
micromachines

Review

Gold–Carbon Nanocomposites for Environmental
Contaminant Sensing

Shahrooz Rahmati 1,2,3,4,* , William Doherty 2, Arman Amani Babadi 5 , Muhamad Syamim Akmal Che Mansor 4,
Nurhidayatullaili Muhd Julkapli 4,*, Volker Hessel 6,7 and Kostya (Ken) Ostrikov 1,2,3

����������
�������

Citation: Rahmati, S.; Doherty, W.;

Amani Babadi, A.; Akmal Che

Mansor, M.S.; Julkapli, N.M.; Hessel,

V.; Ostrikov, K. Gold–Carbon

Nanocomposites for Environmental

Contaminant Sensing. Micromachines

2021, 12, 719. https://doi.org/

10.3390/mi12060719

Academic Editor: Stephen

Edward Saddow

Received: 9 March 2021

Accepted: 16 June 2021

Published: 19 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia;
kostya.ostrikov@qut.edu.au

2 Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of
Technology (QUT), Brisbane 4000, Australia; w.doherty@qut.edu.au

3 Centre for Material Science, Queensland University of Technology (QUT), Queensland, Brisbane,
Brisbane 4000, Australia

4 Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Graduate Studies, University of
Malaya, Kuala Lumpur 50603, Malaysia; syamim.akmal93@gmail.com

5 Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science,
University of Malaya, Kuala Lumpur 50603, Malaysia; arman_amani@um.edu.my

6 School of Chemical Engineering and Advanced Materials, The University of Adelaide,
Adelaide 5005, Australia; volker.hessel@adelaide.edu.au

7 School of Engineering, University of Warwick, Library Rd, Coventry CV4 7AL, UK
* Correspondence: shahrooz.rahmati@hdr.qut.edu.au (S.R.); nurhidayatullaili@um.edu.my (N.M.J.)

Abstract: The environmental crisis, due to the rapid growth of the world population and global-
isation, is a serious concern of this century. Nanoscience and nanotechnology play an important
role in addressing a wide range of environmental issues with innovative and successful solutions.
Identification and control of emerging chemical contaminants have received substantial interest in
recent years. As a result, there is a need for reliable and rapid analytical tools capable of perform-
ing sample analysis with high sensitivity, broad selectivity, desired stability, and minimal sample
handling for the detection, degradation, and removal of hazardous contaminants. In this review,
various gold–carbon nanocomposites-based sensors/biosensors that have been developed thus far
are explored. The electrochemical platforms, synthesis, diverse applications, and effective monitoring
of environmental pollutants are investigated comparatively.
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1. Introduction

During recent years, the evolution of nanomaterials-based analytical methods has
made remarkable advances for various important applications such as fundamental bio-
logical analysis [1,2], medical and clinical diagnostics [3–5], pharmaceutical analysis [6–8],
monitoring of health [9–11], food safety [12–14], and environmental monitoring [15–17].
Monitoring the different hazardous pollutants in surrounding environmental elements (air,
land, and water) is one of the most important aspects of public health and environmental
care. It has generated considerable scientific interest and social concern to protect the
environment from the impact of the distribution of natural/industrial organic and inor-
ganic contaminants [18]. Nanoscience and nanotechnology are the most recent advanced
scientific fields that can serve humankind in this purpose [19].

Nowadays, the emerging nanoscience and nanotechnology techniques have provided
insight to design novel nanocomposite materials with unique properties and structures
to achieve cooperatively enhanced performance to promote the detection, identification,
and tracking of environmental matters [20]. A wide range of regulated and unregulated
natural and chemical materials have posed a threat to environmental security, including
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inorganic gases (carbon monoxide (CO), carbon dioxide (CO2), sulphur dioxide (SO2),
nitric oxide (NO), etc.), volatile and semi-volatile organic compounds (aldehydes, ketones,
hydrocarbons), heavy metals (As(III), Zn(II), Cd(II), Cu(II), Ni(II), Pb(II), Hg(II), As(V), etc.)
and persistent organic pollutants (POPs) (aldrin, chlordane, dieldrin, heptachlor (DDT),
toxaphene, endrin, mirex, hexachlorobenzene, polychlorinated biphenyls (PCB), furans,
dioxins, heptachlor, etc.) which are produced by human and animal faecal waste, industry
and agriculture activities, natural toxins, etc. [21–23].

The most common analytical techniques for the quantification and identification of
chemical pollutants are flame atomic absorption spectrometry (FAAS) [24,25], atomic
absorption spectrometry (AAS) [26,27], gas/liquid chromatography–mass spectrome-
try [28,29], inductively coupled plasma mass spectroscopy (ICP–MS) [30,31], inductively
coupled plasma atomic emission spectroscopy (ICP–AES) [32,33], high performance liquid
chromatography (HPLC)–fluorescence (FL) [34,35] and ultraviolet (UV) detection [36,37],
and quantitative polymerase chain reaction (qPCR) [38,39]. Although the above-mentioned
analytical protocols have shown very high sensitivity and specificity, these techniques are
limited by either a long procedure of sample preparation or complicated equipment. There-
fore, we categorised them as time-consuming techniques. Moreover, these instruments are
very expensive, and a high level of expertise is essential to perform an analytical analysis
using each of them. In addition, online and real-time monitoring and sensing of different
chemicals with outstanding sensitivity and spatial resolution are highly required [38].
The design and development of a low-cost, flexible, sensitive, and mobile monitoring
system is a critical task. Nanomaterials with unique physicochemical properties have an
incredible potential for designing detecting devices and providing a solution for pollutant
elimination [21].

In recent years, growing attention has been paid to nanoscale materials research,
with a particular focus on metallic nanoparticles and their applications in environmental
analysis [40,41]. Metal nanoparticles (MNPs) have a high surface area ratio of atoms with
free valences to the cluster of total atoms, which allows them to enhance and improve the
activity of chemical reactions. Furthermore, size controllability, conductivity, magnetism,
light-absorbing, mechanical strength, chemical stability, emitting properties, and surface
tenability provide a perfect platform for developing such a nanostructure in sensing and
catalytic applications [42]. MNPs are increasingly used in many electrochemical, elec-
troanalytical, and bioelectronic applications owing to their extraordinary electrocatalytic
properties [43]. Over the last decade, NPs electrochemical behaviour and applications have
enhanced remarkably [42]. As a result, the fabrication of advanced sensitive electrochemical
sensors and biosensors with the incorporation of nanostructured materials is important [44].
Among the most extensive research on metallic NPs, gold nanomaterials (AuNMs) have
received considerable research attention in the electrochemical field due to their advantages
in catalysis, mass transport, good interface-dominated properties, highly effective surface
area, and control over the surrounding environment [45]. Additionally, the utilisation and
prospects of AuNMs including gold nanoparticles (AuNPs), gold nanoclusters (AuNCs),
gold nanoporous (AuNPG), and their various nanocomposites provide a great opportunity
to increase AuNM applications further in electrochemical platforms for environmental
monitoring [38].

Nanocomposites are combinations of different kinds of nanomaterials with other
molecules or nanoscale materials, such as nanotubes or nanoparticles. Generally, these
unique structures possess novel physicochemical properties which develop new types
of applications [46,47]. During recent years, numerous gold-based nanocomposites have
been established as follows: gold–carbon nanotube nanocomposites [48–50], polymer–
gold nanocomposites [51–53], graphene–gold nanocomposites [54–56], biomolecule–gold
nanocomposites [57,58], metal oxide–gold nanocomposites [59,60]. Different gold-based
nanocomposites have been used in diverse fields such as sensors [61–63], biosensors [64–66],
optics [67–69], and medical areas [70–72]. Hybridisation of MNPs and carbon-based ma-
terials is considered as a new approach for creating unique hybrid materials with novel
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properties for a variety of applications (e.g., gas sensors, catalysts, magnetic and electronic
devices) [73]. Carbon-based nanomaterials (CBNs) such as graphenes (GRs), graphene
oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), single-wall carbon
nanotubes (SWCNTs), multi-wall carbon nanotubes (MWCNTs), ordered graphitised meso-
porous carbons (GMCs), carbon nanofibers (CNFs), and carbon nanohorns (CNHs) have
tremendous research interest and play an important role in the development of a variety of
nanocomposites. Their remarkable properties, such as large surface area, excellent electrical
conductivity, high chemical, and thermal stability, and strong mechanical strength, make
CBNs an ideal candidate to be used as a support in gold nanocomposites matrix to fabricate
various electrochemical biosensors for analysis of environmental contaminants [20].

A possible strategy for overcoming the inherent limitations of carbon and gold as
sub-materials in environmental detection applications is to combine them in the form of
nanocomposites. The synthesis of nanocomposites-based electrode materials comprising
AuNPs and CBNs has provided enhanced sensitivity and limit of detection (LOD). In par-
ticular, CNT and GR materials have drawn special attention owing to their low electrical
resistivity and high electron mobility, offering a strong enhancement to the electrical conduc-
tivity of electronic materials. They have been used as a sensing element in various classes of
electrochemical sensors/biosensors to achieve a low LOD in a wide range of environmental
applications [38]. This review focuses on the most recent applications of gold–carbon
nanocomposites in the design and synthesis of various electrochemical platforms-based
sensors and biosensors for the detection, identification, and quantification of emerging
chemical contaminants, allowing for effective monitoring of environmental pollutants.

2. Synthesis and Fabrication of NPs

Currently, NPs are fabricated using mostly chemical and physical processes. Chemi-
cal techniques of synthesising NPs are more effective due to easy operation and control.
Chemical techniques provide identical size and shape and possess the ability to design
necessary functional groups on the surface that are required for use as nanosensor particles.
In general, the inorganic NPs that are synthesised using solution-based chemical reactions,
are capped by organic shells named stabilisers or surface-capping agents. These types of
agents contributed to ensuring colloidal stability and potential surface modification. The
agents prevent undesired aggregation and give the capability to attach a wide variety of
functional groups and sites for biological modification. Nevertheless, producing monodis-
persed NPs with well-controlled particle size and shape is still a considerable challenge
faced by nanotechnology research [74].

2.1. Gold Nanoparticles

The intrinsic properties of AuNPs are governed by their shape, size, and structures.
These remarkable characteristics have prompted a wide range of research to discover
dependable and useful fabrication techniques for synthesising AuNPs with various struc-
tures, sizes, and shapes based on their application. In addition to the typical monodisperse
colloidal spherical shape, different shapes of AuNPs have also been synthesised. A compi-
lation of the more common shapes is shown in Figure 1. Various shapes can be obtained by
employing different synthesis procedures as well as changing numerous parameters, in-
cluding the condition of reactions, reactant concentration, and the nature of solvent [75,76].
The high chemical stability, unique size- and shape-dependent optical and electrochem-
ical properties of AuNPs have made them a model NP in different fields of research,
such as crystal growth [77–79], catalysis [80–83], nanosensors [84,85], electron-transfer
mechanism [86,87], DNA/RNA assays [88–90], and self-assembly [74,91,92].

By far, the most popular and standard protocol used for obtaining monodisperse
aqueous Au colloidal is a variation on the classic Turkevich citrate reduction route, called
citrate–Au nanoparticles synthesis [74]. This method was first pioneered in 1951 [93] and
later refined by G. Frens in 1973 [94] to control the dimensions of AuNPs by adjusting
the ratio of the stabilising and reducing agents in Au suspensions. The principle of this
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technique lies in the reduction of Au3+ ions to Au0 atoms in the presence of reducing
agents, for example, citrate [75]. Briefly, in this approach, a freshly prepared aqueous
solution of sodium citrate tribasic dihydrate is added to a boiling solution of chloroauric
acid (HAuCl4·H2O). During the first few minutes of the reaction, the colour of the solution
changes from yellow to blue black to a deep wine red, suggesting the formation of AuNPs.
In the next step, the sodium citrate initially functions as a reducing agent, which results in
a reduction of Au3+ ions to neutral gold atoms. Furthermore, it acts as a stabilising agent
and the negatively charged citrate ions stick to the AuNPs surface, providing the surface
charge that repels the particles away from each other, thus preventing aggregation and
precipitation. Typically, this method is applied to obtain modestly monodisperse spherical
AuNPs suspended in water with the size of approximately 10–20 nm in diameter [95], by
modifying the concentration of sodium citrate, various sizes of nanosphere can be achieved,
mostly in a range of 16 nm–147 nm [75,96]. However, to produce smaller particle sizes or
synthesise Au in organic solvents (oil–water interface), the Brust method was discovered
in 1994 [97], in which AuNPs are developed in toluene with controlled diameters in the
range from 1.5 to 5 nm. The method involves the transfer of an aqueous solution of Au
ion to an organic solvent such as toluene using a phase transfer agent or surfactant-like
tetraoctylammonium bromide (TOAB), followed by a reduction procedure with applying
sodium borohydride (NaBH4) in the presence of an alkanethiol such as dodecanethiol.
The organic phase of the solution represents a fast change in colour from orange to deep
brown by the addition of NaBH4 [75,98]. Although spherical AuNPs with various sizes
can be synthesised using Turkevich and Brust methods, AuNPs can also exist in various
nanostructure forms such as rods [99,100], cubes [101,102], plate [103,104], prism [103,105],
wire [106,107], belt [108,109], comb [108], etc.

Monodispersed Au nanorods (AuNRs) with diverse aspect ratios are synthesised
using a seed-mediated approach [99,110]. First, a seed solution needs to be prepared by
mixing up an aqueous solution of cetyltrimethylammonium bromide (CTAB) and HAuCl4
before the quick addition of ice-cold NaBH4 under vigorous stirring which results in the
formation of a brownish solution. Then, to grow nanorods (NRs), a growth solution with a
suitable amount of CTAB, HAuCl4, AgNO3, and a weak reducing agent such as ascorbic
acid (vitamin C) are mixed. The seed solution is then introduced to the colourless growth
solution of the metal salt and left to age. A colour change based on the length of synthesised
NRs can be observed in approximately 20 min. The length variation of the NRs is controlled
by the amount of AgNO3 contained in the growth solution. Adding more AgNO3 leads to
producing longer NRs [96,99]. The most widely preferred technique to alter the geometry
of Au nanostructures in other shapes is to modify seed-mediated growth by changing
seeds, reducing and structure-directing agents concentrations [75,76].
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Au nanoplates (E) [104], Au nanoprism (F) [103], Au nanowire (G) [106], Au nanobelt (H), and Au nanocomb (I) [108]. 
Reprinted with permission from respective sources. 

Niu et al. [101] report a modified seed-mediated growth methodology to change the 
shape and size of Au nanostructures to synthesis single-crystalline rhombic dodecahedral, 
octahedral, and cubic Au nanocrystals in a three-step procedure involving synthesising of 
AuNRs, overgrowing of the NRs into seeds, followed by using cetylpyridinium chloride 
as the surfactant. Huang et al. [103] discovered a route for controlling the size and shape 
of Au nanostructures by manipulating the concentration of CTAB while keeping the con-
centration of HAuCl4 unchanged without using any reducing agent. They successfully 
synthesised three-dimensional (3D) hexagonal and two-dimensional (2D) octahedral na-
noplates and nanoprisms structure of Au nanocrystals. The amount of seed solution also 
plays a significant role in synthesising of AuNRs. Kim F et al. [106] reported synthesising 
Au nanowires by a three-step seeding method using significantly lower levels of seeds in 
the acidic growth solution. In another research, by reduction of HAuCl4 by ascorbic acid 
in aqueous mixed solutions of CTAB and the anionic surfactant sodium dodecyl sulfonate 
(SDS), Zhao N et al. [108] synthesised well-defined gold nanobelts along with unique gold 
nanocombs made of nanobelts.  

  

Figure 1. TEM images of Au nanostructures (A–I), Au nanospheres (A,B) [111], AuNRs (C) [100], Au nanocubes (D) [101],
Au nanoplates (E) [104], Au nanoprism (F) [103], Au nanowire (G) [106], Au nanobelt (H), and Au nanocomb (I) [108].
Reprinted with permission from respective sources.

Niu et al. [101] report a modified seed-mediated growth methodology to change the
shape and size of Au nanostructures to synthesis single-crystalline rhombic dodecahedral,
octahedral, and cubic Au nanocrystals in a three-step procedure involving synthesising
of AuNRs, overgrowing of the NRs into seeds, followed by using cetylpyridinium chlo-
ride as the surfactant. Huang et al. [103] discovered a route for controlling the size and
shape of Au nanostructures by manipulating the concentration of CTAB while keeping
the concentration of HAuCl4 unchanged without using any reducing agent. They success-
fully synthesised three-dimensional (3D) hexagonal and two-dimensional (2D) octahedral
nanoplates and nanoprisms structure of Au nanocrystals. The amount of seed solution also
plays a significant role in synthesising of AuNRs. Kim F et al. [106] reported synthesising
Au nanowires by a three-step seeding method using significantly lower levels of seeds in
the acidic growth solution. In another research, by reduction of HAuCl4 by ascorbic acid in
aqueous mixed solutions of CTAB and the anionic surfactant sodium dodecyl sulfonate
(SDS), Zhao N et al. [108] synthesised well-defined gold nanobelts along with unique gold
nanocombs made of nanobelts.
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2.2. Carbon Allotropes

Carbon and its allotropes have received significant attention in the field of sens-
ing applications because of their unique exceptional properties, mainly in the form of a
nanoscale [112]. The structures of different allotropes of carbon are shown in Figure 2 [113].
The carbon atom’s versatility sits in the variety of its chemical bonds which own wide
sorts from sp3 to sp2, sp1, and combinations of them to yield amorphous or crystalline
solids [112]. Diamond and graphite are the most popular crystalline forms of carbon.
Diamond consists of carbon atoms in four-coordinated sp3, forming an extended 3D net-
work, whose design is the chair conformation of cyclohexane. Graphite is made up of
carbon atoms in three-coordinated sp2, forming planar sheets, whose motif is the flat
six-membered benzene ring [114]. Lonsdaleite is a hexagonal crystallographic-structured
carbon-based material that can be synthesised similar to a diamond at high static pressure
and high temperature [115]. Fullerenes have attracted considerable attention by having
a closed-cage structure consisting entirely of three-coordinate carbon atoms tiling the
spherical or nearly spherical surfaces, which were accidentally discovered in 1985 by Kroto
et al. [116,117] through exploring the nature of carbon represented in interstellar space [114].
Amorphous carbon is a non-crystalline solid carbon material lacking a long-range crys-
talline order. However, some short-range order is observed in the positions of the carbon
atoms. Chemical bonds between atoms are different kinds of orbital configurations of
sp2- and sp3-hybridised bonds with numerous concentrations of dangling bonds. The
properties of amorphous carbon are significantly changed based on the formation methods
and conditions [118]. GR is already known in nature as the most important component
of graphite [119]. Geim and Novoselov were awarded the Nobel Prize in Physics in 2010
for discovering GR nanomaterials as a “wonder multifunctional material” [120]. GR has
primarily been synthesised from graphite and carbon precursors using top-down [121] and
bottom-up [122] methods, respectively. Epitaxial growth of GR on silicon carbide (SiC), and
different metal substrates, such as Ni, Pt, Cu, Ir, Co, [123–129], solvothermal and organic
synthesis [130–133] are some of the methods that have been identified for mechanical
and chemical exfoliation of graphite. Chemical exfoliation of graphite can produce GO,
which has been reported for over 150 years, with the first instance being carried out by B.C.
Brodie in 1859. GO is insulating but easily dispersible in water because it has oxygenated
functional groups attached to its basal plane and edges [134]. Via the reduction process,
rGO can be generated from GO [135]. CNTs are the ordered, hollow GR-based nanomate-
rials made up of carbon sp2-hybridised atoms. They can be classified into the following
2 categories: (1) single-walled CNTs (SWCNTs), consisting of a single sheet of carbon
that has been rotated into a tubular form, and (2) multi-walled CNTs (MWCNTs), which
are comprised of several concentric SWCNTs having a mutual longitudinal axis [19,136].
Synthesis of CNTs has been conducted in various conditions. An active catalyst, a carbon
source, and sufficient energy are needed for its synthesis [137]. Commonly used techniques
for the production of CNTs include arc discharge, laser evaporation/ablation, chemical
vapour deposition, electrolysis, sonochemical/hydrothermal, and solar technique [138].
The well-ordered pore structure and uniform pore size of GMCs make them attractive
materials in various applications such as catalyst supports. They have a high surface
area, significant graphite-like domains, enhanced conductivity, and efficient adsorption
and desorption properties [139]. GMCs can be synthesised using different techniques,
including catalytic graphitisation, high-temperature or/and high-pressure treatment of
carbon precursors, and high-temperature chemical vapour deposition. Among these, the
catalytic graphitisation method has received a lot of attention due to the lower temperature
(900 ◦C) of thermal treatment, lowering the cost of graphitic carbon materials. The common
GMCs synthesis steps consist of the preparation of a hard template, filling it with carbon
precursors and catalysts, thermal treatment at high temperatures, and lastly, removing
the template by dissolution or thermal treatment. Until now, catalysts such as Ni, Mn, Fe,
and Co have been used for the hard templating catalytic graphitisation [140]. CNFs are
one of the most important types of carbon fibres, and they’re a promising material for a
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variety of applications, including sensor electrode materials. Catalytic thermal chemical
vapour deposition growth and electrospinning, followed by heat treatment are the two
main methods used to produce CNFs [141]. CNHs are carbon nanomaterials (CNMs) with
a conical shape made from a sp2 carbon sheet. In a variety of applications, they are a viable
and practical substitute for CNTs and perhaps GR. Based on the approach utilised to inject
energy into the carbon, synthesis processes could be divided into three groups, namely,
arc discharge, laser ablation, and Joule heating. Unfortunately, as a result of aggregating
into spherical clusters, their research and development has decreased. A new strategy of
separating these “dahlia-like” clusters into individual CNH based on reduction with potas-
sium naphthalenide has recently solved this constraint, and currently, they are produced in
industrial quantities [142].
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In the last two decades, CNMs have become one of the most exciting and extensively
studied carbon materials, which attracted substantial attention in the electrochemical fields
and found different applications due to their vast structural diversity and allotropic forms
in many diverse areas. The classification of these materials depends on their dimensions.
For example, zero-dimensional (0D) structures such as fullerenes, carbon dots, onion-like
carbon, graphene dots, and nanodiamonds; one-dimensional (1D) form such as CNFs,
CNHs, and CNTs (single and multi-walled); two-dimensional (2D) layered materials such
as GR, graphene nanoribbons, and multi-layer graphite nanosheets; 3D structures such
as the hybrid form consisting of multiple carbon nano-allotropes (GR-CNTs) [112,113].
Compared with other types of nanomaterials such as MNPs, transition metal dichalco-
genides (TMDs), and metal oxide nanowires (NWs), CNMs have shown desirable aspects
including high chemical stability, wide surface area to volume geometry, low cost, relatively
inert electrochemistry, and rich surface chemistry for different types of redox reactions.
Therefore, it has been used in a variety of sensors for highly sensitive and selective electro-
chemical determination applications, such as heavy metals, toxins, pesticides, etc. [112].
A new form of glass-like carbon (glassy carbon) has been introduced in electrochemistry
for improved detection of targeted hazardous contaminants. It is an amorphous carbon
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allotrope produced by the controlled pyrolysis of an organic polymer, with a turbostratic
structure in which poorly organised graphitic planes are arranged in ribbons as in poly-
mers, giving rise to an isotropic material on average [143–145]. Krajewaska et al. [146]
developed an electrochemical biosensor using glassy carbon electrodes (GCE) coated with
SWCNTs and haemoglobin (Hb/SWCNT/GCE) for amperometric detection of acrylamide
in water solutions. The existence of toxic acrylamide in a variety of foods, including
potato crisps, French fries, and bread, was verified. The biosensor’s LOD was extremely
low (1.0 × 10−9 M). The electrodes were found to be ideal for the sensitive detection of
acrylamide in food samples following the verification test in a matrix obtained by water
extraction of potato crisps.

3. Gold–Carbon Nanocomposites

The significant privilege of using nanocomposites over conventional composites is
to combine the attractive properties of various nanomaterials, which can greatly enhance
the detection and degradation of hazardous environmental contaminants. It is critical
to address the environmental protection and removal of pollution as some of the most
serious global issues which need to be of concern as early as possible. Living in a healthy
and clean environment is very important to human lives and well-being. Currently, the
world is encountering a difficult challenge in meeting a growing requirement for clean,
safe, and healthy environments. Lately, organic pollutants, toxic gases, pesticides, heavy
metals, and other noxious chemicals in the air, soil, and water are the key factors that cause
the surrounding environment to become worse. Even trace levels of contaminants can
enter the human body and have acute effects on human health. Globally, the numbers of
landfills and dumpsites, oil fields, private properties, military installations, industrial- and
manufacturing-contaminated sites are staggering [21,147]. Nanotechnology, along with
nanomaterials research, has the potential to discover reliable and powerful solutions for the
determination and control of emerging contaminants in the surrounding environment [21].

As previously mentioned, nanocomposites are a mixture of two or more phases that
may contain various structures or compositional elements, in which the nanoscale system
has at least one phase. Due to the small size of the structural unit and the high surface-to-
volume ratio, these materials behave differently from previous composite materials. The
amount of mixing between the two phases has a significant impact on the characteristics of
composite materials [46,47]. A crucial challenge in the fabrication of nanocomposites is the
capability to achieve the highest dispersion of nanoscale particles as well as maintaining
this dispersion during the life cycle of the nanocomposite [148]. Increased dispersion
of nanoparticles in the matrix of nanocomposites improves the achievement of a high
load, resulting in a more uniform distribution [149]. The high loading of nanoparticles
helps to obtain high-performance nanocomposites [150]. Recently, many applications
based on gold–carbon nanocomposites have been developed, such as gold–graphene in
biosensing [151], supercapacitor [152], bacteria detection [153], and dopamine sensing [154];
gold–carbon nanotube in drug delivery [155], biosensing [156], DNA detection [157], and
solar cells [158]; gold–carbon nanofibers in energy storage [159], nanosensors [160], etc.
In general, the methodology for the synthesis of gold–graphene hybrids can be classified
into two main classifications, namely, gold-embedded graphene nanocomposites and
graphene-wrapped gold nanoparticles [161]. As can be seen from Figure 3, gold-embedded
graphene nanocomposite is synthesised using two different techniques—in situ and ex
situ. Numerous synthesis processes fall within these two major headings, such as physical
vapour deposition and electrostatic interaction methods. In the graphene-wrapped gold
nanoparticles procedure, AuNPs of various sizes can be easily wrapped or encapsulated
using GR, GO, or rGO because of their flexibility and 2D nature. Several ways of producing
gold–carbon nanotube nanocomposites have been established, including direct and linked
deposition of AuNPs on CNTs. In the direct deposition method, the nanostructures of
gold are directly attached to CNTs without the use of any connecting molecules which can
be classified into physical and wet chemical approaches. In linked deposition procedure,
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there are some linkages between CNTs and the gold nanostructures which can be classified
as covalent or non-covalent. As direct deposition methods are mostly in situ, the AuNPs
are less uniform due to different local variations on the CNTs. The high surface area of
AuNPs and CNTs, together with their simple surface modification and great conductivity
of CNTs, contribute to a wide range of gas sensing, biosensing, and electrochemistry
applications [46].
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Most of the environmental applications are focusing on the monitoring of gas, tox-
icant, and pesticide pollutants [162–167]. Therefore, this review is divided into these
three sections.

3.1. Gas Sensors

Gas sensors based on Au-functionalised carbon materials have been considered to
obtain high response (∆R/R0) because of their spillover effects (catalytic action of noble
metal interface for gaseous dissociation and successive spreading of charged gaseous
ions on anchoring substrate because of free electrons and high conductivity of these
particles) at these nanoparticles [168]. The operation of most gas sensors is based on
detecting a variation in the intrinsic electrical properties of the nanostructured material of
the sensor in the presence of a test gas [18]. The sensing efficiency of gas sensors can be
further enhanced via attachment with different MNPs such as Mg, Cr, Fe, Al, Co, Zn, Pd,
Au, etc. [169–174]. Gas sensors play an important role in various industrial or domestic
applications in diverse fields such as environmental monitoring, automotive industry,
medical applications, military, and aerospace [175,176]. Although solid-state gas sensors
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have numerous advantages such as low cost and power consumption, small size, high
sensitivity for detecting a wide range of gases in very low concentrations, they suffer
from issues related to limited measurement accuracy and long-term stability [176]. Recent
advances in nanotechnology and nanoscience provide remarkable opportunities to design
the next generation of gas sensors by using novel nanostructures as sensing materials.
The sensitivity of gas sensors is mostly determined based on parameters such as specific
surface-to-volume ratio, which is much higher in sensors employing nanostructure rather
than conventional microsensors. The nanostructured materials possess higher detection
areas which leads them to have greater adsorption of gaseous species. As a result, their
sensing capability is increased. This phenomenon makes them the best-sensing materials
candidates for producing high-efficiency gas sensors [5].

In 2019, Wan et al. [171] synthesised a novel and highly sensitive rGO-based electro-
chemical gas sensor with carbon–gold nanocomposites (CGNs) by glucose carbonisation
and deposition of AuNPs via the hydrothermal procedure (Figure 4). This rGO–CGN
customised gas sensor exhibited considerably improved existing reactions during oxygen
sensing. The sensor was calibrated from 0.42% to 21% with good sensitivity, linearity, and
reproducibility for oxygen detection.
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A highly sensitive, flexible, and transparent gas sensor based on SWCNTs decorated
with AuNPs in a facile and low-cost fabrication method was fabricated by Lee et al. [177].
Firstly, the films of SWCNT were spray-deposited on flexible and transparent PET sub-
strates, then functionalised with AuNPs. The gas sensor reported acting as a low power
enhanced sensitivity detector of NH3 up to 255 ppb (parts per billion) at room temperature
in terms of electrical resistance variation of SWCNT films. This detection limit is one of the
lowest values of concentration detected for nanotube-derived sensors. Du et al. developed
a CNT/Au/SnO2 nanotubes hybrid via the in situ homogeneous depositions of Au and
SnO2 nanocrystals onto the surface of CNTs through layer-by-layer (LbL) assembly tech-
nique [178]. This nanotube hybrid has been applied to develop highly sensitive gas sensors
to detect CO gas at ambient temperature. In this method, by using the LbL assembly
approach, first, a layer of polyelectrolyte type material, such as poly (diallyl dimethylam-
monium chloride) (PDDA) and sodium poly (styrene sulfonate) (PSS), was coated on the
surface of CNTs to make it positively charged. Next, a mixture of an aqueous solution
of HAuCl4 and trisodium citrate dihydrate was prepared to be added to the solution of
polyelectrolyte modified CNTs. By mixing these two solutions, negatively charged AuCl4−

was adsorbed on the surface of positively charged modified-CNTs, and then the excess
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NaBH4 solution was gradually added to the prepared mixed solution, resulting in AuCl4−

reduction to Au and deposit on the surface of CNTs. Finally, a solution of SnCl4 was
inserted into the mixture dropwise, which leads to the deposition of a layer of SnO2 onto
the Au–CNTs hybrid (CNT/Au/SnO2). The synthesised gas sensor demonstrated a high
level of sensitivity of nearly 70 and a superior response with less than 20 s recovery time
for 2500 ppm concentration of CO at ambient temperature.

A hybrid metal decorated MWCNTs thin film and WO3 nanopowders were function-
alised to develop a gas sensor for the detection of NO2 gas [179]. The 50–100 nm WO3
nanopowders with a hexagonal structure (hex–WO3) were prepared via acidic precipitation
from the solution of sodium tungstate. In this novel structure, MWCNTs were inserted
into the medium of hex–WO3 at a very low concentration. Metallic nanoclusters of Au
and Ag were used as catalysts to improve the sensing performance of the gas sensors.
They reported that the use of the MWCNTs film lowered the current working temperature
(150–250 °C) of the sensor. Therefore, the hex–WO3/MWCNTs mixtures were responsive to
hazardous NO2 gas at room temperature. Their fabricated hybrid material mixtures were
capable of detecting as low as 100 ppb of NO2, without heating the sensor substrates during
operation. Penza et al. [180] have exhibited the impact of CNT–Au nanoclusters hybrid
structure on gas sensing performance of a chemiresistor, at varying working temperatures
(25–250 °C), (Figure 5). When exposed to an oxidising NO2 gas, CNTs and Au-modified
CNTs demonstrate a p-type response with a reduction in electrical resistance and an escala-
tion in resistance when exposed to reducing gases such as NH3, CO, N2O, H2S, and SO2.
Upon deposition of Au nanoclusters on the CNT network, enhanced gas response (NO2,
H2S, and NH3) up to a low limit of the sub-ppm level was exhibited. They also reported
good repeatability of the electrical response, up to 200 ppb of NO2 gas at 200 °C.
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Cittadini et al. [15] reported the production of the optical gas sensor using GO coupled
with AuNPs. Firstly, a monolayer of AuNPs was prepared and chemically attached to the
functionalised, fused SiO2 substrate, followed by spin-coating deposition of GO flakes
on AuNPs. They investigated gas-sensing performances of the sensor upon exposure to
reducing and oxidant gases such as H2, CO, and NO2 with (10,000 ppm and 100 ppm),
(10,000 ppm), and (1 ppm) concentration, respectively. In particular, the surface plasmon
resonance (SPR) band shifted towards exposure to these gases. The SPR response from
the sensor can be explained due to the strong interaction of the Au–GO hybrid via the
electron transfer activity of the AuNPs and the two-dimensional sheet of sp2-hybridised
GO carbons. A highly sensitive AsH3 gas sensor was fabricated using a thin layer of
Au and rGO nanosheets on an interdigitated array electrode (IDE), (Figure 6) [163]. The
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conductivity Au/rGO sensor was observed by the continuous generation of AsH3, created
by chemical reduction of aqueous arsenite with borohydride in an acidic medium and
vaporisation of the hydride to test the sensor. They tested the response of Au, rGO, and
Au/rGO IDE sensors to AsH3 vapour. The Au/rGO sensor resistance was decreased when
it was exposed to AsH3. However, gas sensors assembled with only Au or rGO did not
show sensitivity to AsH3. The rise in conductivity of the gas sensor possibly appeared
due to the AsH3 depleted adsorbed oxygen on the Au islands and therefore resulted in
the increase of hole conduction in the rGO film. By optimisation of the volume of Au
and rGO, reduction of rGO, and working temperature, a LOD of 0.01 ppmv for this gas
sensor was obtained. Interference responses of the sensor to other gases and vapours were
also examined. Young et al. [181] reported the production of ethanol gas sensors by the
growth of high-density CNTs on oxidised Si substrate, with and without adsorption of
AuNPs on the surface of nanotubes. It was reported that the incorporation of AuNPs
could significantly enhance the sensitivity of the device. A large (3.28%) sensitivity with
adsorption of Au (when the concentration of the injected ethanol gas was 800 ppm) at room
temperature was achieved. Moreover, the response stability and speed of the synthesised
sensor were both good.
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3.2. Toxicant Sensors

The widespread production and use of synthetic and natural chemicals by society
have led to the release of huge amounts of toxic materials into the environment. Thus,
their persistence has necessitated the development of fast and cost-effective toxicity tests to
protect humans and other organisms [182]. Toxicity assays are necessary for the avoidance
of environmental destruction and obstacles to the health of the human body. Toxicity testing
has been extensively required in the field of environmental protection as well as in the
diagnosis and food fields. Toxicant materials are usually detected by employing chemical
or physical procedures, such as HPLC and ion-selective electrodes (ISEs). Nevertheless, the
toxicity of such chemical materials cannot be measured [183]. Highly sensitive detection
and determination of toxic substances are of great importance for people’s health and
environmental protection [46].

In 2015, Zhang et al. [184] established a sensor for attomolar detection (0.001 aM) of
mercuric ions (Hg2+) by electrodepositing of GR and nanoAu (GR-EAu) on a surface of
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GCE (GCE-GR-EAu). Figure 7 represents the schematic approach of the electrochemical
sensor platform for the sensitive detection of Hg2+. Three ss-DNA probes, namely, a
10-mer thymine-rich DNA probe (P1), a 22-mer thymine-rich DNA probe (P2), and a 29-
mer guanine-rich DNA probe (P3) were designed for sensitive and selective detection of
the target. It is recognised that DNA can cooperate with a variety of metal ions such as
Hg2+. In this work, the presence of Hg2+ is caused by the metal-mediated DNA duplexes
between P1 and P2 due to thymine–Hg2+–thymine (T–Hg2+–T) coordination chemistry.
NanoAu carriers functionalised with DNA-labelled methyl blue (P3) were used as a signal
amplification to enable such a low limit of detection.
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Figure 8 shows the schematic illustration of the modification process of a simple
disposable dual electrochemical sensor for the detection of nitrate (NO3

–) and Hg2+ based
on the deposition of selenium particles (SePs) and AuNPs onto the surface of a carbon-
printed paper, having PEG–SH as a linker. In this sensor, SePs acts as an absorbing agent for
Hg2+ because of the high binding affinity to mercury that can improve the anodic stripping
voltammetry of mercury and the AuNPs catalyse the reduction of NO3

– and Hg2+. The
PEG–SH/SePs/AuNPs sensor exhibited enhanced sensitivity to detect NO3

– and Hg2+

with LOD of 8.6 mM and 1.0 ppb, respectively [185].
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Compton et al. [186] reported a fast and efficient electrochemical detection of arsenic
(III) in aqueous media by electroless deposition of AuNPs on MWCNTs through in situ
reductions of HAuCl4 by NaBH4. The modified MWCNTs were immobilised on a GCE
surface through the evaporation of solutions in chloroform. With the modified electrode in
As (III) solutions, anodic stripping voltammetry was performed. The complete process from
modification of electrode to the detection of arsenic has been achieved in just a few minutes.
A high sensitivity (1985 µA M−1 with square wave voltammetry) and a very low LOD
(0.1 g L−1) were routinely obtained. The Au-modified MWCNTs exhibit a long lifetime and
generate accurate measurements over 10 months. An electrochemical disposable sensor for
highly sensitive detection of bisphenol A (BPA) in an aqueous solution was fabricated via an
easy, low-cost, and environmentally friendly approach [187]. The fabrication of the sensor
was performed through the synthesis of rGO/CNT/AuNPs nanocomposites on the screen-
printed electrode (SPE) at room temperature. The prepared sensor demonstrated a vast
working range, great selectivity, and sensitivity over BPA in a manner that electrodeposition
of AuNPs considerably improved the electron transfer and electrocatalytic capabilities over
BPA. They reported that, in an optimised condition, differential pulse voltammetry (DPV)
showed linear existing responses for BPA concentrations of 1.45 to 20 and 20 to 1490 nM,
with a determined ultralow LOD of 800 pM.

Kan et al. [188] established the fabrication of a flexible disposable graphite-based
electrochemical sensor for individual and sensitive simultaneous detection of catechol
(CC) and hydroquinone (HQ). The fabrication of the sensor was performed through the
electrodeposition of AuNPs onto an exfoliated graphite paper (EGP) as a support electrode
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to fabricate the desired (AuNPs/EGP) sensor. The AuNPs/EGP sensor exhibited a wide
linear range (5.0 × 10−7 to 1.0 × 10−4 mol/L and 7.0 × 10−8 to 1.0 × 10−4 mol/L) for CC
and HQ detection, as well as LOD (S/N = 3) of 4.13 × 10−8 mol/L and 2.73 × 10−8 mol/L,
respectively. Zhu et al. [189] constructed a unique and effective electrochemical sensor
based on AuNP-decorated, rGO-modified GCE via one single step for detection of trace
level of iron by DPV. In their study, the modified electrode was fabricated with 5-Br-PADAP
(2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol) as complex agents for the sensitive de-
termination of Fe3+ in real coastal water samples. rGO served as a support to provide a
large specific surface area for AuNPs. As a result, the electrochemical reduction of Fe(III)-
5-Br-PADAP was induced. The low LOD of 3.5 nM with a linear response in a range of
30 nM to 3 µM was achieved.

3.3. Pesticide Sensors

The term pesticide is often used for a wide range of chemicals that successfully apply
to eliminate and/or control a variety of animals or plant pests and diseases. Pesticides ac-
cording to their purpose of use can be categorised as insecticides, herbicides, fungicides, or
a range of other kinds. Numerous chemical compounds such as arsenic, organophosphates,
pyrethroids, carbamates, and nitrophenol derivatives are involved as pesticides. Pesticides
can be classified in several ways, for example, chemical structure, biological target, and
safety profile. Due to the high level of toxicity, environmental agencies have established
a top admissible rate for their contaminant levels in surface and drinking water. Based
on their water solubility, they either settle in the soil or permeate the surface waters and
groundwater. Pesticide residues and their degradation products can stay in vegetables,
living organisms, and water sources, and their concentration will increase as they climb the
food chain. Due to their toxic effects, even at trace levels, there is an increasing interest to
develop effective systems for sensing, monitoring, breaking down, and/or removing them.
The increasing research interest in this area has generated countless attempts to produce
systems to detect and degrade pesticides by applying different types of nanomaterials,
such as MNPs, CNTs, GR, magnetic nanoparticles, and/or quantum dots [190].

Jha and Ramaprabhu [167] fabricated a disposable and sensitive biosensor by modify-
ing a GCE with AuNPs and MWCNTs for the detection of paraoxon. AuNPs spread onto
the surface of MWCNTs to form an Au–MWNT hybrid exploiting high electron transfer rate
and significant immobilisation sites for bioenzymes, which merge with the high electrocat-
alytic activity of MWNTs towards thiocholine electrooxidation at the low potential in this
nanocomposite. Au–MWNTs allow the detection of paraoxon at low potential amperomet-
ric levels without the use of a redox mediator. Very high sensitivity up to a concentration
of 0.1 nM for the model analyte paraoxon has been achieved. This nanocomposite-based
biosensor could as well be used for the detection of other organophosphorus (OP) combina-
tions. In 2010, Du et al. [166] described the fabrication of amperometric acetylcholinesterase
(AChE) biosensor, based on an Au–MWCNT–Chitosan-modified electrode, with LOD of
0.6 ng mL−1 for malathion. The synthesised biosensor demonstrated suitable fabrication
reproducibility, appropriate stability, rapid response, and low LOD, therefore offering a
novel promising device with possible application in biomonitoring of OPs exposure and
detection of more toxic mixtures against AChE. A highly sensitive and specific nanocom-
posite biosensor for the detection of methyl parathion was developed via the formation of
AuNPs on silica particles (SP@AuNP) mixing with MWCNTs (SP@AuNPs/MWCNTs) on
the surface of a GCE and further covalent immobilisation of methyl parathion hydrolase
(MPH) (Figure 9) [191]. The square wave voltametric (SWV) responses displayed a LOD of
0.3 ng mL−1, along with a linear response to the concentrations of methyl parathion in the
range from 0.001 µg mL−1 to 5.0 µg mL−1. In garlic samples, the recovery test with known
quantities of methyl parathion resulted from 95.0% to 102.3%, showing the strong precision
of this biosensor.
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Figure 9. MPH biosensor preparation procedures for methyl parathion determination using modified SP@AuNPs/MWCNTs
electrode. Reprinted with permission from [191]. Copyright © 2021 Elsevier B.V. All rights reserved.

Liu et al. [192] developed a novel AChE biosensor based on 3-carboxyphenylboronic
acid (CPBA)/rGO–AuNP-nanocomposite-modified electrode for high sensitivity ampero-
metric detection of organophosphorus (chlorpyrifos and malathion) and carbamate (car-
bofuran and isoprocarb) pesticides. The biosensor represents excellent sensitivity due to
the outstanding properties of AuNPs and rGO, which promote electron transfer reactions
and enhance the electrochemical response. The LOD of 0.1, 0.5, 0.05, and 0.5 ppb for chlor-
pyrifos, malathion, carbofuran, and isoprocarb, were achieved, respectively. In Figure 10,
Xie et al. [193] showed a sensor protocol based on the molecularly imprinted polymer
(MIP), that is synthesised in situ at an electropolymerised polyaminothiophenol (PATP)
membranes on the surface of AuNP-modified GCE for the electrochemical detection of
chlorpyrifos (CPF). A high ratio of imprinted sites is created by combining surface molec-
ular self-assembly with electropolymerised molecular imprinting on the greater surface
area of an AuNP-modified electrode, thus providing an ultrasensitive electrochemical
detection of an organophosphate pesticide. A LOD of 0.33 µM for CPF along with a linear
relationship in the range from 0.5 to 10 µM CPF was obtained.
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followed by self-assembly of CPF at the ATP-modified AuNP–GCE. Reprinted with permission from [193]. Copyright © 
2021, American Chemical Society. 
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Figure 10. (A) Working principle of the imprinted PATP–AuNP–GCE: (1) AuNPs are electrodeposited on the surface of
the GCE; (2) ATP electropolymerisation on the AuNP–GCE surface; (3) CPF removal/rebinding on the imprinted sites of
the imprinted PATP–AuNP–GCE. (B) The graphic map for the adsorption of the ATP molecule on the surface of AuNP,
followed by self-assembly of CPF at the ATP-modified AuNP–GCE. Reprinted with permission from [193]. Copyright ©
2021, American Chemical Society.

A nanocomposites hybrid biosensor consists of AuNPs and chemically reduced
graphene oxide nanosheets (cr-Gs) (AuNPs/cr-Gs) for the detection of organophosphate
pesticides was developed via in situ deposition of AuNPs and AChE on cr-Gs (AChE/
AuNPs/cr-Gs) in the presence of PDDA. In this study, PDDA acts as a stabiliser for
cholinesterase with high activity and loading efficiency and a dispersible medium for
AuNPs. The ultrasensitive LOD of 0.1 pM for paraoxon was obtained [194].

To compare the ability of different nanocomposites designs, we described the com-
parison of reviewed sensors/biosensors based on various substrates and strategies for
environmental contaminant sensing in Table 1.
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Table 1. Sensitivity/LOD comparison of the reviewed nanocomposites sensing platform.

Sensors Nanocomposites Modification Detected Items Sensitivity/LOD Ref

G
as

se
ns

or

rGO–CGN
Carbon–gold nanocomposites

(CGN) on an rGO-based
electrochemical gas sensor.

O2

Sensitivity of
0.289–0.168 µA/% O2 for low
and high concentration range,

respectively.

[171]

SWCNT–AuNPs

SWCNT films spray
deposited on transparent and
flexible plastic substrates and
then decorated with AuNPs.

NH3 255 ppb [177]

CNT/Au/SnO2
nanotubes

CNT/Au/SnO2 nanotubes
synthesised via homogeneous

coating of Au and SnO2
nanocrystals on CNTs.

CO
Sensitivity of about 70 Ig/Ia

for 2500 ppm concentration of
CO.

[178]

Au-
MWCNTs/hex–

WO3

Metal decorated MWCNTs
embedded into the hex–WO3

nanocomposites.
NO2 100 ppb [179]

Au-modified CNTs
networks

Au nanoclusters deposited
onto CNTs networks by

sputtering.

NH3, CO, N2O,
H2S, SO2

200 ppb NO2 [180]

AuH–rGO

GO flakes deposited over a
monolayer of AuNPs,

chemically attached to a
functionalised, fused silica

substrate.

H2, CO, NO2

Sensitivity of 0.1%
(for 100 ppm) up to 0.5% (for

10,000 ppm) for H2 and a
variation of 0.1% for 1 ppm

NO2, while CO not detected.

[15]

Au/rGO
rGO-modified with a thin

gold film on an interdigitated
array electrode.

AsH3 0.01 ppmv [163]

Au–CNT

CNTs from a SiO2/Si
substrate transferred to the

flexible substrate and
deposited with a controlled

load of Au.

Ethanol Gas
Sensitivity of 5.39% for

800 ppm concentration of
ethanol gas.

[181]

To
xi

ca
nt

se
ns

or

GCE–GR–EAu

GR and nanoAu
electrodeposited on the

surface of GCE, then
functionalised with the

10-mer thymine-rich DNA
probe.

Hg2+ 0.001 aM [184]

PEG–
SH/SePs/AuNPs

Disposable carbon paper
electrodes functionalised with

SePs and AuNPs.
NO3

–, Hg2+ 8.6 µM and 1.0 ppb for NO3
–

and Hg2+. [185]

Au-MWCNTs

AuNPs deposited on
MWCNTs via reduction of

HAuCl4 by NaBH4 followed
by fixing it onto the GCE

surface via evaporation of a
suspension in chloroform.

As(III)

Sensitivity of 1985 µA/µM
with square wave

voltammetry and a LOD of
0.1 µg/L.

[186]

RGO/CNT/AuNPs

GO/CNT nanocomposite
reduced to RGO/CNT on

SPE, followed by
electrochemical deposition of

AuNPs on modified SPE.

BPA 800 pM [187]

AuNPs/EGP
AuNPs electrodeposited on

EGP to fabricate AuNPs/EGP
sensor.

CC, HQ
4.13 × 10−8 mol/L and

2.73 × 10−8 mol/L for CC
and HQ.

[188]

GCE/rGO/AuNPs

A modified GCE based on the
rGO and AuNPs fabricated

with 2-(5-bromo-2-pyridylazo)-
5-diethylaminophenol

(5-Br-PADAP) as complexing
agents.

Fe(III) 3.5 nM [189]
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Table 1. Cont.

Sensors Nanocomposites Modification Detected Items Sensitivity/LOD Ref

Pe
st

ic
id

e
se

ns
or

Au–MWNTs–GCE
AuNPs dispersed on the

outer surface of MWNTs used
to modify GCE.

Paraoxon 0.025 ppb [167]

AuNP–
CHIT/GCE,

MWCNT–Au–
CHIT/GCE

Chitosan modified GCE
(CHIT/GCE) coated with
AuNPs and MWCNT–Au

nanocomposites to fabricate
AuNPs modified GCE

(AuNP–CHIT/GCE) and
MWCNT–Au nanocomposites

modified GCE
(MWCNT–Au–CHIT/GCE),

respectively.

Malathion 0.6 ng/mL [166]

MPH/SP@AuNPs/
MWCNTs/GCE

The sensing film prepared via
the formation of AuNPs on

SP (SP@AuNP), mixing with
MWCNTs on the surface of a

GCE followed by covalent
immobilisation of MPH.

Methyl parathion 0.3 ng/mL [191]

CPBA/AuNPs/
RGO-CS/GCE

An amperometric biosensor
based on immobilising

acetylcholinesterase on the
modified GCE with
nanocomposites of

CPBA/rGO–AuNPs.

Chlorpyrifos,
malathion,
carbofuran,
isoprocarb

0.1, 0.5, 0.05, and 0.5 ppb for
chlorpyrifos, malathion,

carbofuran, and isoprocarb,
respectively.

[192]

PATP–AuNP–GCE

Electropolmerisable PATP
assembled on the AuNPs at
the surface of GCE by the
formation of Au-S bonds,

then, the CPF template
assembled onto the

monolayer of ATP through
the hydrogen-bonding

interaction between amino
group and CPF.

Chlorpyrifos 0.33 µM [193]

AuNPs/cr-Gs

In the presence of PDDA, a
nanohybrid of AuNPs and
cr-Gs synthesised by the
growth of AuNPs on the

surface of graphene
nanosheets. Then, an enzyme

nanoassembly
(AChE/AuNPs/cr-Gs) was
prepared by self-assembling

of AChE on AuNP/cr-Gs
nanohybrid.

Paraoxon 0.1 pM [194]

4. Conclusions and Future Perspectives

Environmental damage, due to the rapid growth of the world population and in-
creasing globalisation, is a serious cause for concern. Over the past few decades, the
development of novel treatment techniques for the detection, determination, and mon-
itoring of hazardous environmental contaminants by high-level of accuracy, precision,
reproducibility, and low LODs have shown extremely interesting tasks for the scientific
society. The emerging nanoscience and nanotechnology techniques have provided insight
to design novel nanocomposite materials with unique properties and structures to achieve
cooperatively enhanced performance for pollutant elimination. The attractive chemical and
physical properties of gold and carbon nanomaterials make them remarkably fascinating
for use in labels or transducing systems for electrochemical or optical sensors and biosen-
sors. AuNPs have been the desired nanoparticles for nearly all nanomaterial-based optical
detection techniques. Similar to AuNPs, carbon nanomaterials are also the most widely
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used materials in electrochemical transducing systems. Their considerable properties, such
as large specific surface area, excellent electrical conductivity, high surface free energy,
high chemical, and thermal stability, and strong mechanical strength make them an ideal
candidate to be used as a support in Au nanocomposites matrix to fabricate various elec-
trochemical sensor/biosensor for environmental applications. It is expected that hybrids of
AuNMs and CBNs should always be the most important focus of this research direction
because they offer quite promising results due to the high sensitivity and selectivity of
such combinations for the analysis of environmental contaminants. Nevertheless, we
need to know that these achievements (e.g., a low and ultrasensitive LOD) are still in
the phase of laboratory testing, and much research is needed to take these achievements
to an industrially applicable and commercially viable device. A better understanding
of the various shapes of AuNPs and their possible interaction with other nanomaterials,
especially carbon nanomaterials, is necessary. In addition, future efforts should concentrate
on developing better detection mechanisms using different disciplines and technologies to
propose improved hybrid structures using AuNPs and carbon nanomaterials.
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