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Abstract: A quarter-century after the discovery of autotaxin in cell culture, the autotaxin-lysophosphatidate
(LPA)-lipid phosphate phosphatase axis is now a promising clinical target for treating chronic inflammatory
conditions, mitigating fibrosis progression, and improving the efficacy of existing cancer chemotherapies
and radiotherapy. Nearly half of the literature on this axis has been published during the last five years.
In cancer biology, LPA signaling is increasingly being recognized as a central mediator of the progression of
chronic inflammation in the establishment of a tumor microenvironment which promotes cancer growth,
immune evasion, metastasis, and treatment resistance. In this review, we will summarize recent advances
made in understanding LPA signaling with respect to chronic inflammation and cancer. We will also
provide perspectives on the applications of inhibitors of LPA signaling in preventing cancer initiation,
as adjuncts extending the efficacy of current cancer treatments by blocking inflammation caused by either
the cancer or the cancer therapy itself, and by disruption of the tumor microenvironment. Overall, LPA,
a simple molecule that mediates a plethora of biological effects, can be targeted at its levels of production
by autotaxin, LPA receptors or through LPA degradation by lipid phosphate phosphatases. Drugs for
these applications will soon be entering clinical practice.
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1. Introduction—Cancer as the Ultimate Disease of Chronic Inflammation

Rudolf Virchow, known as the father of modern pathology, observed under a microscope a high
concentration of leukocytes in neoplastic tissues. He proposed in 1863 that the “lymphoreticular
infiltrate” reflected the origins of cancer at sites of chronic inflammation [1]. His discovery however
remained largely ignored for over a century. In that time, there was an ebb and flow of numerous
ideas behind the origins of cancer, including viruses, environmental exposures, and genetic factors.
These various ideas have at times pitted scientists against each other in debate as to the origins of
cancer. However, given the vast heterogeneity of this disease, it is now recognized that they all are
indeed correct for particular cancers. During the 1990s, after over a century of intense investigation,
our knowledge about what cancer is as a disease began to coalesce, and it was codified and revised by
Hanahan and Weinberg as the hallmarks of cancer [2,3]. Cancer is a disease of sustained proliferative

Cancers 2018, 10, 73; doi:10.3390/cancers10030073 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-1326-684X
http://dx.doi.org/10.3390/cancers10030073
http://www.mdpi.com/journal/cancers


Cancers 2018, 10, 73 2 of 25

signaling, evasion of growth suppressors, replicative immortality, angiogenesis, resistance to cell death,
deregulation of cellular genetics, avoidance of the immune system, and invasion and metastasis [2,3].
These traits are enabled through two main characteristics common to virtually all cancers: genomic
instability and mutation, and tumor-promoting inflammation [3].

As Virchow noted, virtually all neoplastic lesions contain immune cells, and it has been long
recognized by pathologists that these tumor-associated cells come from both the innate and adaptive arms
of the immune system [4]. This immune cell composition is also present in inflamed non-neoplastic tumors,
suggestive that the immune system actively attempts to destroy pre-malignant and early cancer cells,
at least initially [4]. However, if there is no resolution of the injury, this milieu of perpetually smoldering
inflammatory signaling (wounds that do not heal) is exploited by these neoplastic cells to complete the
transformation into an established cancer [4,5]. This connection between chronic inflammation in many
diseases such as hepatitis and inflammatory bowel diseases and their eventual transformation into cancers,
has been coined the extrinsic pathway [6,7] (Figure 1). In this chronic inflammatory state, reactive oxygen
species and other mutagenic molecules initiate genetic transformations leading to oncogene activation
and loss of tumor suppressor functionality, termed the intrinsic pathway [6,7] (Figure 1). Together,
these two pathways serve to upregulate a host of pro-inflammatory transcription factors, namely nuclear
factor-κB (NF-κB), signal transducer and activator of transcription 3 (STAT3) and hypoxia-inducible factor
1α (HIF1α) in cancer cells [6]. These same signaling pathways also serve to promote cell survival and
evasion from the immune system [6,8] (Figure 1). The overall net result is an increase in the production
of cytokines and chemokines by neoplastic cells that spills over into adjacent stromal cells, resulting in
more inflammatory mediators being produced, with further leukocyte activation and recruitment [6,9].
Hence, tumor-promoting inflammation both enables and is a product of genetic instability, and accentuates
the other hallmarks of cancer [9]. Consequently, there is at least an 80% correlation between tumor
leukocyte density and poor patient prognosis [10], with at least 20% of all cancer deaths being linked to
underlying inflammatory processes [6].
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Figure 1. General overview of cancer initiation and the role of autotaxin/lysophosphatidate (ATX/LPA).
A convergence of extrinsic and intrinsic pathways leads to sustained inflammatory and survival
signaling that involves upregulation of ATX/LPA signaling through both increases in ATX and
LPA concentrations with concurrent decreases in eco-lipid phosphate phosphatase (LPP) activity.
The establishment of this vicious cycle leads to cancer initiation and progression as often described by
the hallmarks of cancer (sustained proliferative signaling, evasion of growth suppressors, replicative
immortality, angiogenesis, resistance to cell death, deregulation of cellular genetics, avoidance of the
immune system, and invasion and metastasis) [3,6,7].

Over the last decade, it has become well acknowledged that cancer can no longer be considered
a disease of just cancer cells, but instead is a disease of unchecked cell growth and spread within
a permissive host environment [11]. Now, in the age of targeted therapies, modern cancer therapy
regimens need to disrupt the interactions between cancer cells and supportive stromal elements to
mitigate both pro-inflammatory and pro-survival signaling and development of therapy resistance [12].
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Appreciating and targeting chronic tumor-promoting inflammation through adjunct therapy may
ultimately be the biggest breakthrough in cancer treatment in the next decade [13], and may be the most
effective modality for cancer prevention, improving cancer therapy efficacy and maintaining remission.

In this review, we propose that targeting chronic inflammation through inhibition of the
autotaxin-lysophosphatidate-lipid phosphate phosphatase (ATX-LPA-LPP) axis provides one viable
strategy for achieving this breakthrough. As potent anti-inflammatory agents, such inhibitors have the
potential to be powerful adjuvant agents for improving the efficacy of cancer treatment and preventing
therapy resistance irrespective of the genomic instability within cancer cells [14–16]. In the last five
years, the literature on LPA signaling axis has nearly doubled. With the advent of multimodality
clinical trials for targeting the ATX-LPA-LPP axis in chronic inflammatory diseases, we will summarize
new findings to complement our previous reviews on this subject [15–17].

2. Overview of LPA Signaling and Its Importance in Reproduction and Embryonic Development

As the simplest bioactive glycerolphospholipid, LPA contains a glycerol backbone with a phosphate
head group, and an acyl chain (usually unsaturated) at the sn-1 (or sn-2) position (Figure 2). Extracellular
LPA is generated primarily from lysophosphatidylcholine (LPC) in plasma by the lysophospholipase
D activity of ATX, as demonstrated by ATX heterozygote mice having half-normal LPA levels [18,19].
ATX inhibition provides >95% reduction of LPA levels in plasma [20]. Conditional gene knockout of ATX
in adipose tissues in mice results in up to a 38% decrease in circulating LPA levels, thus demonstrating
the importance of adipose tissue in ATX secretion [21]. Some LPA, primarily saturated species, is also
produced by hydrolysis of a fatty acid chain from the membrane-derived phosphatidate via phospholipase
A1 and A2 activity in inflammatory cells, activated platelets and endothelial cells [22]. LPA mediates its
plethora of effects by signaling through at least six G-protein coupled LPA receptors (LPA1–6) [17].
There are other orphan G-protein coupled receptors that may facilitate LPA signaling, including
GPR35 [23], GPR87 [24,25], P2Y10 [26], and the receptor for advanced glycation end products (RAGE) [27].
LPA is turned over rapidly (t1/2 of ~1 min) in plasma into monoacylglycerol and inorganic phosphate by
the ecto-activity of three lipid phosphate phosphatases (LPP1-3) [17,28] (Figure 2).
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Figure 2. Overview of the LPA signaling axis. Extracellular LPA is produced from LPC by the
lysophospholipase D activity of ATX. LPA then signals through at least six known G-protein coupled
LPA receptors to mediate its host of physiological and pathological effects. LPA is rapidly turned over
by the eco-activity of LPP1-3 into inorganic phosphate and monoacylglycerol (MAG), which apart from
2-arachidonoylglycerol, does not affect signaling.

This ecto-activity helps regulate the total LPA pool, and in particular reduces LPA concentrations in
the immediate cellular microenvironment [29]. This may in part explain why cancer cells, which become
dependent on sustained LPA signaling, normally have decreased LPP expression (see Section 6). We refer
readers to several other recent reviews for a more detailed description of LPA receptor and LPP
biology [29–33].

ATX, an ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) enzyme, is encoded by the
ENPP2 gene. This is one in a family of seven mammalian enzymes that belong to the superfamily
of ecto-nucleotideases that hydrolyze pyrophosphate and phosphodiester bonds of a wide range
of nucleotides and their derivatives [34,35]. ATX is unique in having a specific lysophospholipase
D activity owing to its additional hydrophobic binding pocket that interacts with the acyl chain of
lysophospholipids [36]. As a secreted glycoprotein of about 125 kDa, full-length ATX is synthesized
as a pre-proenzyme and is secreted by the classical secretory pathway under the influence of
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Akt-signaling [37,38]. ATX was first discovered in A2058 melanoma cell culture in 1992 and it was
later shown to hydrolyze LPC preferentially [39,40]. Five isoforms of ATX have since been discovered
in human beings [41,42]. Despite this, under physiological conditions, all isoforms have largely similar
kinetic effects and thus their biological significance is unknown [42]. Nevertheless, all critical residues
and structural elements are highly conserved between mice and human beings, underscoring its
physiological importance [43].

In relation to reproduction, endometrial stromal cells in culture are highly sensitive to LPA
signaling as demonstrated by growth inhibition with either ATX or LPA receptor inhibitors. The source
of this LPA is from autocrine-produced ATX [44]. Multiple LPA receptors are likely involved since
equal proliferation occurs in endometrial cells with either LPA1 or LPA3 knockouts compared to wild
type cells [44]. Strong correlations have also been found in animal models between ovarian follicular
growth and LPA signaling [45,46]. ATX is also a tissue-remodeling factor in regressing corpora
lutea [47]. Another study showed that placental transcription of ATX increases progressively during
normal pregnancy, and a disturbance in placental ATX production is linked to early pre-eclampsia [48].
Serum ATX levels show a significant correlation with maternal blood pressures and uric acid levels,
both of which are parameters for the severity of pre-eclampsia [49]. Targeting ATX/LPA signaling
could limit pregnancy complications associated with pre-eclampsia, and this represents an emerging
field where LPA-modulating therapies could hold significant therapeutic promise.

It has been known for over a decade that complete knockout of ATX in mice is embryonically
lethal at day 9.5, secondary to profound vascular and neural crest defects [18,19]. Later work showed
that this lethality was due to the absence of ATX catalytic activity, since a single point mutation of
the catalytically active amino acid threonine-210 to alanine produces the same lethal phenotype [50].
Ex vivo, the neural defects were partially ameliorated by addition of LPA to culture [51]. In zebrafish,
ATX knockout studies have shown that the ATX-LPA-histone deacetylase (HDAC)1/2 axis regulates
oligodendrocyte differentiation in the hindbrain [52,53], and that ATX/LPA3 signaling regulates left-right
asymmetry [54]. Therefore, ATX-mediated signaling in neurological development is an evolutionally
conserved mechanism from at least zebrafish to rodents [53].

More recently, ATX overexpression in mouse embryos was demonstrated to be lethal at around
day 9.5–11.5 with growth retardation, open and kinked neural tubes, abnormal allantois, and vascular
defects [55]. In this same study, induced overexpression of ATX in the neonatal period caused vascular
instability, a delay in retinal vascularization, and a decrease in vessel branching [55]. Interestingly,
LPP3 knockout in mice is also embryonically lethal with very similar vascular defects to those embryos
overexpressing ATX [56,57]. Like the knockout studies, overexpression of ATX in the zebrafish embryo
leads to distortion of axial midline and left-right asymmetry in the embryo through the Rho/ROCK
pathway via LPA1–3 signaling. [58]. Overexpression via injection of ATX messenger RNA (mRNA) in
zebrafish embryo also induces cardia bifida [59]. Therefore, it appears that LPA concentrations must
be tightly regulated to ensure proper development. This is especially apparent from mouse models,
as both ATX knockout and overexpression are embryonically lethal [18,19,55]. With respect however
to LPA receptor signaling, there is significant redundancy since no individual, double or triple LPA
receptor knockout mouse model is lethal [60].

3. LPA Signaling in Wound Healing and Immunity

In the post-natal organism, one of the most important roles of the ATX-LPA-LPP axis is mediating
wound healing and tissue remodeling. LPA is a potent activator of platelet aggregation and it promotes
the growth and migration of immune cells, fibroblasts, endothelial cells and keratinocytes into sites of
tissue damage. The mechanisms for these effects have been reviewed elsewhere [17,61–63].

There have been multiple recent advances in LPA biology, most of which relate to immune system
regulation and tissue repair. In the innate immune system, LPA promotes lymphocyte extravasation,
which maintains immune homeostasis by stimulating the conversion of CD11b+ murine monocytes into
F4/80 macrophages. A similar effect also occurs in human beings through a common transcription factor,
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peroxisome proliferator-activated receptor (PPAR)γ [62]. ATX is induced in immune cells in response
to toll-like receptor activation by lipopolysaccharide, via a type I interferon autocrine-paracrine loop
involving the JAK-STAT and PI3K-Akt pathways [64]. ATX is highly expressed in lymph node stromal
cells promoting interstitial T cell migration in lymph nodes primarily through LPA2 signaling [65–67].
LPA promotes and converts primed pluripotent stem cells into naïve stem cells through LPA1-STAT3
signaling pathways, which has implications in regenerative medicine [68].

Our understanding of the role of LPA in neuronal inflammation and regeneration is also evolving
and demonstrates new complexities in LPA receptor signaling not previously well appreciated. Serum
LPA concentrations and ATX levels in the central nervous system are decreased in patients with multiple
sclerosis (MS) compared to healthy controls [69,70]. LPA levels are restored during symptom-free and
recovery intervals in murine models of experimental autoimmune encephalomyelitis (EAE), which mimic
MS [69]. These influences appear to be mediated through LPA2 since there is more intense disease
in LPA2-deficient mice, and recovery in wild-type mice is improved with LPA2 agonist therapy [69].
This recovery appears to be mediated by increasing T-cell homing and promoting remyelination [69].
This is in line with other work demonstrating that reductions in ATX-LPA-HDAC1/2 signaling
may contribute to MS pathology and that LPA is important for oligodendrocyte maturation [53,71].
However, significant reduction of total LPA concentrations with the ATX inhibitor Compound-1 resulted
in deceased disease severity in a very similar murine model of EAE [72]. These two contrasting studies
highlight the emerging complexity of LPA receptor-mediated signaling. While LPA2 signaling may limit
disease intensity, LPA signaling through other receptors may have the opposite effect, meaning that
disease burden could be dependent on subtle changes in receptor abundance.

In both zebrafish and mice, ATX-LPA1 signaling contributes to proliferation of chondrocytes by
promoting S-phase entry and regulating fibronectin assembly, leading to proper cartilage formation [73].
Finally, C18:1-LPA signaling may be a master transcriptional regulator of primary human gingival
fibroblasts that mediate gingival repair, but under chronic inflammatory conditions it promotes
periodontal disease [74–76].

The induction of ATX by acute inflammation in tissue repair has been well appreciated for many
years, but the regulation of this process is only now starting to emerge. We showed that LPA normally
downregulates ATX production at the mRNA level through LPA1-PI3K signaling [77]. This suppression
is overcome via parallel induction of ATX synthesis by signaling through inflammatory cytokines
such as TNFα and IL-1β [77]. ATX is eliminated rapidly from the circulation through a scavenger
receptor-mediated process in liver sinusoidal endothelial cells [78]. Therefore, once this inciting injury
is resolved, basal expression of ATX, and in turn LPA concentrations, are restored [77].

4. Maladaptive LPA Signaling in Chronic Inflammatory Diseases

This regulation of ATX turnover by inflammatory cytokines also explains why elevated ATX and
LPA levels persist in chronic inflammation. In addition, it is also well established that LPP1 and LPP3
are downregulated in cancers, which aggravates the increase in LPA levels caused by the elevated
ATX [29]. An emerging hallmark of chronic inflammation is sustained LPA production and signaling,
leading to propagation of the disease phenotype. These pathologies are now being elucidated in vivo
in conditional ATX tissue knockouts, especially in models of arthritis, pulmonary fibrosis and liver
diseases [79–81]. The chronic inflammatory states in many of these conditions often progress into
cancer, as will be discussed in the next section. Below, we summarize major recent advances in LPA
signaling in chronic inflammation.

4.1. ATX and LPA in Inflamed Adipose Tissue and the Metabolic Syndrome

There is considerable evidence that LPA contributes to the chronic low-level inflammatory state
associated with a myriad of complications tied to obesity, insulin resistance, diabetes, dyslipidemia,
atherosclerosis, and hypertension in the Metabolic Syndrome [82]. About 40% of the ATX in mice is
produced by adipose tissue, and this increases further with increased dietary fat consumption [83].
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This increased ATX secretion is compounded by the expansion of total adipose tissue mass in obesity.
Inflammation of adipose tissue also increases ATX expression [77]. Patients with type 2 diabetes have
higher ATX levels in serum and visceral fat than non-diabetic patients, and ATX correlates positively
with body fat percentage and increased leptin/adiponectin ratios. This correlates negatively with
glucose clearance rates [21,84,85]. Leptin and adiponectin have opposing effects on low-grade adipose
tissue inflammation and insulin resistance, with leptin upregulating proinflammatory cytokines,
and adiponectin having the opposite effect [86]. Thus, the leptin/adiponectin ratio is being increasingly
positively correlated to the co-morbidities of the Metabolic Syndrome [87,88]. Similarly, serum ATX
is an independent predictor of insulin resistance in older obese adults [89]. In mice lacking ATX
expression in white adipose tissue, adiponectin and GLUT-1 levels were increased, leading to increased
glucose tolerance [21]. Transgenic mice overexpressing ATX exhibit reduced expression of thermogenic
brown adipose tissue in exchange for peripheral white adipose tissue, and have increased weight gain
when fed a high fat diet [90].

LPA is able to attenuate insulin signaling in rat hepatocytes via LPA3 signaling through decreased
hepatocyte glucose uptake and glycogen synthesis [91]. In the same study, the authors reported LPA
16:0 concentrations to be about 25 percent higher in obese patients with a body mass index (BMI)
>30 compared to normal weight individuals (BMI 18.5–25) [91]. ATX expression in adipocytes has
recently been shown to be upregulated through the glycoprotein 130 (gp130)-mediated Janus kinase
(JAK)-STAT3 pathway via IL-6 family cytokines [92]. Treating high-fat diet-fed obese mice with the
oral gp130 inhibitor SC144 suppressed adipose tissue ATX expression, resulting in decreased plasma
ATX, LPA and free fatty acid levels, and increased glucose tolerance [92].

While there is strong in vivo and clinical evidence supporting the effect of ATX/LPA in adiposity,
there is still some controversy in the strength of the association. This is because a negative relation
between BMI and ATX expression levels has been reported in both adipose tissue and serum of
non-diabetic human subjects [93]. However, in the same report, serum ATX levels tended to be higher
in diabetic subjects [93], and most evidence supports increased ATX/LPA levels in diabetics [84,94].
These discrepancies might in part be rationalized by the product inhibition of LPA on ATX expression
under physiological conditions [77]. While increased adipose tissue may lead to increased ATX production,
the subsequent increase in LPA concentrations acts as a rheostat to restore balance, leading to eventual
decreased ATX levels. However in a more pro-inflammatory condition, such as diabetes, the additional
cytokine stimulation of ATX production is enough to overcome this inhibition, a phenomenon best
illustrated in cancer models [77,95]. Further delineation of ATX/LPA signaling pathways in obesity is
currently a very active area of research.

Several authors have linked LPA signaling to cardiac diseases. MMP-9 is particularly associated
with rupture of atherosclerotic plaques in coronary arteries, and LPA upregulates MMP-9 expression
through LPA2 signaling and nuclear factor-κB (NF-κB) pathways in macrophages [96]. Fasting plasma
ATX concentration is a novel independent predictor of calcific aortic valve stenosis in patients with
coronary artery disease [97,98]. Mechanistically, ATX is transported to the aortic value by apolipoprotein
(a) and is secreted by valve interstitial cells, leading to inflammation and calcification [99]. In contrast,
LPP3 negatively regulates aortic endothelial cell inflammation and could mitigate the development and
complications of atherosclerosis [100]. LPP3 silencing in human primary aortic endothelial cells enhances
cytokine secretion and leukocyte adhesion whileimpairing angiogenesis, whereas LPP3 overexpression
reverses these effects [101,102]. Similar effects occur via pharmacological inhibition of both LPA and
sphingosine 1-phosphate signaling, both substances that are degraded by LPP3 [101].

4.2. ATX and Neurological Disorders

LPA also acts synergistically with adipokines (leptin, resistin, TNFα, IL-1β and IL-6) released by
white adipose tissue in promoting inflammation and producing reactive oxygen species that disrupt
blood brain barrier permeability, leading to hippocampal atrophy and dementia development [103].
Significantly, increased ATX levels are associated with a 3.5- to 5-fold risk of mild cognitive impairment
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and Alzheimer’s disease [104]. Other conditions well reviewed elsewhere include neuropathic pain
secondary to inflammation-mediated demyelination of axons [105–107].

4.3. ATX and Arthritis

ATX concentrations in plasma and synovial fluid correlate with the severity of knee
osteoarthritis [108]. Mice fed high fat diets exhibit both accelerated surgically-induced and age-related
osteoarthritis [109]. In these mice, leptin contributes to metabolic and catabolic changes in articular
cartilage, resulting in local increased ATX expression. This in turn promotes cartilage degeneration by
increased MMP-13 production, which is the major catabolic enzyme responsible for cleaving type II
collagen in cartilage [109]. ATX and MMP-13 are significantly increased in leptin-treated chondrocyte
cultures compared to vehicle treated cultures and inhibition of ATX activity decreased leptin-induced
MMP-13 expression [109]. Increased ATX levels and LPA signaling are also involved in rheumatoid
arthritis, in part by promoting synovial hyperplasia, which lead to progressive destruction of cartilage
and bone [17,110].

4.4. ATX and LPA in Pulmonary Fibrosis and Asthma

LPA-mediated lung fibrosis is a very established field of research for which at least two LPA
receptor antagonists and an ATX inhibitor have entered clinical trials [16] (Section 7). The foundational
animal studies behind these clinical trials demonstrated in a bleomycin-induced mouse model of lung
fibrosis that fibroblast migration depends on LPA1 signaling. Mice that lacked LPA1 were more resistant
to fibrosis via bleomycin challenge [111,112]. In response to bleomycin, ATX in bronchoalveolar lavage
fluid increased 17-fold and this ATX appeared to be of plasma origin that enters the alveolar space
via vascular leak [113]. In mouse models of lung allograft fibrosis, mesenchymal cells from fibrotic
lung allografts have constitutive β-catenin expression [114]. β-catenin expression depends strongly
on autocrine ATX signaling, and both ATX and β-catenin are regulated by the transcription factor
nuclear factor of activated T-cells (NFAT1) [114]. Consequently, inhibition of LPA1 or ATX, either
genetically or pharmacologically, limits the development of fibrosis through decreased active β-catenin
and dephosphorylated NFAT1 expression levels [114]. In another model of hyperoxic lung injury,
capillary leakage and respiratory distress were limited by Brp-LPA, a commonly used pan-LPA
receptor/ATX inhibitor [115]. Other studies, which were reviewed previously, have associated asthma
with upregulation of ATX expression [17,111]. This has now been shown to be mediated primarily
through LPA2 signaling [111]. Polyunsaturated LPAs, primarily C22:5-LPA and C22:6-LPA, are being
investigated as potential biomarkers for the severity of allergy-mediated airway inflammation and
disease in asthma [116].

4.5. ATX and LPA in Autoimmune and Retinal Diseases

Other chronic inflammatory and autoimmune diseases that are now recognized to be mediated
by LPA signaling, include Sjogren’s syndrome, a condition causing dry eyes and mouth. In mice,
Sjogren’s syndrome is exacerbated by LPA1/3-mediated production of IL-17 in a dose-dependent
manner. Saliva volume is restored by treatment with the LPA1/3 antagonist, Ki16425 [117]. In retinal
disease, macular edema is medically treated with steroids and anti-vascular endothelial growth factor
(VEGF) agents [118]. LPA and ATX concentrations are positively correlated with the proinflammatory
mediators, IL-6, IL-8, MCP-1 and VEGF in patients with macular edema secondary to retinal vein
occlusion [119], this finding opens the possibility for ATX/LPA targeted therapy.

4.6. ATX and LPA in Hepatic Diseases

Pathogenic LPA signaling is increasingly implicated in a host of hepatic disease conditions.
The severity of one of these conditions, biliary atresia, a progressive fibro-inflammatory liver disease,
correlates independently with both liver stiffness and serum ATX levels [120]. In a later follow-up
report, and the first to study ATX promoter methylation, DNA was extracted from both circulating
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leukocytes and liver tissues of biliary atresia patients and age-matched controls [121]. Patients
with biliary atresia have decreased ATX promoter methylation that was even lower in patients with
advanced disease [121]. Consequently, relative ATX mRNA and serum protein levels are both inversely
correlated with overall ATX methylation level and positivity associated with jaundice status, hepatic
dysfunction and liver stiffness [121]. Mechanistically, fibrosis by LPA signaling is a two-step process
whereby ATX expression is largely confined to hepatocytes in response to injury, and LPA1 is highly
expressed in the collagen-secreting hepatic stellate cells [122]. Patients with chronic liver disease of
various origins (viral, alcoholic, or fatty liver) have both increased ATX and LPA6 expression [81].
This same pattern has been previously correlated to tumorigenicity in hepatocellular carcinoma [123].

Serum ATX may also be a potential biomarker for non-alcoholic fatty liver disease (NAFLD) in
obese non-diabetic women. This correlates significantly with other markers of NAFLD including
alkaline phosphatase and fasting glucose, insulin and triglyceride levels [124].

Many observational studies and reviews have linked ATX to cholestatic pruritus and liver
injury [125,126]. In the first prospective study of its kind, patients with primary biliary cholangitis
and primary sclerosing cholangitis were followed for 60 months [127]. Serum ATX was significantly
higher in both groups compared to controls and in patients with either cirrhosis or longer disease
duration [127]. ATX activity correlated strongly with Model for End-Stage Liver Disease (MELD) scores,
Mayo Risk scores, and worse disease-specific health-related quality of life (HRQoL) aspects [127].
High ATX levels are a negative predictor of survival, with such patients at a 2.6- to 4-fold increased
risk of death or of requiring liver transplantation [127].

Chronic viral hepatitis infection that has progressed to cirrhosis accounts for 70% of all hepatocellular
carcinomas, which represents 90% of all liver cancers [128]. Serum ATX is a superior marker for predicting
significant fibrosis in both chronic hepatitis B and C patients. This can be analyzed without consideration
of food intake prior to phlebotomy [129]. More recent studies of both hepatitis B and C showed that
serum ATX was the most reliable marker for all fibrosis stages compared with other serum markers
including hyaluronic acid, type IV collagen 7S, aspartate aminotransferase-to-platelet ratio and FIB-4
index [130,131]. Mechanistically, hepatitis C infection stabilizes hypoxia inducible factors, which in turn
increased hepatocellular ATX expression. This cycle is reinforced since LPA signaling through PI3K
stabilizes hypoxic inducible factor (HIF)-1α [132]. Elevated serum ATX levels in patients with hepatitis C
or co-infection with HIV partially normalize within 6 months of starting interferon-free hepatitis C
therapy [133]. Therefore, ATX has significant potential to be both a diagnostic and therapeutic target in
mitigating the progression of viral hepatitis into cancer [128,134].

4.7. Importance of the Site of ATX Production in Inflammatory Signaling

One of the outstanding problems in understanding the physiological and pathological roles of ATX
secretion is whether signaling by LPA is regulated locally rather than by globally produced ATX. It was
established from structural studies of ATX that it binds locally to integrins on cells surfaces [63,135]
and that this delivers LPA to signal through nearby receptors [36]. The reports that ATX expression in
specific cells, such as adipocytes, fibroblasts, hepatocytes, and lung parenchyma, leads to pathology in
different organs [79–81,136,137] adds weight to the concept that it is locally produced ATX that has
a major signaling role. Locally produced ATX interacting with integrins on nearby cells is likely the
primary means by which inflammation in wound healing and tissue repair is localized to the site of
injury. However, ATX is just as catalytically active when not bound to integrins [138], which may also
explain why plasma LPA levels are increased in numerous disease processes [77,124,133]. Overall,
the function however of plasma ATX is still uncertain: it could represent transport among organs
and/or the ATX that is en route for hepatic degradation.

5. Recent Developments in LPA Signaling in Cancer Biology

Since ATX was first discovered in melanoma cell culture, ATX and LPA signaling have been associated
with cancer initiation and progression, survival against cancer therapy, and metastasis for virtually
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every major cancer type [17,139]. The common theme is that chronic inflammation upregulates ATX
production by either the cancer cells themselves or in adjacent tumor stroma. This is often accompanied
with a concomitant overexpression of LPA receptors, particularly LPA1–3, and a downregulation of
the ecto-activities of the LPP1/3 [17]. The overall net effect of sustained LPA signaling is to increase
angiogenesis and cancer cell growth, migration, and survival.

5.1. Mechanisms of ATX Overexpression in Cancers

For those cancers that secrete ATX, several mechanisms of overexpression are now appreciated.
Most genomic alterations in the ATX gene are copy number amplifications [22,35]. In other cases,
ATX is over-expressed in response to DNA double-strand breaks secondary to oxidative stresses
in cancer cells. This depends on activation of the NLRP3 inflammasome and ataxia telangiectasia
mutated (ATM) phosphorylation. The ATM-ATX-dependent loop further propagates inflammation
and additional double strand breaks, leading to further ATX production [140]. The first study to look at
post-transcriptional regulation of ATX demonstrated that the RNA-binding protein ELAV-like protein 1
or human antigen R (HuR) enhances ATX mRNA stability in melanoma cells and thus increases ATX
production [141]. LPA signaling in turn increases HuR protein expression [141]. HuR stabilizes the
mRNA for many pro-inflammatory proteins and it is itself a prognostic factor for poor outcome in
ovarian and breast cancers [142,143]. We showed previously that ATX is significantly upregulated
in thyroid cancer in response to sustained autocrine-induced inflammation, and this can distinguish
cancer from benign disease [144]. Since then, HuR has shown to be overexpressed in thyroid cancers
but not benign nodules [145]. Taken together, these findings suggest that copy number amplifications
and inflammatory-induced mRNA stability resulting in increased ATX translation are likely major
mechanisms behind autocrine ATX production in cancers.

A seminal study showed in a mouse mammary tumor virus (MMTV) model that overexpression of
ATX or any of LPA1-3 increased mammary tumorigenesis, invasion and metastasis [146]. However, breast
cancer cells secrete little ATX compared to the basal rate from breast adipose tissue [137]. We reconciled
this discrepancy and uncovered a paracrine-model of ATX production in breast tumors. This involved
an immunocompetent orthotopic murine breast cancer model. We demonstrated that secretion of
inflammatory mediators from the breast tumor induce ATX expression in adjacent mammary tissue.
This subsequently increases LPA within the tumor microenvironment [137,147] and it establishes a vicious
loop of inflammatory-driven ATX production since LPA increases the production of more inflammatory
cytokines and COX-2. This cycle can be broken with a potent ATX inhibitor (Section 7). Likewise,
tumor-induced inflammation in mammary adipose tissue increases macrophage recruitment, which leads
to further inflammation and ATX production [137]. These bidirectional interactions between breast cancer
cells and ATX production in mammary adipose tissue have since been confirmed [148]. Increased ATX
production in adipose tissues could provide a possible link between obesity and its contribution to an
estimated 20–40% of breast cancers [149,150].

5.2. LPA Signaling in Cancer Progression

Hepatocellular carcinoma (HCC) is well established to be associated with LPA signaling. HCC has
a 5-year survival rate of less than 15% primarily due to late detection and poor screening [122].
HCC is usually a consequence of chronic inflammation from viral hepatitis and patients are at
an eight-fold increased risk of death if ATX levels are elevated [151]. Higher LPA2 mRNA levels in HCC
specimens are correlated with poorer differentiation, and higher LPA6 mRNA levels are correlated
with microvascular invasion. These observations suggest an overall higher malignant potential with
increased LPA2/6 expression [152]. This study, like others, correlated ATX with disease progression,
but more interestingly showed that the mRNA level of phospholipase A1α, another LPA producing
enzyme, has no pathological association [152]. Further, hepatocyte-specific ATX-deficient mice were
protected from fibrosis and HCC development compared to controls [81]. Even with the decreasing
incidence of Hepatitis B and C infections with more efficacious therapies, NASH will become the
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primary cause of HCC in the western world by 2030 because of increasing obesity rates [153]. Given the
well-established roles of LPA signaling in the pathogenesis of metabolic-related syndromes, ATX/LPA
signaling inhibitors should also have therapeutic benefit in HCCs from these origins.

Increased serum ATX activity was most significant for exocrine pancreatic cancer in an evaluation
of serum ATX levels in a host of gastrointestinal cancers including cancers of the esophagus, stomach,
colon, biliary tract and pancreas [22,154]. Exocrine pancreatic cancer is the fifth major cause of cancer
death in the developed world, with a 5-year survival rate of less than 5% [155]. Therefore, serum ATX
in combination with other biomarkers could one day offer an early diagnostic tool. However, serum
ATX activity is not increased in patients with chronic pancreatitis or pancreatic cysts and neither
condition is predictive of pancreatic cancer risk [154]. Lastly, in another study comparing the ascites of
gastric cancer patients to those of cirrhosis, higher ATX and LPA levels were found in cirrhosis patients
as expected [156]. However, higher lysophosphatidylserine and lysophosphatidylglycerol levels were
found in gastric cancer ascites, which may act as substrates for LPA generation [156]. This suggests
that glycerol-lysophospholipids other than LPA might be involved in pathogenesis of cancer directly
or through being converted into LPA [156].

Advances in the LPA field have also been made in gynecological cancers. Ovarian cancers have a high
mortality because they metastasize easily and through the development of resistance to chemotherapy [157].
These characteristics are mediated by cancer stem cells, which in ovarian cancer produce abundant ATX
and they express high LPA1 [158]. Knockdown of either ATX or LPA1 leads to loss of stem cell markers
and decreased tumorgenicity in xenografts [158]. Thus, the ATX-LPA-LPA1-Akt1 axis maintains cancer
stem cell characteristics through an autocrine loop [158]. LPA1 and LPA2 are also involved in LPA-induced
proliferation and angiogenesis in endometrial cancer tissue with positive correlations between LPA receptor
and ATX protein levels with cancer stage [159].

In connection to other cancers, HT1080 fibroscarcoma cells that have been treated chronically
with cisplatin have markedly elevated ATX and LPA2 expression and are much more mobile than
controls [160]. Knockdown of LPA2 in these long-term treated cells reduced colony formation and
autocrine production of ATX [160]. Multiple myeloma cells stimulate mesenchymal stromal cells to
produce ATX [161]. In renal cell carcinomas, LPA activates Afr6-regulated mesenchymal pathways
via LPA2 that promote cancer cell plasticity, metastasis and drug resistance [162]. Finally, several new
studies have expanded our knowledge of LPA biology in melanoma, the first cancer linked to ATX.
The transcription factor NFAT1 has roles in both innate and adaptive immune responses, and increases
metastatic potential by directly upregulating IL-8 and MMP-3. This is secondary to autocrine ATX
production and LPA signaling [163,164]. In work with the highly metastatic B16F10 murine melanoma,
mice lacking either LPA1 or LPA5 had significantly less metastasis, indicating the importance of host
LPA signaling for establishing a permissible environment for cancer cell seeding [165,166].

6. The Roles of LPPs in Cancers

Evidence is now mounting from experiments in vivo that increasing the low LPP1/3 expression
in cancer cells limits tumor progression. Increasing LPP1 expression in syngeneic and xenograft
breast and thyroid cancer models decreased tumor growth and metastasis by up to 80% through
both increasing extracellular LPA degradation and decreasing the stimulation of Ca2+-transients by
LPA [167]. Similarly, increasing the low LPP3 activity in SKOV3 ovarian cancer cells decreased tumor
growth in nude mice [168]. Low expression levels of the LPP1 gene (PLPP1) has been identified as one
of twelve markers predictive of poor breast cancer survival [169].

The effects of LPP2 on tumor growth are very different from LPP1 and LPP3. LPP2 expression is
increased in breast, lung and ovarian cancers where the expression of LPP1 and LPP3 are decreased [29].
Overexpressing LPP2 in fibroblasts leads to premature S-phase entry, and this effect is not seen with
LPP1/3 [170]. Knockdown of LPP2 delays entry into S-phase [170] and impairs anchorage-dependent
growth [171]. These observations provide preliminary evidence that increasing the low expressions of
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LPP1 and LPP3 and decreasing the high expression of LPP2 in cancer cells could provide novel targets
for cancer therapy.

Our group discovered that one way of increasing LPP activity is through the use of tetracyclines,
which increases the expression of the LPPs on the plasma membrane by enhancing LPP protein stability.
This results in increased LPA clearance from circulation [28]. We then built on this finding to show that
this doxycycline effect of increasing total ecto-activity of the LPPs in vivo also decreases circulating
LPA concentrations, NF-κB translocation to the nucleus and IκB phosphorylation in breast cancer
cells. This resulted in delayed breast tumor growth, deceased tumor macrophage infiltration and
angiogenesis, and an overall reduction in the inflammatory milieu of the tumor environment [172].
Hence, tetracyclines and other potential activators of LPPs could become useful adjuvant therapies for
decreasing signaling by LPA in cancers and other inflammatory diseases.

7. Pharmacological Targeting of LPA-Mediated Inflammation and Cancer Progression

As extracellular targets, ATX and LPA receptor inhibitors are ideal pharmacological targets for
a plethora of conditions [173–175]. Because of redundancies through LPA receptor signaling, much of
the research has focused on the development of ATX inhibitors, thereby impeding LPA signaling
through all receptors [17]. Numerous ATX inhibitors that are potent in vivo have been developed over
the last five years, and it was important to assess the safety of these inhibitors, given the role of LPA
signaling in mediating tissue repair and remodeling. Fortunately, the bulk of ATX in murine models is
dispensable in the adult organism [176]. Conditional genetic ablation of ATX in the adult mouse shows
no deleterious changes in liver, pancreatic or kidney function, and in blood cell populations [176].
High doses of the competitive ATX inhibitor, PF8380, produced no weight loss or histopathological
changes in 13 major organs [176]. In the context of sustained ATX inhibition, the production of
small amounts of LPA by other enzymes such as phospholipase A1 is likely to provide sufficient
LPA for physiological functions, but not enough to drive pathology [15]. Recent progress made in
pharmacological targeting of LPA signaling has now led to the first human clinical trials, where the
inhibitors appear to be well tolerated (Section 7.4).

7.1. Limiting Fibrosis through Potent ATX Inhibition

Recent studies in vivo have shown that ATX inhibition by PAT-048 limited bleomycin-induced
dermal fibrosis in mice, via inhibition of an ATX-LPA-IL-6 amplification loop. Similar results were
obtained in cultures of dermal fibroblasts from patients with scleroderma fibrosis [177]. This same
group showed prevention of fibrosis in the same models with LPA1 deletion or antagonism [178].
Consistently, toclizumab, a monoclonal antibody against the IL-6 receptor, showed success against
systemic sclerosis in Phase II clinical trials [179]. In other fibrotic models, the progression of
NAFLD to non-alcoholic steatohepatitis and liver fibrosis has been blocked in animal models with
PAT-505, another novel ATX inhibitor [180]. Similar results have been obtained with the ATX
inhibitors AM063 and AM095, which mitigated fibrosis progression and reduced development of
HCC by disrupting validated HCC risk gene signatures in cirrhosis-driven HCC rat models [181].
With regard to lung pathologies, while ATX concentrations increased in bronchoalveolar lavage
fluid following lipopolysaccharide exposure, neither genetic nor pharmacologic targeting or ATX or
LPA receptors reduced the severity of acute lung injuries [182]. However, there is ample evidence
including work in clinical trials supporting the efficacy of LPA inhibition in chronic lung conditions.
This suggests that pharmacological targeting of LPA signaling is most effective in the context of
persistent inflammation [182].

Beyond fibrosis, another competitive ATX inhibitor, Compound 1, exhibits a dose-dependent decrease
in joint pain in multiple rodent models [183]. This same group also demonstrated anti-inflammatory
and analgesic properties with Compound 1 in models of inflammatory bowel disease and multiple
sclerosis [72]. In addition to chemical competitive inhibitors, anti-ATX DNA aptamers have also been
designed, and the aptamer RB014 exhibits efficacy in a mouse bleomycin-induced model of pulmonary



Cancers 2018, 10, 73 12 of 25

fibrosis [184]. Bile acids also act as partial non-competitive inhibitors of ATX suggesting that steroid-based
drugs may have ATX antagonism properties [185].

7.2. Improving Cancer Chemotherapy Effectiveness by Blocking LPA-Mediated Inflammatory Signaling

Given the considerable overlap between fibrotic and carcinoma pathways [136], LPA signaling
inhibitors are expected to serve as useful adjuncts in cancer therapy, largely by mitigating the
loss of efficacy for chemotherapy and radiotherapy via blockage of the pro-survival benefits of
tumor-promoting inflammation. These include limiting the physical barriers to drug deposition
in tumors by desmoplastic reactions, which encase tumors in dense extracellular matrices, and vessel
hyperpermeability, which compromises tumor accumulation of chemotherapeutics [11]. We have
demonstrated in both thyroid xenograft and orthotopic mouse breast cancer models that the potent ATX
inhibitor, ONO-8430506, reduces tumor growth and metastasis by up to 70%. This involves reducing
the expression of up to 20 inflammatory cytokines and chemokines that drive tumorigenesis themselves
and by further increasing ATX secretion and LPA concentrations [137,144,147]. ATX inhibition in turn
is synergistic with doxorubicin treatment, in part by decreasing the LPA-induced expression of the
transcription factor nuclear factor (erythroid-derived 2)-like-2 (Nrf-2), which activates the anti-oxidant
response element. This promotes the synthesis of antioxidant proteins and multidrug-resistance
transporters [186]. LPA thereby protects cancer cells from oxidative damage from most common
therapies including tamoxifen, paclitaxel, cisplatin, and possibly ionizing radiation through increasing
the effects of transcription factors like Nrf-2 [187,188].

7.3. Sensitizing Tumors to Radiation Therapy by Blockage of LPA Signaling

LPA-mediated protection of cancer cells against radiation-induced cell death is partly mediated
through LPA2 by stimulation of pro-survival kinase pathways that involve depleting cells of the
proapototic signaling protein, Siva-1 [188]. ATM-mediated NF-κB activation occurs in response to
radiation-induced DNA double-strand breaks, and plasma ATX and LPA levels increase. The resulting
increase in LPA2 signaling accelerates the resolution of γH2AX histones [188]. Consequently, as predicted,
LPA2-knockout mice are deficient in DNA damage repair mechanisms and have significant higher residual
γH2AX histones after radiation exposure [188]. LPA also promotes the synthesis of numerous genes that
promote DNA repair and this involves an increase in Nrf-2 expression [189,190]. Consequently, the Nrf-2
blockade has been proposed as an additional target for increasing the efficacy of radiation therapy [191].
Part of the increase in Nrf-2 expression could be mediated by the observed radiation-induced increased in
the expression of ATX and LPA1 [192]. These observations that LPA protects against radiation-induced
damage are compatible with studies showing that inhibition of ATX with BrP-LPA (also a pan-LPA
receptor antagonist) or PF-8380 increased the sensitivity of heterotopic glioblastomas to radiation in
mice [193,194].

Treatment of breast cancer after the surgical removal of the tumor following lumpectomy commonly
involves exposure of the whole breast to about 16-25 fractions of 2 to 2.65 Gy of radiation to eliminate
remaining cancer cells [195]. Exposure of rat and human adipose tissue to 0.25 to 5 Gy of γ-radiation
increases the production of COX-2 and secretion of ATX and multiple inflammatory mediators [192].
This depends on DNA damage and the consequent activation of NF-κB and COX-2 signaling downstream
of the activation of ATM serine/threonine kinase (ATM), ataxia telangiectasia and Rad3-related protein
(ATR) and poly [ADP-ribose] polymerase 1 (PARP-1) [192] (Figure 3). Although radiation-induced
activation of ATM increased the expressions of LPA1 and LPA2, the increases in ATX, COX-2 and
inflammatory cytokines depends on activation of ATR [192]. These results show that these responses
to radiation are activated by the accumulation of single-stranded DNA intermediates in double strand
break resection during homologous recombination, rather than by double strand breaks themselves.
The combined effects of radiation in causing inflammation in breast adipose tissue and thereby increasing
the expression of ATX and signaling through LPA1 and LPA2 could increase the survival of residual breast
cancer cells and decrease the effectiveness of the radiotherapy [192] (Figure 3).
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Figure 3. Overview of γ-radiation-induced inflammation in adipose tissue. γ-radiation, upon inducing
double strand DNA breaks, activates the proteins ATM, ATR, and PARP-1. These in turn activate NFκB,
facilitating the expression of COX-2, ATX, LPA1–2 and numerous inflammatory mediators, which in
concert lead to repair and survival of tissues.

Furthermore, radiation-induced fibrosis is a significant contributor to long-term sequelae for
cancer survivors. Blockage of LPA1/3 with the antagonist VPC12249 ameliorated radiation-induced
fibrosis and radiation pneumonitis in murine models [196,197]. Taken together with the evidence that
blocking LPA signaling can decrease the progression of pulmonary fibrosis, it is likely that inhibitors
of LPA signaling could have a significant potential in decreasing the adverse side effects of radiation
therapy as well as improving the killing of residual cancer cells.

7.4. Inhibitors of LPA Signaling Entering into Clinical Trials

The number of inhibitors against LPA signaling has now reached a critical mass, such that
the first ATX and LPA receptor inhibitors have entered clinical trials [16] (Table 1). Galapagos NV
have tested the first ATX inhibitor, GLPG1690, currently in Phase II trials for idiopathic pulmonary
fibrosis (IPF) [198] (Table 1). In a blelomycin-induced pulmonary fibrosis murine model, an analog
of GLPG1690 reduced extracellular matrix deposition in the lung by nearly 50% and reduced the
concentrations 18:2-LPA in bronchoalveolar lavage fluid by nearly 70% [198]. Similarly, Bristol-Myers
Squibb has put BMS-986020, a LPA1 antagonist, into Phase II trials for idiopathic pulmonary
fibrosis [16,199]. Sanofi SAR100842, a LPA1/3 antagonist, is in Phase II trials for the treatment of
systemic sclerosis and related fibrotic diseases [16,199].

Table 1. Summary of novel targets of the ATX-LPA signaling axis currently in clinical trials.

Compound Mechanism of Action Clinical Stage Clinical Indication Company Clinicaltrials.gov ID

GLPG1690 ATX direct inhibition Phase 2 IPF Galapagos NV
(Mechelen, Belgium) NCT02738801

BMS-986020 LPA1 antagonist Phase 2 IPF Bristol-Myers Squibb
(New York, NY, USA) NCT01766817

SAR100842 LPA1/3 antagonist Phase 2 Systemic Sclerosis Sanofi (Paris, France) NCT01651143

Lpathomab TM LPA monoclonal antibody Phase 1 ___ Lpath, Inc.
(San Diego, CA, USA) NCT02341508

IPF, idiopathic pulmonary fibrosis.

In a non-fibrotic disease model, Lpath, Inc. developed an LPA-directed monoclonal antibody
which lowered lesion volume in mouse models of traumatic brain injury by decreasing IL-6 levels and
conducted a Phase I trial of the antibody as Lpathomab [16,200] (Table 1).

8. Potential Applications for Inhibitors of LPA Signaling

So far, there is no approved cancer therapy that targets the ATX-LPA-inflammatory axis, but this
area opens the prospect of exciting new approaches to cancer treatment. It is unlikely that inhibiting
LPA signaling alone will prove effective as a cancer mono-therapy. Also, from a pragmatic and ethical
point of view, it would impossible to test a new mono-therapy for blocking LPA signaling where
an accepted therapy already exists. We envisage that strategies for blocking LPA signaling will be
used to improve the efficacies of existing chemotherapies and radiotherapy regimens. This is based
on preclinical evidence that blocking the effects of LPA increases the efficacy of taxanes, cisplatin,
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tamoxifen and doxorubicin in treating cancers [201]. Equally, LPA protects cells from radiation-induced
cell death [192,202]. Therefore, blocking inflammation and the radiation–induced expression of ATX
should prevent a loss of efficacy of radiotherapy during subsequent fractions of radiation [192,202].
Eventual clinical trials in the cancer field are likely to study LPA signaling inhibitors as adjuvants to
existing standard-of-care treatments, looking at standard parameters that measure response to primary
treatment. If these inhibitors as adjuvants show benefit, future studies might look at dose reductions
of the primary treatment agents (either chemotherapy or radiotherapy), which would potentially
decrease cancer therapy side effects.

One such group of major side effects is fatigue and the development of fibrosis secondary
to radiotherapy. Fatigue is associated with the production of inflammatory cytokines during
radiotherapy. Blocking LPA signaling should decrease this inflammatory response, which could
also contribute to decreased scaring [203]. The positive effects of inhibiting ATX or LPA1 activation
in treating pulmonary fibrosis provide encouraging evidence that these treatments could decrease
radiation-induced fibrosis [196].

One of the major recent advances in cancer treatment has been the introduction of immunotherapy
acting as checkpoint inhibitors. So far, there is no preclinical evidence that blocking LPA signaling will
improve the efficacy of immunotherapies or combat its side effects. However, this is an intriguing
possibility, since LPA and maladaptive inflammation contribute to immune evasion. The most frequent
toxicities of immunotherapies include colitis, dermatitis, hepatitis, and pruritus [204,205], all conditions
for which pre-clinical evidence exists that inhibition of LPA signaling might have therapeutic benefits.

9. Conclusions

In summary, we are at an exciting time where several therapeutics are in advanced clinical trials for
blocking LPA signaling and inflammation. These agents are generally well tolerated and they could be
tested as novel strategies for improving the effectiveness of existing cancer therapies. These approaches
should be applicable to a wide variety of cancers since they target the tumor environment, which should
be relatively independent of the specific mutation in the cancer cells. Overall, as mitigators of chronic
inflammation, inhibitors of LPA signaling could become viable therapeutic modalities for preventing
cancer initiation, maintaining the efficacy of chemotherapy and radiotherapy and prolonging remission.
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