pixels, respectively.
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ICNETInput CASEBASEAE

(a) Reconstruction: Continuous pan

ICNETInput CASEBASEAE

(b) Reconstruction: Translation

ICNETInput CASEBASEAE

(c) Reconstruction: Scene change

ICNETInput CASEBASEAE

(d) Reconstruction: Moved object

ICNETInput CASEBASEAE

(e) Reconstruction: Illumination change

Figure 6. Reconstructed images using different methods. The reconstructed images in CASEBASE are
derived from patch images obtained from a dictionary. The reconstructed images were used to obtain
the results shown in Figure 5 with the input image (first column), ICNET (second column), AE (third
column), and CASEBASE (fourth column).
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(f) Best F-measure

Figure 7. Evaluation on precision–recall curve and Best F-measures. We use abbreviated styles for the
names of our datasets: continuous pan (CP), translation (T), scene change (SC), moved object (MO),
and illumination change (IC).

5.1. Quantitative Comparison

Table 4 shows that our methods (ICNET-CDNET and ICNET-ED) yielded more accurate results
than AE-CDNET and AE-ED. ICNET-CDNET and ICNET-ED demonstrated the best and second-best
performance for the “Mean” in Table 4. Comparing ICNET-CDNET with ICNET-ED, CDNET can
improve accuracy further than ED because of its ability to learn efficient criteria for target scenes in
change detection using a current image and reconstructed image. We discuss the image-completion
effect when comparing ICNET to AE in Section 5.2. Our method detected changes in spite of moving
objects and stationary objects. Additionally, the dataset used in the experiments contains some
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types of camera motion such as rotation and translation. Therefore, our method can work in a
free-moving camera.

CASEBASE provided the third-best performance for the “Mean” in Table 4. According to
Table 4, the recall of CASEBASE is higher than the precision. This indicates that CASEBASE did
not identify patches with similar appearances from the training data in some background regions.
We observed that appropriate patches were not identified in the sequence of illumination change
images. Figures 5e and 6e present failure cases for CASEBASE. The sequence of illumination change
images contains different lighting conditions between the training data and evaluation data. Therefore,
it is difficult to obtain appropriate patches from the training data. Reconstruction-based methods
such as AE and ICNET can ameliorate this problem, as shown in Figure 6e. AE and ICNET could
successfully reconstruct backgrounds, even if identical patch images were not contained in the training
data, as shown in Figure 6e.

In our experiments, OCSVM provided the lowest accuracy among all compared methods. OCSVM
considers a portion of the backgrounds in the training data as outliers. However, there are no outliers
in our training data. OCSVM always detected certain regions in the training data as foregrounds
incorrectly. Therefore, it had difficulty learning reasonable discriminative planes in our experiments,
except for illumination change images. In the sequence of illumination change images, OCSVM could
learn a discriminative plane easily because this sequence has a low diversity of colors, including mainly
white walls and brown boxes.

ICNET experienced misdetections when a central region in the patch image was not uniquely
reconstructed from the surrounding regions. For example, ICNET could not reconstruct a small red
notice on a white wall in the translation sequence, as shown in Figure 6b. ICNET could not determine
if there was only a white wall or a small red notice on a white wall from the masked patch image.
ICNET-CDNET and ICNET-ED incorrectly detected the small red notice as a foreground object because
the reconstructed image containing the small red notice had a large number of errors.

5.2. Effects of Image Completion

According to Figure 7, the recall of ICNET-ED was higher than that of AE-ED when ICNET-ED and
AE-ED used the same threshold parameter. This means that reconstructed images from ICNET have
larger differences between current images and reconstructed images than AE. We present examples
of reconstructed images from ICNET and AE in Figures 6 and 8, respectively. AE can reconstruct
foreground regions more clearly than ICNET, as shown in Figure 6. The differences in ICNET were
enhanced in the foregrounds, as shown in Figure 8. Therefore, ICNET improved the accuracy of
change detection.

We used CDNET after reconstructing an image using ICNET and AE. This was done to use not
only the magnitudes of the differences caused by reconstruction, but also patterns for change detection.
ICNET-CDNET improved the accuracy compared with ICNET-ED. As mentioned above, ICNET
improved recall, but did not contribute to improving precision. Therefore, ICNET-CDNET worked
to suppress misdetections. However, AE-CDNET did not always contribute to improving accuracy.
In the sequence of continuous pan images, AE-CDNET worked well for detection improvement.
CDNET for AE successfully learned the differences caused by reconstruction of backgrounds during
training. For the sequence of moved object images, the accuracy of AE-CDNET was worse than
AE-ED. The sequence of moved object images contains the same objects (potted trees) as backgrounds
and foregrounds. Note that the textures behind the potted trees change from a white wall to a door
or corridor because the positions of the potted trees are different between the training data and
evaluation data. CDNET for AE could not distinguish the differences in moved potted trees between
a current image and reconstructed image because the differences from the AE were small and the
CDNET learned the small differences in potted trees as background regions during the training step.
The combination of AE-CDNET is not efficient for change detection when a target sequence has similar
objects in the training data and evaluation data. ICNET enhanced the differences between moved
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potted trees because the textures in regions of the moved potted trees change. The differences in moved
potted trees did not appear in the training step. Therefore, ICNET-CDNET is the superior combination
for change detection.

(a) Input (b) Reconstruction: AE (c) Differences: AE

(d) Reconstruction: ICNET (e) Differences: ICNET

Figure 8. Comparison of reconstruction performances. The reconstructed image from ICNET (d) has a
larger number of differences in the foreground region than AE (b). These larger differences lead to a
larger recall in ICNET-ED, as shown in Figure 7.

6. Conclusions

In order to handle any type of camera motion in surveillance systems, we proposed a
reconstruction-based change detection method comprised of one network for image completion
and another for change detection. The image-completion network reconstructs a central region from
surrounding regions in a patch image. The central region of the patch image is masked before it is
applied to the image-completion network to enhance the differences in subsequent reconstructed
foreground regions. The change-detection network compares the reconstructed image to a current
image to detect differences in foreground regions only. Criteria for target scenes are learned from patch
images and the reconstructed patch images automatically. Our method achieved the best performance
among all compared methods and yielded a better F-measure in terms of detection accuracy than
reconstruction methods based on autoencoders without the masking of patch images.

Reconstruction by the image-completion network contains ambiguity. This ambiguity leads to
misdetection because of incorrect reconstructions of background regions. To solve this issue, we
will use the information from a complete image in addition to the masked patch images for the
reconstruction procedure in future research. We expect that the accuracy of reconstruction and change
detection will be improved by using a network with information from a complete image.

The change-detection network improved detection accuracy in our experiments. Details of criteria
learned by the network were not discussed in this paper. The analysis helps to increase the network
performance and understand the network behavior. We will analyze the efficient criteria as future work.
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