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High Energy Density in 
Azobenzene-based Materials 
for Photo-Thermal Batteries via 
Controlled Polymer Architecture 
and Polymer-Solvent Interactions
Seung Pyo Jeong1, Lawrence A. Renna   1, Connor J. Boyle1, Hyunwook S. Kwak2, Edward 
Harder3, Wolfgang Damm3 & Dhandapani Venkataraman   1

Energy densities of ~510 J/g (max: 698 J/g) have been achieved in azobenzene-based syndiotactic-rich 
poly(methacrylate) polymers. The processing solvent and polymer-solvent interactions are important 
to achieve morphologically optimal structures for high-energy density materials. This work shows that 
morphological changes of solid-state syndiotactic polymers, driven by different solvent processings 
play an important role in controlling the activation energy of Z-E isomerization as well as the shape of 
the DSC exotherm. Thus, this study shows the crucial role of processing solvents and thin film structure 
in achieving higher energy densities.

Azobenzene units with appropriate molecular packing are excellent candidates for active layers in photo-thermal 
batteries (PTBs) and the predicted energy densities are higher than the energy densities in current electro-
chemical batteries1–5. Guided by these predictions, azobenzene units have been anchored on scaffolds such as 
carbon nanotubes and reduced graphene oxide (rGO), achieving energy densities approaching ~490 J/g2,4. Yet, 
placing azobenzene units at precise locations on these scaffolds is synthetically challenging. We hypothesize 
that controlled polymerization techniques can provide convenient synthetic pathways to organize azobenzene 
units on polymer scaffolds with the requisite molecular packing for high energy densities. Herein, we show that 
poly(methacrylate) with pendant azobenzene units, poly(4-phenylazophenyl methacrylate) (AzoPMA), can have 
energy densities up to 698 J/g, with an average energy density of 510 ± 115 J/g. We demonstrate the critical role 
of polymer-solvent interactions on (1) the assembly of AzoPMA to form morphologies for high energy density 
storage and (2) the shape of DSC exotherm. Lastly, the processing solvent plays an important role in tuning the 
isomerization kinetics of the AzoPMA.

In organic PTBs, light converts a stable isomer into a high-energy meta-stable isomer (charging). The 
meta-stable isomer can be converted back to the low-energy isomer on-demand (discharging)6–8, where the 
excess energy (energy difference: ∆H) is typically released as heat. Since this configurational isomerization 
does not generate by-products, the charging-discharging cycle can be repeated without loss of active material. 
Azobenzene-based molecules have emerged as strong candidates for PTBs because of their ease of synthesis, high 
quantum yield of E-Z photoisomerization, high absorption cross-section in UV-Vis light, and ease of chromo-
phore tunability for light absorption and kinetics of isomerization9–11. However, until recently, the major draw-
back of these systems has been their relatively low-energy densities12.

Computational studies by Kolpak et al. predict that azobenzene units placed 4.24 Å apart on a rigid scaffold, 
such as carbon nanotubes (CNTs), can lead to dramatic increases in energy storage densities—from ~200 J/g 
for unassembled azobenzene units to 820 J/g for azobenzene molecules assembled on CNTs1. For comparison, a 
lithium-ion battery has an energy density between 400 J/g to 650 J/g13. Recent experimental studies by Kucharski 
et al. showed that energy densities of ~217 J/g can be obtained in azobenzene units attached to CNTs; the relatively 
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low-energy density was attributed to inefficient grafting of azobenzene units to CNTs2. Other experimental stud-
ies show that azobenzene molecules anchored on rGO can lead to energy densities of ~490 J/g4.

We hypothesized that we can achieve high energy densities by (a) anchoring azobenzene on polymer back-
bones to achieve high functional group density in a polymer chain, (b) placing end-groups on the polymers that 
can self-assemble into cylindrical structures, similar to CNTs, and (c) tuning polymer-polymer interaction by 
choosing different processing solvents. To test our hypotheses, we chose poly(methacrylate) (PMA) as our back-
bone, which is known to have a preference for high syndiotacticity in radical polymerizations14–16. In PMA, the 
distance between two syn ester groups in a syndiotactic triad is calculated to be ~5 Å, similar to distance between 
azobenzene units on CNTs. We chose hexabenzocoronene (HBC) as our end-group because it can self-assemble 
through π-π stacking interactions into cylindrical structures17,18. In addition, we tested two reference solvents 
with low boiling point and high solubility for the polymer, dichloromethane (DCM) and tetrahydrofuran (THF), 
to understand role of polymer-solvent interaction and optimal structure for high energy density.

Results and Discussion
Synthesis and Characterization of AzoPMAs.  The PMA-based polymer bearing pendant azobenzene 
units and HBC as the end group (AzoPMA 1) was synthesized using a previously reported supplemental acti-
vator and reducing agent atom transfer radical polymerization (SARA ATRP)19. As a control, we synthesized 
PMA with 4-fluorobenzamido (AzoPMA 2) and 4-phenydiazenyl-benzoate end-groups (AzoPMA 3), see Fig. 1. 
(Supplementary Fig. S1–14) Polymer tacticity estimates from 13C NMR showed that AzoPMA 3 is syndiotac-
tic-rich, as expected from SARA ATRP, with 73.6% of rr (Supplementary Fig. S15). Thermogravimetric analysis 
(TGA) of these polymers (Supplementary Fig. S20) showed no mass loss until 200 °C, which indicated that the 
polymers are thermally stable in the temperature range of 0 °C–140 °C for differential scanning calorimetry (DSC) 
studies to evaluate the energy density.

Energy Density of Syndiotactic AzoPMAs.  To measure the energy density of the syndiotactic-rich 
AzoPMAs, samples were prepared by dissolving the polymers in THF for DSC analysis because it is difficult for 
azobenzene materials to isomerize from E- to Z-isomer in the solid state (Supplementary Fig. S32). Then, the 
solution was irradiated with UV radiation (~365 nm) to photoisomerize the E-isomer to the Z-isomer (‘charging’) 
(Fig. 2a). The flask containing the solution was then wrapped with aluminum foil and the solvent was removed in 
vacuo to get a solid sample. This solid sample was dried in vacuo for 5 h in the dark to remove any residual sol-
vent. The samples were then hermetically sealed in aluminum pans for DSC analysis. All samples were subjected 
to a heating-cooling cycle followed by a second heating cycle. In the first cycle, the temperature was raised from 
0 °C to 140 °C, and then cooled back to 10 °C at the rate of 5 °C/min. In the second heating, the temperature was 
raised from 10 °C to 150 °C at the rate of 5 °C/min. All polymers showed a single exotherm around 60 °C–100 °C 
in the first heating cycle. Except for this exotherm, the DSC traces were featureless (Supplementary Fig. S21). This 
single exotherm was not observed in the second heating of DSC and in polymers not exposed to UV radiation. 
This exotherm was also not observed in the UV-irradiated poly(methyl methacrylate) (PMMA) dried from THF 
(Fig. 2b). After discharging, we checked the discharged DSC sample by UV-Vis, and all Z-isomers were converted 
back to its original stable E-isomer (Fig. 2c).

For AzoPMA 1, the energy density was found to be 421 ± 48 J/g, comparable to the energy density obtained 
for azobenzene anchored on rGO3,4. We expected that AzoPMA 2 and 3 will have lower energies compared to 
AzoPMA 1 because the end groups on these polymers are not expected to facilitate self-assembly through π-π 
stacking interactions. Contrary to our expectation, we obtained average energy densities of 444 ± 107 J/g for 
AzoPMA 2 and 510 ± 115 J/g for AzoPMA 3. The maximum energy density of 698 J/g was observed for AzoPMA 
3. These numbers indicated that the end-group was unnecessary and possibly even detrimental to achieving 
high-energy density values. The exotherm observed from AzoPMA 3 was sharp, which indicates uniformity in 

Figure 1.  Chemical structures of AzoPMA polymers with different end-groups. AzoPMA polymers were 
synthesized by SARA ATRP. Polymers were synthesized with (a) a HBC end group for π-π stacking interactions 
between polymer chains (AzoPMA 1), (b) a 4-fluorobenzamido end group for hydrogen bonding interactions 
(AzoPMA 2), or (c) a 4-phenydiazenyl-benzoate end group as a control (AzoPMA 3).
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the azobenzene environment and/or a cooperative isomerization of the pendent units20. We also observed that 
some of the exotherms had an anomalous peak shape, which we found was because of the non-monotonic char-
acter of the temperature during the measurement, due to the large burst of heat from the sample (Supplementary 
Fig. S22). The area under the exotherm was used to calculate the energy density of the polymers. Maximum DSC 
curves are for AzoPMA 1–3 are shown in Fig. 2d–f respectively. To the best our knowledge, the energy density 
of AzoPMA 3 dried from THF (698 J/g) is the highest for azobenzene-based systems13,21. We found that the 
charging-discharging cycled can be recycled without loss of energy density (Supplementary Fig. S33).

To account for the observed energy density of the AzoPMA 3 fabricated from THF, we probed for the possible 
presence or incorporation of inadvertent impurities in the polymer materials. We first considered the possibility 
of THF photo-degradation products generated during the charging process using UV light contributing to the 
energy density. We examined this possibility by irradiating a solution of AzoPMA 3 in DCM with UV radiation 
to convert the E-isomer to the Z-isomer. The DCM solvent was removed under vacuum, and the polymer was 
re-dissolved in THF. The sample was prepared for DSC measurement as described above and it showed a maximum 
energy density of ~540 J/g (Supplementary Fig. S23). Moreover, there is no exotherm found in the UV-irradiated 
poly(methyl methacrylate) (PMMA) dried from THF (Fig. 2b). These experiments ruled out the possibility that 
the exotherm observed in DSC is from THF photo-degradation products. We then considered the possibility of the 
presence of residual reagents from the SARA ATRP. Energy dispersive analysis did not show any peaks attributable 
to copper and 1H NMR did not show any peaks attributable to the amine (Me6TREN), which was used as a ligand 
(Supplementary Fig. S25). From all of these experiments, we concluded that the observed exotherm in Z-AzoPMA 
3 is associated with discharging, is exclusively from the isomerization of the Z-isomer to the E-isomer, and is con-
sistent with observations made by others2,3,22–24. We thus used AzoPMA 3 for the remainder of our studies.

Solvent Effect.  The control experiments indicated that the samples obtained from DCM have substantially 
lower energy densities than samples obtained from THF. We reasoned that solvents can change the packing den-
sity and morphology of a polymer25–27. Solvents can also alter the kinetics of isomerization of azobenzene mol-
ecules28–32. To understand the role of solvent on the energy densities of AzoPMA 3, we chose to use THF and 
DCM as reference solvents among various organic solvents. THF and DCM are excellent solvents for AzoPMA 
3. Polymer chains extend in a good solvent which provides an environment for high polymer-polymer interac-
tions27. They have low boiling points which allow their removal at low temperatures without adversely impacting 
the Z/E isomer ratio. They also have similar dipole moments (1.6 D for THF to 1.75 D for DCM) and similar vis-
cosities (0.48 cP for THF and 0.41 cP for DCM), and thus their impact on the kinetics of isomerization should 
be similar. A key difference between these two solvents is the nature of the polymer-solvent interaction. The 
polymer-solvent interaction parameter (χ) is −0.15 to 0.09 for poly(methylmethacrylate) (PMMA)-DCM and 

Figure 2.  (a) UV-Vis of E and Z-AzoPMA 3. (b) DSC curves of pristine AzoPMA 3, AzoPMA 3 dried from 
THF after UV, and PMMA dried from THF after UV in the 1st heating. (c) UV-Vis of AzoPMA 3 before/
after DSC measurement. (d–f) Maximum energy density DSC curves for AzoPMAs. AzoPMA polymers show 
an exothermic peak on their first heating cycle at 60 °C–100 °C, which is indicative of the isomerization of 
the Z-isomer to the E-isomer during discharging. The maximum exotherm for (d) AzoPMA 1 has an energy 
density of 455 J/g. For (e) AzoPMA 2, the maximum energy density was 630 J/g. The highest energy density was 
obtained from (f) AzoPMA 3, at 698 J/g.
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χ = 0.44 to 0.46 for PMMA-THF, indicating that the PMA backbone may have a stronger interaction with DCM 
than with THF33. Thus, using THF and DCM allows us to elucidate the role of the polymer-solvent interaction on 
the observed differences in energy density.

We prepared DSC samples of AzoPMA 3 as before, except either THF or DCM was used as the initial (‘charg-
ing’) solvent. For samples obtained from DCM, AzoPMA 3 consistently displayed lower energy densities com-
pared to solid samples obtained from THF (see Fig. 3a). Samples dried from DCM had an average energy density 
of 110 ± 25 J/g compared to 510 ± 115 J/g from THF (more than three trials). More importantly, the DSC traces 
of samples obtained from DCM samples were broad whereas the DSC traces from THF samples were narrow. 
We then mixed THF with DCM in various ratios and measured the full width at half maximum (FWHM) and 
the energy density of AzoPMA 3. We found that the FWHM increased and the energy density decreased with 
increasing DCM (see Fig. 3b).

We used infrared (IR) imaging of a DSC pan containing ~11 mg of AzoPMA 3 on a hotplate (>100 °C) to 
visualize the enhanced exothermic isomerization in bulk samples of AzoPMA 3 dried from THF and DCM. IR 
images at ~1 s intervals for ~4 s are shown in Fig. 3c. Average IR intensity traces for each time-frame are shown in 
Fig. 3d. After ~4 s, the IR intensity of samples from DCM increased gradually. However, for samples dried from 
THF the IR intensity gradually increased after ~3 s, and then after ~4 s a large burst of IR intensity is observed 
(designated by an arrow in Fig. 3d). This burst of IR intensity is due to the heat released from the sample during 
Z-E isomerization. The differences in the energy density coupled with the differences in the shape of the DSC exo-
therm indicated the solvent used for processing AzoPMA polymers is critical to achieving high-energy densities.

Solid-State Isomerization Kinetics.  We studied the solid-state Z-E isomerization kinetics using UV-Vis 
spectroscopy of AzoPMA 3 thin films fabricated from DCM or THF (see Fig. 4). At 25 °C, the rate coefficient of 
isomerization for films fabricated from THF was 2.55 (±0.07) × 10−6 s−1 (t1/2 = 75.5 h) and for films fabricated from 
DCM was 3.94 (±0.62) × 10−6 s−1 (t1/2 = 48.9 h). Moreover, the activation energy (Ea) for films fabricated from THF 
was 91 ± 1.6 kJ/mol and for films fabricated from DCM was 82 ± 3 kJ/mol (see Fig. 4c). These results indicate that 
there are structural differences between the two films which lead to different rates of isomerization (discharging) in 
the solid-state, and thus achieving different physical properties from the same syndiotactic AzoPMA.

Figure 3.  (a) DSC exotherms, during the first heating cycle, from the same Z-AzoPMA 3 dried from either 
THF or DCM. AzoPMA 3 dried from THF showed sharp exotherms with high-energy densities. Conversely, 
AzoPMA 3 dried from DCM showed a broad exotherm with relatively low energy densities. (b) Diagram of 
FWHM and energy density of AzoPMA 3 based on the different co-solvent ratios of THF and DCM. FWHM 
value (unit: °C, temperature difference) was calculated from the width of the DSC exotherm curve. Inset is 
a representation of DSC curve change based on different solvent ratio. (c) IR imaging of hermetically sealed 
aluminum DSC pans containing Z-AzoPMA 3 dried from THF or DCM. The DSC pans were place on a hot 
plate (>100 °C) and monitored with an IR camera. Each frame (from top left) represents the IR image after 
approximately one elapsed second, where the left pan is AzoPMA 3 dried from DCM, and the right dried from 
THF. (d) A plot of average IR intensity as a function of distance across the frame shows the average IR intensity 
profiles of the AzoPMA 3 samples over time.
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Wide-angle X-ray Scattering.  We used wide-angle x-ray scattering (WAXS) to characterize the bulk 
pressed pellets obtained from samples dried from DCM and THF, before and after UV irradiation (see Fig. 5). All 
WAXS spectra showed two peaks, the first at low q that is attributed to inter-polymer packing, and the second at 
higher q that is attributed to azobenzene syn triad spacing along a polymer chain. WAXS spectra showed syn triad 
spacing, with peaks from q = 1.25 Å−1 to 1.31 Å−1, which corresponds to a d-spacing of 5.04 Å to 4.79 Å, consistent 
with expectations of the distance between syn groups in a syndiotactic triad. This high q peak also has a shoulder 

Figure 4.  Z-E isomerization kinetics of solid AzoPMA 3 films dried from THF vs. DCM. (a) First-order 
graph of ln[Z-isomer] vs. time (s) for Z-AzoPMA 3 films dried from THF (red) or DCM (black) at 25 °C with 
corresponding linear fits. According to the first-order rate law, the slope of the fit is −k (s−1), the reaction rate 
coefficient. (b) Fraction of remaining Z-isomer population vs. time (h) for AzoPMA 3 dried from THF or DCM 
at 25 °C, with corresponding exponential fits. (c) Arrhenius plot of ln k vs. 1/T (K−1), for AzoPMA 3 dried from 
THF or DCM, with corresponding linear fits used to calculate Ea. According to the Arrhenius equation the slope 
of the linear fit is Ea/R.

Figure 5.  WAXS of solid AzoPMA 3 films dried from DCM vs. THF. 2-D WAXS patterns for (a) Z-AzoPMA 
3 dried from THF, (b) E-AzoPMA 3 dried from THF, (c) Z-AzoPMA 3 dried from DCM, and (d) E-AzoPMA 
3 dried from DCM; the scale bar is q = 1 Å−1. (e) Corresponding semi-log 1-D patterns of (a–d). Peaks at 
low q are attributed to inter-polymer packing, and peaks at higher q are attributed to syn triad spacing. (f) 
Representation of the distance between syn azobenzene groups (~5 Å) and the polymer-polymer packing 
distance (16–21 Å) in AzoPMA 3 polymer.
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at higher q which is attributed to the spacing between intercalated azobenzene units. In as-prepared samples with 
no UV treatment (E-AzoPMA), both samples showed similar d-spacing of 5.04 Å for DCM and 4.97 Å for THF. 
Upon UV irradiation, the d-spacing changes to 4.99 Å for DCM and 4.79 Å for THF. The shoulder attributed to 
intercalated azobenzene units is most prominent in Z-AzoPMA samples, and is most intense for samples dried 
from DCM. This result indicates a more closely assembled inter-chain packing in samples dried from DCM. The 
peaks at lower q are attributed to the distances between backbone of polymer chains. For samples dried from 
either solvent, prior to UV irradiation, the inter-polymer distance has an average q = 0.30 Å−1, which corresponds 
to a d-spacing of 20.92 Å. Upon UV irradiation, for samples from THF, the peak attributed to inter-polymer pack-
ing changes from q = 0.30 Å−1 to q = 0.33 Å−1 (d = 18.76 Å). For samples dried from DCM, the peak moved to 
q = 0.38 Å−1 (d = 16.54 Å), indicating a more compact packing of the polymer chains in this system.

Kelvin Probe Force Microscopy.  Since the Z-isomer of the azobenzene has dipole moment of ~3 D34, we 
used Kelvin Probe Force Microscopy (KPFM) to probe any orientational preferences of the dipoles in films dried 
from THF and DCM35,36. Fig. 6a,b show representative surface potential maps for AzoPMA 3 spin cast from THF 
and DCM respectively. Fig. 6c shows the average surface potential (over three scans) for the two samples. The 
surface potential of solid thin films of Z-rich AzoPMA from the THF solution showed more negative value than 
the films of Z-rich AzoPMA from the DCM solution. Since solid-state UV-Vis measurements reveal that the E- to 
Z-isomer ratio is approximately the same, the surface potential differences indicate that the physical structure of 
two films prepared from same AzoPMA is different. The more negative surface potential of thin films of Z-rich 
AzoPMA prepared from THF solution implies that a larger fraction of dipole moments is aligned perpendicular 
to the surface compared to the DCM samples. On the other hand, we can assume that dipole moments of azoben-
zene units in Z-rich AzoPMA 3 prepared from DCM are cancelled by opposing dipole moments, possibly due to 
a more disorderly compact polymer structure. This is consistent with WAXS measurements which indicate that 
films from DCM have a higher degree of close inter-chain packing. From WAXS and KPFM results, we speculate 
that the reduced energy density in films dried from DCM is due to either the reduced space for isomerization, the 
disordered alignment of azobenzene moieties due to the compact packing, or a combination of both.

Physical Properties of AzoPMA in Solution.  Solution-State Isomerization Kinetics.  THF and DCM 
have a similar dipole moment and viscosity. We therefore expected that the rate coefficients for isomerization 
of AzoPMA 3 would be similar in these solvents. Contrary to our expectations, the rate coefficients of isomer-
ization were quite different, particularly at higher polymer concentrations (Supplementary Fig. S26). The rate 
coefficients of isomerization, for AzoPMA 3 in THF, showed a linear increase with concentration. The rate coef-
ficients of isomerization, for AzoPMA 3 in DCM, showed a marked non-linear increase with increasing polymer 
concentration, see Fig. 7a. This indicates that there is either a loss of stabilization of Z-isomer by the solvent or a 
cooperative effect that arises from increased concentration, or both20. As mentioned before, the polymer-solvent 
interaction parameter (χ) is −0.15 to 0.09 for poly(methylmethacrylate) (PMMA)-DCM and χ = 0.44 to 0.46 
for PMMA-THF. The values indicate that PMA backbone has a stronger interaction with DCM than with THF33. 
Moreover, it is well-known that in strongly interacting systems, χ can decrease with increasing polymer concen-
tration37–39. Therefore, we posit that the DCM solvent preferentially interacts with the PMA backbone over the 
azobenzene pendant groups of AzoPMA 3, leading to the aggregation of the pendent azo-benzene units.

Dynamic Light Scattering.  To confirm this hypothesis above, we looked at the aggregation of E- or Z-AzoPMA 3  
with different concentrations using dynamic light scattering (DLS). For these studies, we used concentrations of 
1 mg/mL, 2 mg/mL, 5 mg/mL, and 10 mg/mL in both solvents. Typical intensity percent vs. diameter DLS plots 
are shown in Fig. 7b,c for 1 mg/mL E- and Z-AzoPMA 3 respectively. All DLS curves show a first peak at <10 nm, 

Figure 6.  KPFM of solid AzoPMA 3 films from DCM and THF. KPFM surface potential maps of Z-AzoPMA 3 
thin films on ITO glass spin-cast from (a) THF or (b) DCM. (c) Plot of thin film surface potential (SP, mV) vs. 
deposition solvent of Z-AzoPMA 3. The data points represent the averages and standard deviations of SPs from 
three separate scans. (d) Chemical structure of Z-AzoPMA indicating the direction of dipole moment (~3 D).
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which we attribute to individual polymer chains, followed by a second peak at ~50 nm–400 nm which we attribute 
to polymer aggregation. We note that the larger polymer aggregate peak is generally <1% of the volume percent, 
but is still a useful indicator of aggregation in these systems. The average aggregate size, over three measure-
ments, for all concentrations, is plotted in Fig. 7d. When the polymer is in the E state, the polymer aggregate 
sizes are comparable at all measured concentrations. Conversely, in the Z state, 1 mg/mL polymer in THF dis-
played a relatively low aggregate size of 71.29 nm ± 18 nm, while the polymer in DCM had an average peak at 
250.9 nm ± 40 nm. As the concentration of the polymer was increased to 2 mg/mL, the Z state aggregate peak 
in THF was still small compared to in DCM, increasing to 92.91 ± 22 nm and 258.5 ± 32 nm respectively. Upon 
further increase in the concentration, the aggregate size of the Z-isomer in THF and DCM were comparable to 
that in the E-isomer. These results support our hypothesis, based on polymer-solvent interaction parameter (χ), 
that DCM interacts more strongly with the PMA backbone, and thus does not solvate the Z-azobenzene moiety 
as effectively as THF. Furthermore, this reduced solvation and aggregation in relatively low concentrations of 
DCM, can lead to the more tightly packed inter-polymer spacing as we observed in WAXS, as well as less oriented 
alignment of dipoles observed in KPFM. Thus, we can conclude that a solvent that can solvate the Z state better, 
and does not have a very strong interaction with polymer backbone leads to more efficient and oriented packing 
of azobenzene units, giving a higher energy density.

Isomerization Energy Calculation of AzoPMAs.  We next turned to computational methods to gain 
further insights into the role of solvent and polymer morphology on the energy density.

Azobenzene Single Molecular System.  We first analyzed the gas phase energy of this system. For a proper investi-
gation of the side-chain E-Z isomerization from atomic scale, OPLS2005 force field40 was reconfigured and updated 
accordingly to accurately describe the potential energy surface of N-N dihedral angle in azobenzene groups. Fig. 8a 
illustrates the potential energy surface versus the N-N dihedral angle of an azobenzene molecule calculated with 
the modified OPLS2005 force field40 along with quantum chemical references—predictions from density functional 
theory with B3LYP41,42 and M06-2X43 hybrid functions as well as localized MP2 (LMP2) formalism44. As the Fig. 8a 
indicates, OPLS2005 force field can accurately describe not only the energy differences between E- and Z-isomers, 
but also the barrier between them to the scale of first-principles quantum chemical predictions. The consensus the-
oretical prediction is also consistent with experimental observation where the E-Z isomerization energy is measured 
to be −14 kcal/mol (321 J/g) and the barrier between the isomers to be about −37 kcal/mol (849 J/g)45,46.

Next we examined the solid-state effect over the E-Z isomerization by comparing the isomerization free 
energy of azobenzene at room temperature computed in gas phase to that of condensed-matter phase. To com-
pute the isomerization free energy in condensed-matter phase, we built two 125-molecule boxes each with E- and 
Z-isomers (Fig. 8b,c) and equilibrated both at 1 atm and 300 K for 100 ps to compare the total energy. It was found 
that compared to the gas-phase isomerization free energy (−8.0 kcal/mol, 183 J/g), the solid-state isomerization 
free energy is nearly doubled (−14.8 kcal/mol, 340 J/g). The trend indicates there is a relatively stronger stabili-
zation effect for E-isomers in the presence of intermolecular interactions when compared to the same effect for 
Z-isomers. It also provides a direct theoretical evidence of possibility in tuning such solid-state effect to control 
the energetics of isomerization in the materials containing azobenzene group.

Figure 7.  (a) Concentration dependent Z-E isomerization kinetics of AzoPMA 3 in THF and DCM. Graph 
of the Z-E isomerization rate coefficient (s−1) vs. AzoPMA 3 concentration (mg/mL) in THF (red marker) vs. 
DCM (blue marker). Data for THF is fit with a linear line, while DCM is fit with a power law equation. (b–d) 
DLS of AzoPMA 3 in THF and DCM. Representative semi-log plots of intensity (%) vs. diameter (nm) of (b) 
E-AzoPMA 3 (1 mg/mL) and (c) Z-AzoPMA 3 (1 mg/mL) in THF or DCM. (d) Plot of average aggregate size 
(from three measurements) vs. concentration of E- or Z-AzoPMA 3 in THF or DCM.
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AzoPMA Polymer System.  Extending the theoretical analysis towards the AzoPMA system, three individual 
molecular models based on AzoPMA 3 were built for potential morphological representations in these materials 
(Fig. 8d–f). The models were set as di-chains in a simulation box of side-chain functionalized PMA backbone 

Figure 8.  (a) Potential energy surface with respect to N-N dihedral angle of azobenzene computed from 
OPLS2005 force field in comparison to three different quantum chemical calculations using localized MP2 
(LMP2) method and hybrid density functional theory (DFT) with B3LYP and M06-2X functionals, respectively. 
Illustration of simulation box for (b) E-isomeric and (c) Z-isomeric azobenzene in condensed-matter phase 
containing 125 molecules equilibrated at standard condition. (d–f) Illustrations (top) and snapshots (middle) 
of di-chain AzoPMA models where (d) both backbone chains and side-chain groups are in close contact 
each other, (e) only side-chain groups are in close contact while backbone chains are apart from each other, 
and (f) both backbone chains and side-chain groups are apart from one another. Theoretical predictions of 
isomerization energy per azobenzene group for the morphological representations (bottom) indicate the 
intermolecular interactions between side-chain (azobenzene) groups play the key role in determining the 
energetics of the isomerization.
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in different relative positions to represent simplified morphology after the solvent evaporation. Each of the 
three models corresponds to the case where backbone chains and/or side-chain groups in solid-state AzoPMA 
actively interact with one another. Each chain was built with eleven repeating units of methyl acrylate monomers, 
one of which is functionalized with an azobenzene group to represent the side-chain chemistry of AzoPMA. 
Conformation of the azobenzene group was set as either E- or Z-isomeric states before energy minimization of 
the entire di-chain model. E-Z isomerization energy was then sampled as the energy difference at 0 K originated 
from the two isomeric states within the model. As seen from the Fig. 8d–f, there is a drastic increase in the 
extent of isomerization energy when azobenzene groups are in close proximity (Fig. 8d,e). We also note that the 
extent of isomerization energies in these morphological representations (−41.8 kcal/mol and −45.6 kcal/mol) 
was nearly three-times larger than what was observed from an isolated azobenzene molecule (−14 kcal/mol). 
This can be explained that the molecular stabilization effect of the E-isomers is amplified by the polymer matrix 
when the side-chain groups are aligned to sit nearby at the E-isomeric conformation. On the other hand, the same 
effect does not hold for Z-isomers owing to the positional restraints over the azobenzene group by the backbone 
attachment, resulting in separation between the side-chain groups in Z-isomeric states. Also, relative positions 
of the backbone chains seem to have little effect over the energetics of E-Z isomerization. Observations from the 
molecular simulation and analysis of AzoPMA suggest the following: (1) Intermolecular interactions between the 
side-chain groups play important role in enhancing the energy density of AzoPMA, (2) π-stacking between the 
conjugated groups is likely the primary source of enhanced stabilization of the E-isomeric states, and (3) Relative 
positions of azobenzene groups through solvent dispersion could be the key in linking the solvent effect to the 
control of energy capacity.

Glass Transition Temperature Difference.  Glass transition temperature (Tg) is related to free volume 
and polymer segmental motion47, and the calculation energy analysis reveals that the major reason for the high 
exotherm is the stabilization of the E-isomer state. Solvent processing with THF provides less polymer aggre-
gation in a solution state, resulting in cooperative isomerization with high-energy density solids. Therefore, we 
assume that there is Tg difference between AzoPMA fabricated from DCM and THF in the second heating of DSC 
(after discharging). To test this, DSC measurement are set the same way as the previous one we set before. In the 
first heating curve, it is almost impossible to find Tg because heat release from Z-E isomerization starts before 
Tg (Tg = 62 °C) of pristine AzoPMA 3. However, there is a Tg difference (~130 °C for DCM sample, ~90 °C for 
THF sample) between AzoPMAs fabricated from DCM vs. THF in the second heating of DSC (Supplementary 
Fig. S29). This indicates that the environment surrounding polymer strand is different. This is also consistent with 
the data from WAXS. Thus, we conclude that high free volume not only accelerates Z-E isomerization but also 
provides sufficient space for the E-isomer to have a strong stabilization through π-π stacking.

These studies indicate that Z-AzoPMA 3 films from THF pack in such a way, after isomerization, that the 
E-isomer can engage in π-π stacking. The stabilization can lead to a cooperative isomerization, which has been 
reported in polymers containing pendant azobenzene units20. In films obtained from DCM, there is insufficient 
space for the E-isomer to engage in π-π stacking. Our studies indicate that the origin of this packing difference is 
related to the nature of interaction between the solvent and the polymer backbone.

Conclusion
We have demonstrated the fabrication of high-energy density azobenzene-based syndiotactic polymers. We 
have also demonstrated the critical role of polymer-solvent interactions on the fabrication of structures having a 
high-energy density. Different solvent processing can change physical polymer properties to tune energy density, 
heat-release shape, and activation energy of Z-E isomerization of AzoPMA materials. We find that if the solvent 
preferentially interacts with the polymer backbone, then it does not solvate the dipole formed in the charged 
Z-isomer, leading to aggregation in solution. We have shown that this aggregation in solution leads to a more 
compact inter-polymer packing, a more disorderly alignment of dipoles, and insufficient volume between the pol-
ymer backbones for π-π stacking between the pendant E-isomers after isomerization. These factors lead to a solid 
active layer that lacks cooperative isomerization, and thus lead to lower energy densities. Therefore, we deter-
mined that the processing solvent should sufficiently solvate the dipole formed in the charged (Z) state, in order to 
reduce aggregation in solution and lead to optimal structures that allows for efficient π-π stacking for high-energy 
density. Moreover, the theoretical investigation and the isomerization energy trend observed with respect to the 
morphological variation provides first-principles-based grounds to explain why and potentially how the solvent 
dispersion of AzoPMA materials would affect the E-Z isomerization energy in condensed-matter phases.

Methods
General Characterization Methods.  1H NMR spectra were recorded on a 400 MHz Bruker Avance or 
500 MHz Bruker Ascend NMR spectrometer, and 13C NMR spectra were proton decoupled and recorded on a 
500 MHz Bruker Ascend NMR spectrometer using the carbon signal of the deuterated solvent as the internal 
standard. 19F NMR spectra were recorded on a 500 MHz Bruker Ascend NMR spectrometer. Chemical shifts are 
reported in parts per million (ppm) using the following abbreviations for peak multiplicities: s, singlet; d, doublet; 
t, triplet; m, multiplet; br, broad peak. Gel permeation chromatography (GPC) analyses were performed on an 
Agilent 1260 tetrahydrofuran (THF) GPC with polystyrene as a standard and toluene as the flow rate marker 
and RI detection mode. UV-Vis absorption spectra were measured using a Shimadzu UV 3600PC spectrometer 
or Shimadzu UV-2401PC spectrometer, and stock solutions were prepared in DCM or THF. The UV irradiation 
source for testing energy density of AzoPMA polymers was a 450 W Hanovia mercury arc lamp (Cat. #: 7825-34, 
ACE glass Inc.) or Black-Ray® UV Bench lamp (XX-15L, UVP Inc.). The UV irradiation source for testing ther-
mal isomerization and kinetics studies was a TLC lamp (Model UVGL-25) at long wave (~365 nm) irradiation. 
Thermogravimetric analysis (TGA) was performed on a TA instruments Q50. Dynamic light scattering (DLS) 
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was determined by Nano-ZS (Malvern Inc.) Zetasizer. Differential scanning calorimetry (DSC) was performed on 
a TA instruments Q200. Field emission scanning electron microscopy (Magellan 400 L XHR-SEM) was operated 
to examine the morphology of solid-state AzoPMA films dried from DCM or THF on silicon substrate.

Polymer Synthesis and Characterization.  Details of the experimental procedures and spectroscopic 
analyses of AzoPMA 1, 2, and 3 in this manuscript can be found in Supplementary Fig. S1–15.

Charging condition for energy density check.  Solution samples in THF or DCM were charged using 
visible filtered 450 W UV radiation source (Hanovia mercury arc lamp, Cat. #: 7825-34, ACE glass Inc.) at 25 °C 
for at least 1 h or Black-Ray® UV Bench lamp (XX-15L, UVP Inc.) at 25 °C for at least 12 h.

Differential Scanning Calorimetry.  Differential scanning calorimetry (DSC) was performed on a TA 
instruments Q200 to check energy density of AzoPMA. The process of DSC measurement is as follow: equilibrate 
at 0 °C, isothermal at 0 °C for 5 min, heat to 140 °C at 5 °C/min, isothermal at 140 °C for 5 min, cool to 10 °C at 
5 °C/min, isothermal at 10 °C for 5 min, and then heat to 150 °C at 5 °C/min. N2 atmospheric condition was main-
tained at 50 mL/min throughout all DLS measurements. The average energy density value for AzoPMA 1 dried 
from THF is calculated from two samples, the average density value for AzoPMA 2 dried from THF is calculated 
from thirteen samples, the average energy density for AzoPMA 3 dried from THF is calculated from four samples, 
and the average energy density for AzoPMA 3 dried from DCM is calculated from three samples. The energy 
density of AzoPMA polymers is calculated by integration of the area under the exotherm peak in the first heating 
region through the software of “TA Instruments Universal Analysis 2000”.

IR Imaging.  IR imaging was conducted with infrared camera (Bullard Inc.) to check heat release from 
the solid-state Z-AzoPMA 3. AzoPMA 3 in DCM or THF was charged using a Black-Ray® UV Bench Lamp 
(XX-15L, UVP Inc.) with visible filter at a distance of 10 cm for overnight and then transferred to an aluminum 
foil-wrapped vial. The solvent was evaporated in vaccuo to get a solid-state sample. The soild AzoPMA 3 was then 
further dried under vacuum for 5 h. The sample (~11 mg) was hermetically sealed in Al DSC pans for IR imaging. 
Discharging of Z-AzoPMA 3 dried from THF or DCM was done on a pre-heated hot plate while monitoring with 
an infrared camera.

Wide-Angle X-Ray Scattering.  Solid AzoPMA 3 polymer powders dried from THF or DCM were pressed 
into pellets for WAXS characterization. Pure polymer pellets were measured with Ganesha SAXS-Lab system 
using Cu K-α radiation (0.154 nm), at a sample-detector distance of ~101 mm.

Kelvin Probe Force Microscopy.  KPFM measurements were made in air using Asylum Research 
MFPD-SA instrument and Pt/Ir coated silicon probe, used as receive from AppNano (ANSCM-PT). 
Measurements were carried out in a two-pass manner; in the first pass the probe is mechanically driven to meas-
ure topography, in the second pass the probe is driven at its AC voltage resonant frequency at height of 30 nm 
above the surface to surface potential. Mechanical oscillations from potential differences between the sample and 
the probe are canceled by an applied DC bias via a feedback loop. Three scans were performed on each sample at 
different locations, with a scan size of 5 μm × 1.25 μm (512 pixel × 128 pixel) at 0.5 Hz. Histogram plots of counts 
vs. potential were made for each scan, and fit with a Gaussian distribution to obtain the average and standard 
deviation of the potential for a particular scan. The potentials reported in the text are the averages and standard 
deviations of the three independent scan averages.

UV-Vis Kinetics for Thermal Z-E Isomerization of AzoPMA 3 Solution.  A solution of AzoPMA 3 in 
THF or DCM was taken and the UV-vis spectra were recorded to check thermal Z-E isomerization of AzoPMA 3 
solution. The AzoPMA 3 solution in a vial was capped and sealed and exposed to UV light (~365 nm) in dark. The 
UV-vis spectra of the UV irradiated samples were periodically recorded over a week in dark. The vial was then 
sealed again and wrapped in an aluminum foil and placed in dark.

UV-Vis Kinetics for Thermal Z-E Isomerization of Solid AzoPMA 3 Films.  AzoPMA 3 dissolved in 
THF or DCM was exposed to UV light (~365 nm) in dark. A microscope glass slide (3″ × 1″ × 1 mm, VWR Inc.) 
was coated by drop casting of the charged AzoPMA 3 solution. After drying at room temperature for 20 min in 
dark, the glass slide was put to vacuum oven at room temperature for 10 min for further dry. The UV-vis spectra 
of the UV irradiated samples were periodically recorded over a week in dark. Three different samples from THF 
or DCM were made for calculating the rate coefficient of Z-E isomerization. The glass slides were placed in dark 
during entire UV-Vis measurement.

Dynamic Light Scattering.  DLS experiments were performed on a Malvern Nano-ZS Zetasizer using a 
1 cm path length quartz cuvette. A solution of E-AzoPMA 3 (pristine AzoPMA 3) in dried THF or DCM (1, 2, 
5, and 10 mg/mL) was prepared, firmly sealed to prevent solvent from any evaporation, and then heated to 50 °C 
for 10 min in the dark to convert any residual Z-isomer to E-isomer. The samples were then cooled to 25 °C. After 
12 h, the samples were tested by DLS. A solution of Z-AzoPMA 3 in dried THF or DCM (1, 2, 5, and 10 mg/mL) 
was prepared with ~365 nm UV irradiation (source: Black-Ray® UV Bench lamp) for overnight from the stock 
solutions of E-AzoPMA 3 (1, 2, 5, and 10 mg/mL). All the samples were tested by DLS within 1 h after UV irradi-
ation. Three scans were made for each sample. Intensity vs. diameter plots were used to determine aggregate size, 
volume vs. diameter plots were used to approximate the percent of aggregate. The temperature for DLS measure-
ment was maintained at 25 °C throughout the experiment.
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Computational Calculation Methods.  The entire computational work presented here, including quantum 
chemical calculations and force-field-based analyses, was performed utilizing Schrödinger Materials Science Suite 
(Version 2.2). Quantum chemical simulations for potential energy surfaces of E-Z isomerization were run by the 
suite’s quantum chemistry package Jaguar (Version 9.1)48. Force-field-based static and dynamic simulations were 
carried out using the suite’s molecular mechanics and molecular dynamics packages: MacroModel (Schrödinger 
Release 2016-4: MacroModel) and Desmond Molecular Dynamics System (Schrödinger Release 2016-4: 
Desmond Molecular Dynamics System, Maestro-Desmond Interoperability Tools), respectively. OPLS2005 force 
field was used to describe the structure-energy relationship throughout the force-field-based simulations40,49.

Data availability.  All data generated or analyzed during this study are included in this published article (and 
its Supplementary Information files).
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