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A B S T R A C T

Background: Acute respiratory distress syndrome (ARDS) secondary to coronavirus disease-2019 (COVID-19)
is characterized by substantial heterogeneity in clinical, biochemical, and physiological characteristics. How-
ever, the pathophysiology of severe COVID-19 infection is poorly understood. Previous studies established
clinical and biological phenotypes among classical ARDS cohorts, with important therapeutic implications.
The phenotypic profile of COVID-19 associated ARDS remains unknown.
Methods: We used latent class modeling via a multivariate mixture model to identify phenotypes from clini-
cal and biochemical data collected from 263 patients admitted to Massachusetts General Hospital intensive
care unit with COVID-19-associated ARDS between March 13 and August 2, 2020.
Findings: We identified two distinct phenotypes of COVID-19-associated ARDS, with substantial differences in
biochemical profiles despite minimal differences in respiratory dynamics. The minority phenotype (class 2,
n = 70, 26¢6%) demonstrated increased markers of coagulopathy, with mild relative hyper-inflammation and
dramatically increased markers of end-organ dysfunction (e.g., creatinine, troponin). The odds of 28-day mor-
tality among the class 2 phenotype was more than double that of the class 1 phenotype (40¢0% vs.¢ 23¢3%,
OR = 2¢2, 95% CI [1¢2, 3¢9]).
Interpretation: We identified distinct phenotypic profiles in COVID-19 associated ARDS, with little variation
according to respiratory physiology but with important variation according to systemic and extra-pulmonary
markers. Phenotypic identity was highly associated with short-term mortality. The class 2 phenotype exhib-
ited prominent signatures of coagulopathy, suggesting that vascular dysfunction may play an important role
in the clinical progression of severe COVID-19-related disease.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Substantial biological and pathophysiological heterogeneity exists
within the clinical definition of acute respiratory distress syndrome
(ARDS) [1,2], limiting targeted treatments. Secondary investigations
of landmark ARDS clinical trials defined distinct clinical and biological
ARDS phenotypes [3�6]. Identification of ARDS phenotypes based on
available laboratory and clinical data could allow for early identifica-
tion of subpopulations with different clinical outcomes. Furthermore,
biological phenotypes provide mechanistic insight to guide targeted
therapeutics based on specific pathophysiological processes. ARDS
secondary to coronavirus disease-2019 (COVID-19) is similarly char-
acterized by diverse clinical, physiological, and radiographic
characteristics [7]. However, the pathophysiology of severe COVID-
19 infection is poorly defined.

Among “classical" ARDS cohorts, previous studies have estab-
lished two predominant biological phenotypes � patients with and
without evidence of a hyperinflammatory response � that have ret-
rospectively been correlated with clinical outcomes, including mor-
tality and duration of mechanical ventilation [3] and response to
therapeutic strategies, including PEEP [3], fluid management, and
statin therapy [8,9]. These two phenotypes were validated in multiple
independent datasets [8,5,6], consistently demonstrating 20% higher
mortality among the hyperinflammatory subgroup.

Little is known about the phenotypic profile of COVID-19-associ-
ated ARDS. It is unclear whether previously established ARDS pheno-
types associated with a different degree of inflammation extend to
COVID-associated ARDS. Elevated levels of inflammatory cytokines
together with other immunologic patterns among COVID-19 patients
have been associated with adverse outcomes [10], and debate exists
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Research in context

Evidence before this study

We searched Google Scholar and PubMed for any prior evi-
dence from 2020 regarding clinical and biological phenotypes
in COVID-19-associated ARDS. Search terms included “COVID-
1900, “SARS-CoV2”, “ARDS”, “critical illness”, “phenotype”,
“immunophenotype”, “heterogeneity”, “inflammation,” “cyto-
kines”, “vascular dysregulation,” “coagulopathy,” and “respira-
tory dynamics”. No language restrictions were used. We also
performed a literature search, without date or language restric-
tions, on the subject of phenotypes in ARDS. Previous studies
established two major biological phenotypes among “classical"
ARDS cohorts � hyperinflammatory and hypo-inflammatory �
that predict multiorgan failure, mortality, and response to
treatment maneuvers. However, little is known about biochem-
ical and clinical phenotypes in COVID-19-associated ARDS.

Added value of this study

We identified and characterized biochemical and clinical pheno-
types among a large cohort (n = 263) of critically ill patients with
COVID-19-associated ARDS. We used a multivariate mixture
model to identify two phenotypic subgroups based on baseline
demographic, respiratory, and laboratory data at ICU admission.
We identified a minority phenotype (class 2, 26¢6% prevalence)
defined by markers of vascular and end-organ dysfunction, with
modest relative hyper-inflammation. There was minimal distinc-
tion according to respiratory dynamics or ARDS severity. Pheno-
typic membership was strongly associated with 28-day mortality.

Implications of all the available evidence

In this large exploratory analysis, we characterized two distinct
phenotypes of COVID-19-associated ARDS, with different clini-
cal and biochemical characteristics despite similar respiratory
dynamics, and with markedly different short-term mortality.
We outlined a unique phenotypic profile defined by mild
hyperinflammation and vascular dysregulation, distinct from
established immune phenotypes in classical ARDS. Our findings
can aid in early identification of patient subgroups with differ-
ent clinical outcomes. Future studies are needed to confirm
these findings, and to characterize the pathophysiological
mechanisms that give rise to the phenotypes that we identified.

Table 1.
Baseline clinical variables among the study cohort. Mean (standard devia-
tion) reported for normally-distributed continuous variables, with median
(IQR) reported for skewed continuous variables (D-dimer, ferritin, fibrino-
gen, AST, and ALT). Proportions, N (%) reported for categorical variables.

Clinical variable Study cohort, mean (sd) or n (%) N

Male gender 175 (66¢5%) 263
African American race 33 (12¢5%) 263
Hispanic or Latino ethnicity 106 (40¢3%) 263
Age (y) 58¢8 (15¢1) 263
BMI (kg/m2) 30¢8 (7¢39) 263
PaO2:FiO2 (mm Hg) 130 (52¢9) 263
Driving pressure(mm Hg) 11¢3 (3¢16) 260
Minute ventilation (L/min) 8¢09 (1¢96) 263
PaCO2 (mm Hg) 42¢2 (9¢18) 263
Ventilatory ratio 1¢51 (0¢53) 263
Vasopressor requirement 220 (83¢7%) 263
pH 7¢36 (0¢09) 263
Lactate (mmol/L) 1¢70 (1¢34) 255
Bicarbonate (mmol/L) 23¢5 (4¢46) 263
WBC (x 109/L) 9¢81 (5¢76) 263
% Lymphocytes 12¢3 (8¢58) 260
Hemoglobin (mg/dL) 12¢8 (2¢20) 263
Platelets (x 103/uL) 228 (111) 263
IL-6 (pg/mL) 118 (159) 53
CRP (mg/dL) 19¢6 (35¢8) 252
D-dimer (ng/dL) 1460 [925;2883] 263
Ferritin (mg/dL) 965 [478;1657]) 246
Fibrinogen (mg/dL) 655 [539;780] 189
LDH (units/L) 660 (1538) 250
PT (s) 15¢0 (3¢10) 254
aPTT (s) 41¢5 (22¢3) 223
AST (units/L)* 58¢0 [42¢2;90¢8] 263
ALT (units/L) 40¢0 [23¢0;62¢0] 263
Blirubin (mg/DL) 0¢68 (0¢62) 263
Albumin (g/dL) 3¢21 (0¢55) 263
Creatinine (mg/dL) 1¢56 (1¢74) 263
Hs-Troponin-T (ng/L) 66¢1 (219) 243
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as to whether the cytokine profile associated with COVID-19 ARDS
reflects that of non-COVID ARDS [11,12]. Furthermore, in severe
COVID-19 disease, substantial thrombotic injury [13] and multi-
organ system involvement suggests that vascular dysfunction may be
a predominant phenotypic axis [14�16].

Here, we leveraged a large critical care database to identify and
characterize biochemical and clinical phenotypes among critically ill
patients with COVID-19-associated ARDS. We used a multivariate
mixture model to identify two phenotypic subgroups based on base-
line demographic, respiratory, and laboratory data. Our main objec-
tive was to determine if we could identify distinct phenotypes of
COVID-19 ARDS, consistent with previous studies of both COVID-19
ARDS [7,17] and classical ARDS cohorts [3�5,18].

2. Methods

2.1. Data

The study population included patients from the Massachusetts
General Hospital (MGH) cohort of the COVID-19 ICU Registry. Briefly,
this observational registry reflects treatment and management of
COVID-19 patients admitted to the ICU at multiple international cen-
ters. Data abstracted from the medical records of ICU patients include
demographic factors, daily laboratory markers, physiological parame-
ters, and therapeutic interventions. Data are entered electronically
via a StudyTrax (ScienceTRAX LLC, Macon, GA, USA) database created
and housed at MGH. Institutional review board approval for data col-
lection was obtained at each site with a waiver of informed consent
(Mass General Brigham Protocol 2020P000760). Authors SR, RP, EH,
AM, and LB had access to the registry. All data were available from
the time of data entry to present.

Demographic, clinical, and physiological data were obtained from
patients admitted to any MGH intensive care unit with COVID-19-
associated acute respiratory failure between March 13 and August 2,
2020. Patients with a positive SARS-COV2 nasopharyngeal swab at
ICU admission, intubation within three days of ICU admission, and a
minimum PaO2:FiO2 < 300 mmHg (n = 263), meeting criteria for
ARDS, were included in the analyses. Baseline values for variables of
interest (Table 1) were defined as the first recorded value for hospital
days zero to three. Additional details about the data are provided in
the Supplementary Material (Section S1).

2.2. Statistical analysis

Class-defining variables for latent class identification included
baseline demographic features, respiratory parameters, laboratory
data, and biomarkers (Table 1). Requirement of continuous intrave-
nous infusion of inotropic-vasopressor medication was also included
as a binary variable. Baseline characteristics were reported as mean
and standard deviation (continuous variables) or as percentages (cat-
egorical variables). Only variables with less than 25% missing data
were used for statistical inference. Missing data for class-defining



Fig. 1. A: Differences in the mean standardized values of continuous class-defining variables by latent class. For variable standardization, means are scaled to zero and standard
deviations to one. B: Distribution of raw data for D-dimer, fibrinogen, and IL-6 by latent class. P-values calculated by Kruskall-Wallis test for D-dimer and fibrinogen, and by T-test
for IL-6. Boxes denote the inter-quartile range (IQR) of the data, and whiskers extend to 1.5 times the edge of the IQR. Individual outliers are shown as individual points in black.
The raw, jittered data are overlain in light gray.
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variables were imputed using Multivariate Imputation via Chained
Equations [19], and a complete-case analysis was performed as sensi-
tivity analysis (Supplemental Material, Section S4). Interleukin-6 (IL-
6) and fibrinogen levels, which were available for n = 53 and n = 189
patients, respectively, were incorporated post-hoc. Further details on
clinical variables and data processing, along with are provided in the
Supplemental Material (Section S1). Fig. S2 shows the raw distribu-
tions of log-transformed variables and Fig. S3 shows the correlation
structure of the class-defining variables.

A two-class multivariate mixture model was used to identify two
distinct latent classes based on the variables of interest. A binomial
response distribution was used for binary categorical variables (race,
ethnicity, gender, and vasopressor requirement) and a Gaussian
response distribution was used for continuous variables. Continuous
variables were centered and scaled to unit variance prior to model
inference. Significantly skewed continuous variables were log-trans-
formed prior to analysis. The model was fit using the expectation-
maximization algorithm, initialized at 100 random starting parame-
ter sets to ensure convergence to a global maximum likelihood.

Individuals were allocated to the most likely latent class based on
the posterior model probability (probability of class assignment >

50%). Basic comparisons of the raw data between the two identified
classes were conducted using the t-test or Kruskal-Wallis test for
continuous variables, and Fisher’s exact test for categorical variables.
Two-sided p-values < 0¢05 were considered statistically significant.
The two-class model was compared to a model including an addi-
tional latent class based on model selection criteria (Akaike Informa-
tion Criteria, AIC, and Bayesian Information Criteria BIC), likelihood
ratio test, the size of the smallest class, probability of class assign-
ment, and qualitative evaluation of the defining class characteristics.
All statistical analyses were conducted in the R statistical program-
ming environment (version 4¢0¢2).

3. Results

Baseline characteristics of the study cohort (n = 263) are presented
in Table 1. At baseline, oxygenation showed a mean (§ standard devia-
tion) PaO2:FiO2 equal to 130¢0 (§ 52¢9), and most patients were on
intravenous infusion of inotropic-vasopressor agents (83¢7%). We
identified two latent classes representing 74¢4% (Class 1, n = 193) and
26¢6% (Class 2, n = 70) of the cohort, respectively. Posterior probability
of class assignment was high (median 98¢2%, IQR [98¢0%, 100%]), indi-
cating good model fit. We assigned individuals to their most likely
latent class based on the posterior probability of class assignment.

To understand the clinical and biological characteristics that dis-
tinguished the two classes, we compared the standardized mean of
the continuous class-defining variables (Fig. 1A), and we compared
the raw data by assigned class (Table 2). Empirically, Class 2 was dis-
tinguished primarily by increased markers of coagulopathy (e.g. D-
dimer, median value 2335 ng/L, IQR (1215, 6396) in Class 2 vs
1326 ng/L (864, 2287) in Class 1 (p <0¢001), PT, mean 17¢2, standard
deviation 4¢89 in Class 2 vs 14¢2 s (1¢27) in Class 1 (p <0¢001), and
aPTT, mean 57¢4, standard deviation 34¢0 in Class 2 vs 34¢7 s (5¢68) in
Class 1 (p <0¢001), Table 2) and end-organ dysfunction (decreased
serum pH, mean 7¢34, standard deviation 0¢09 in Class 2 vs 7¢36
(0¢08) in Class 1 (p = 0¢046), Table 2), with increased lactate (mean
2¢40 mmol/L, standard deviation 2¢31 in Class 2 vs 1¢46 mmol/L
(0¢63) in Class 1 (p = 0¢001), Table 2), creatinine (mean 3¢02 mg/dL,
standard deviation 2¢82 in Class 2 vs 1¢03 mg/dL (0¢45) in Class 1 (p
<0¢001), Table 2), and troponin-T (mean 166 ng/L, standard deviation
380 ng/L in Class 2 vs 26¢6 ng/L (41¢6) in Class 1 (p = 0¢003), Table 2).
There was little distinction according to respiratory parameters,
including ARDS severity (PaO2:FiO2, mean 129 mm Hg, standard devi-
ation 63¢3 in Class 2 vs 130 mm Hg (48¢7) in Class 1 (p = 0¢900),
Table 2). With respect to demographic variables, Class 2 demon-
strated a higher prevalence of African American race (20¢0% in Class
2 vs. 9¢84% in Class 1 (p = 0¢047), Table 2), and a lower prevalence of
Hispanic or Latino ethnicity (24¢3% in Class 2 vs. 46¢1% in Class 1
(p = 0¢020), Table 2). There was no significant distinction between
classes based on the other categorical class-defining variables (male
gender, 74¢3% in Class 2 vs. 63¢7% in Class 1 (p = 0¢146), and vasopres-
sor requirement, 90¢0% in Class 2 vs. 81¢3% in Class 1 (p = 0¢137),
Table 2). Individuals allocated to Class 2 had significantly lower
fibrinogen levels compared to Class 1 (median 619, IQR (509, 728) in
Class 2 vs. 679 (570, 796) in Class 1 (p = 0¢014)) and higher IL-6 levels
(mean 224 pg/mL, standard deviation 238 ng/L in Class 2 vs 79¢3 pg/
mL (96¢1) in Class 1 (p = 0¢033), Table 2, Fig. 1B), even though these
variables were not used in the initial statistical inference. Next, we



Table 2.
Difference in baseline clinical variables between latent subclasses. Class-defining var-
iables are identified in bold. Mean (standard deviation) reported for normally-distrib-
uted continuous variables, with median (IQR) reported for skewed continuous
variables (D-dimer, ferritin, fibrinogen, AST, and ALT). P-values calculated by Stu-
dent’s T-test for normally-distributed continuous variables, by Kruskall-Wallis test
for skewed continuous variables, and by Fisher’s exact test for categorical variables.

Clinical Variable Class 1 Class 2 P value
N = 193 N = 70

Male gender 123 (63¢7%) 52 (74¢3%) 0¢146
African American race 19 (9¢84%) 14 (20¢0%) 0¢047
Hispanic or Latino Ethnicity 89 (46¢1%) 17 (24¢3%) 0¢020
Age 57¢0 (15¢5) 63¢9 (13¢0) 0¢010
BMI 31¢0 (7¢23) 30¢5 (7¢84) 0¢653
PaO2: FiO2 (mm Hg) 130 (48¢7) 129 (63¢3) 0¢900
Driving pressure (mm Hg) 11¢1 (3¢01) 11¢9 (3¢40) 0¢060
Minute ventilation (L/min) 8¢01 (2¢03) 8¢31 (1¢73) 0¢233
PaCO2 (mm Hg) 42¢6 (8¢86) 41¢3 (10¢0) 0¢328
Ventilatory ratio* 1¢51 (0¢50) 1¢50 (0¢61) 0¢844
Vasopressor requirement 157 (81¢3%) 63 (90¢0%) 0¢137
pH 7¢36 (0¢08) 7¢34 (0¢09) 0¢046
lactate (mmol/L) 1¢46 (0¢63) 2¢40 (2¢31) 0¢001
Bicarbonate (mmol/L) 23¢8 (3¢76) 22¢5 (4¢91) 0¢032
WBC (x 109/L) 8¢75 (4¢35) 12¢7 (7¢84) <0¢001
% Lymphocytes 12¢8 (8¢29) 10¢8 (9¢23) 0¢113
Hemoglobin (mg/dL) 13¢2 (1¢93) 11¢8 (2¢53) <0¢001
Platelets (x 103/mL) 231 (94¢2) 220 (147) 0¢563
IL-6 (pg/mL) 79¢3 (96¢1) 224 (238) 0¢033
CRP (mg/dL) 16¢9 (8¢59) 27¢3 (66¢1) 0¢193
D-dimer (ng/dL) 1326 [864;2287] 2335 [1215;6396] <0¢001
Ferritin (mg/L) 928 [480;1493] 1204 [478;2935] 0¢013
Fibrinogen (mg/dL) 679 [570;796] 619 [509;728] 0¢014
LDH (units/L) 500 (208) 1067 (2840) 0¢100
PT (s) 14¢2 (1¢27) 17¢2 (4¢89) <0¢001
aPTT (s) 34¢7 (5¢68) 57¢4 (34¢0) <0¢001
AST (units/L) 56¢0 [41¢0;86¢0] 61¢5 [44¢0;115] 0¢130
ALT (units/L) 40¢0 [24¢0;63¢0] 40¢0 [21¢2;61¢5] 0¢885
Bilirubin (mg/DL) 0¢62 (0¢31) 0¢92 (1¢19) 0¢117
Albumin (g/dL) 3¢30 (0¢45) 2¢95 (0¢70) <0¢001
Creatinine (mg/dL) 1¢03 (0¢45) 3¢02 (2¢82) <0¢001
Hs-Troponin-T (ng/L) 26¢6 (41¢6) 166 (380) 0¢003
* Derived quantity from PaCO2 and minute ventilation, not used as an additional

class-defining variable in the statistical inference.
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evaluated the association between phenotype and clinical outcomes.
Allocation to Class 2 was associated with a marked increase in the
odds of 28-day mortality (40¢0% vs.¢ 23¢3%, OR = 2¢2, 95% CI [1¢2, 3¢9],
Supplemental Material Fig. S1).
Fig. 2. Interval between hospital admission and ICU transfer (A) and interval between hosp
rank sum test. Boxes denote the inter-quartile range (IQR) of the data, and whiskers extend
black. The raw, jittered data are overlain in light gray.
We sought to understand whether the two latent classes repre-
sented distinct phenotypic profiles or different stages in disease pro-
gression. We therefore compared the time interval between the date
of hospital admission and the date of ICU presentation. We found no
significant difference between groups (mean 0¢74 days in Class 2 vs
0¢87 days in class 1, p = 0¢462, Fig. 2a). Similarly, we found no signifi-
cant difference in the interval between hospitalization and intubation
between the two classes (mean 0¢67 days in Class 2 vs 0¢86 days in
class 1, p = 0¢572, Fig. 2b). Next, we performed a repeat analysis for
class membership later in ICU admission (using class-defining varia-
bles recorded at days five to seven, Supplemental Material Section
S3, Fig. S5), and found that class switching from class 1 to class 2
occurred in fewer than 10% of cases, indicating phenotypic stability
over the initial phase of critical illness.

We also evaluated the best fit for the number of subclasses using
latent class analysis (Supplemental Material, Section S2). A three-
class model was statistically superior to the two-class model by BIC
and likelihood ratio test (Table S2). However, the three-class model
produced a small class of only n = 17 individuals, and the results
were qualitatively similar to the two-class model (Section S2, Fig. S4).
A four-class model was not consistently statistically superior to the
two-class model (Section S2, Table S1) and resulted in a small class of
only n = 14. Therefore, we did not find strong evidence in this cohort
for additional phenotypes beyond the two described.

We examined differences between the two latent classes in in-
hospital interventions (Supplemental Material Section S5). We noted
no significant differences in rates of antibiotic use (5¢7% in Class 2 vs
7¢7% in Class 1, p = 0¢764), inhaled nitric oxide (NO, 20¢0% in Class
2 vs 15¢6% in Class 1, p = 0¢997), or in mean concentrations of heparin
infusion (median and standard deviation 252 (149) in Class 2 vs. 184
(107) in Class 1, measured in 100 units/mL, p = 0¢091) . Continuous
renal replacement therapy was more common among the Class 2
phenotype (17¢1% in Class 2 vs 0¢52% in Class 1, p <0¢001) and corti-
costeroid use was more common among the Class 1 phenotype
(20¢0% in Class 2 vs 41¢5% in Class 1, p = 0¢002, Table S2). Of note, for
each patient, the first date of steroid administration occurred after
the first recorded set of baseline variables, and therefore did not
affect phenotypic class assignment. We examined 28-day mortality
within each latent class stratified by receipt of corticosteroids and we
again found higher mortality associated with the Class 2 phenotype
(42.9% in Class 2 vs. 17.5% in Class 1 among patients that received cor-
ticosteroids, p = 0.032, Supplemental Material Section S5).
ital admission and intubation (B) by latent class, with p-values calculated by Wilcoxon
to 1.5 times the edge of the IQR. Individual outliers are shown as individual points in
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4. Discussion

We identified two distinct phenotypes of COVID-19-associated
ARDS, with substantial differences in biochemical profiles and in
short-term mortality, despite minimal differences in respiratory
dynamics. The minority phenotype (class 2, n = 70, 26¢6%) was
defined by increased markers of end-organ dysfunction (Fig. 1A,
Table 2), relative lactic acidosis, and by increased markers suggestive
of coagulopathy (e.g. D-dimer, PT, PTT, fibrinogen). The group of
class-defining variables that characterize the class 2 phenotype form
a cohesive picture of relative clinical decompensation with altered
coagulation, mild relative hyperinflammation, and renal and cardiac
impairment. Importantly, phenotypes were associated with short-
term mortality. The odds of 28-day mortality among the class 2 phe-
notype were more than double that of the class 1 phenotype (40¢0%
vs.¢ 23¢3%, OR = 2¢2, 95% CI [1¢2, 3¢9],).

We found little distinction between phenotypes according to
respiratory mechanics (Table 2), or according to the severity of ARDS
(PaO2:FiO2, Fig. 1A, Table 2). While multiple studies have defined
physiological COVID-19 phenotypes according only to respiratory
parameters [7,20], our results suggest that meaningful clinical dis-
tinctions are also determined by systemic and extrapulmonary pro-
cesses. This finding is consistent with a recent larger study [21]
suggesting that, among classical ARDS cohorts, previously identified
biological phenotypes can be extended to critically ill and mechani-
cally ventilated patients that do not meet ARDS criteria.

Our work supports a growing body of evidence that altered coagu-
lation is an important marker of phenotypic variation in COVID-19-
associated-ARDS. The more severe class 2 phenotype was distin-
guished by markedly elevated D-dimer and decreased fibrinogen, as
well as elevated PT and aPTT (of note, there was no statistically signif-
icant difference in concentrations of heparin infusion, Supplemental
Material table S2). In prior literature, increased platelet activation
and platelet-monocyte aggregation has been observed in severe
COVID-19 infection, but not in mild disease [16]. Other studies have
also identified a high burden of thromboembolic disease among post-
mortem patients with severe COVID-19 infection [22]. Furthermore,
elevated baseline D-dimer among COVID-19 patients has been shown
to predict major coagulation-associated complications, critical illness,
and death [23]. The Class 2 phenotype was further characterized by
relative hypoalbuminemia (Fig. 1A, Table 2), which itself has been
associated with hypercoagulability (with marked D-dimer elevation)
and higher rates of intensive care treatment and mortality among
patients with severe COVID-19 [24]. Taken in context, our results
suggest that vascular dysregulation may be a key feature of critical ill-
ness and associated morbidity and mortality secondary to COVID-19
infection. Similar coagulation abnormalities have been associated
with severity in pre-COVID ARDS and it remains to been seen if these
proposed phenotypes may also predict clinical course in non-COVID
ARDS [25,26].

We find little role for the traditional hyperinflammatory pheno-
type established among “classical” ARDS cohorts [3,12,17]. Despite
relative hyper-inflammation among Class 2 patients (Table 2, Fig. 1B),
IL-6 levels in this cohort were considerably lower than those reported
for the hyperinflammatory phenotype in classical ARDS cohorts [27].
This finding is consistent with an exploratory analysis of patients
with COVID-19 associated ARDS in the United Kingdom, which found
a low prevalence of the traditional hyperinflammatory ARDS pheno-
type as identified by a parsimonious predictor model validated
among classical ARDS cohorts [17]. Similarly, other studies have iden-
tified COVID-19-specific inflammatory physiology compared to other
hyperinflammatory syndromes, including lower concentrations of
circulating inflammatory cytokines and prominent signatures of coa-
gulopathy and dysregulated macrophage activation (with markedly
elevated ferritin) [28]. Such differences could explain why IL-6 recep-
tor blockade has had little impact on improving outcomes in patients
with severe COVID-19 infection [29]. In contrast to prior analyses of
LCA-derived phenotypes among classical ARDS cohorts [3,8], we
inferred phenotypes of ARDS arising from a single etiology. Given the
departure of our findings from the phenotypes identified in these
earlier studies, our findings highlight the importance of controlling
for underlying causative triggers in future pathophysiological investi-
gations of ARDS.

The class 2 phenotype was also characterized by significant eleva-
tions in serum creatinine and troponin, but no differences in liver
injury markers. Whether the renal and myocardial abnormalities are
due to microvascular insults in the setting of coagulopathy or more
localized organ stress (i.e. hypo/hyper-volemia; persistent tachycar-
dia) is a matter of ongoing investigation [30,31].

Importantly, LCA�derived phenotypes provide an empirical over-
view of the biological and clinical factors that characterize each latent
group. As noted in prior studies [3], while no individual clinical or
biological variable is sufficient to classify patients to either latent
class, the constellation of variables, considered as a group, form a
cohesive cluster that provides a clinical picture of each phenotype.
We can conjecture that the variables that differ most between each
phenotype (Fig. 2, Table 2) are the ones that can be most reliably
used to predict assignment. For example, patients with markedly ele-
vated D-dimer, profound elevations in troponin, or substantially
decreased albumin at presentation could raise higher suspicion to
the practicing clinician as patients more likely to display the Class 2
phenotype. Future multicohort studies among larger populations will
focus on the development of parsimonious predictor models of the
Class 1 and Class 2 phenotype, as was seen in extensions of the origi-
nal derivation of LCA phenotypes among classical ARDS cohorts [8].

Our approach has multiple limitations. First, phenotypes were
derived from a single-center cohort. Second, we wish to acknowledge
the limitations in terminology regarding our use of the term “pheno-
type”, and we decided to use this nomenclature given its consistency
with previous ARDS literature [3,32]. Particularly, we cannot charac-
terize the Class 2 phenotype formally as a “hypercoagulable” or “vas-
cular” phenotype, but rather our descriptive findings suggest that
dysregulation in coagulation is an important phenotypic axis in
COVID-19-associated ARDS. Future studies will be needed to better
elucidate the nature and pathophysiology of vascular dysregulation.
Biomarker data were limited to the variables that had been measured
a priori in this cohort. We therefore lacked data on more specific bio-
markers that could further elucidate differences between inflamma-
tory and vascular responses and we did not assess pulmonary
vascular involvement directly via imaging. Similarly, exhaustive clini-
cal data and patient comorbidities, which could be important to dis-
tinguish phenotypes, were not available. Vasopressor requirement
was available as a binary variable, and therefore Vasoactive-Iono-
tropic Scores were not compared between subgroups. Laboratory
data for each individual were collected according to clinical reasoning
in a non-standardized way, which may limit external validity. Pheno-
types were evaluated at a single timepoint (baseline, at ICU admis-
sion). Therefore, we cannot definitively exclude the possibility that
the two latent classes represent different stages in a common disease
process, rather than distinct phenotypes. Similarly, data on the time
of symptom onset were lacking, which could elucidate differences in
the stage of disease progression. However, we found no temporal dif-
ferences between classes in the interval between hospital admission
and ICU admission or intubation, and an analysis of class membership
at hospital day 5 showed little evidence of class switching. Future
studies could investigate stability of phenotypes over time. It is
unclear why a higher rate of corticosteroid use was observed among
the Class 1 phenotype (see further discussion in Supplemental Mate-
rial Section S3). However, in this study, phenotypes were assigned
based on baseline data, before the administration of interventions or
therapies. Therefore, steroid treatment did not affect phenotypic
assignment. Similarly, we examined 28-day mortality within each
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latent class stratified by receipt of corticosteroids, and we found a
higher odds of 28-day mortality associated with the Class 2 pheno-
type regardless of steroid treatment (Supplemental Material Section
S3). Data were missing for some class-defining variables. However, in
a sensitivity analysis, the results were robust to exclusion of patients
with missing data (for a complete case analysis, see Supplemental
Material Section S4 and Fig. S6). Larger studies will be needed to con-
firm if a three-class model may be a better fit for COVID-19.

In a large cohort of patients with COVID-19 associated ARDS, we
identified at the start of ICU admission a minority phenotype defined
by increased markers of coagulopathy and end-organ dysfunction,
with moderately increased markers of systemic inflammation. Mem-
bership in the class 2 phenotype was associated with substantially
increased 28-day mortality. Overall, our results suggest that pheno-
typic profiles in COVID-19 associated ARDS reflect a distinct disease
process, with important variation according to systemic and extra-
pulmonary markers. Vascular dysfunction may play an important
role in severe COVID-19-related disease.
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