
T C E L L  H Y B R I D S  T H A T  EXPRESS  A Vn 

I D I O T O P E - R E L A T E D  D E T E R M I N A N T  O N  

A G L Y C O P R O T E I N  D I S T I N C T  

F R O M  H-2, T H Y - 1 ,  A N D  LYT-1 M O L E C U L E S *  

By TRAN C. CHANH* and MAX D. COOPER 

From the Departments of Pediatrics and Microbiology, The Cellular Immunobiology Unit of the 
Tumor Institute, and The Comprehensive Cancer Center, University of Alabama in Birmingham, 

Birmingham, Alabama 35294 

Almost 20 years have passed since the recognition that thymus-derived lym- 
phocytes belong to a separate differentiation pathway and do not produce 
immunoglobulins (1, 2). However, the molecular structure of the antigen-specific 
receptor on T cells remains an elusive goal necessary for understanding antigen- 
induced interactions among T cells, B cells, and antigen-presenting ceils in the 
immune response. There  is substantial evidence in support of similarity between 
immunoglobulin (Ig) idiotype (Id) and determinants expressed by antigen-specific 
T cells. Anti-Id antibodies have been used to either stimulate or inhibit various 
T cell functions (3-5), and to demonstrate Ig-like Id determinants on antigen- 
specific T cells (6-9) and the soluble factors they produce (10, 11). The  definition 
of the T cell receptor is complicated by the existence of functionally distinct 
subsets of T cells, each capable of expressing distinct antigen-specific molecules 
(12). A number  of laboratories have established stable interleukin 2-dependent 
T lymphocyte clones (13-15) and T cell hybrids derived from fusion between 
immune T lymphocytes and cells of thymic lymphoma origin (11, 16-18). This 
approach should result in an increase in the yield of homogenous antigen-binding 
materials produced by T cells and thereby facilitate the elucidation of the 
molecular structure of the antigen-specific T cell receptor. 

We have developed two mouse monoclonal anti-Id antibodies specific for 
chicken antibodies to N-acetylglucosamine (NAGA) 1 and p-amino benzoic acid 
(PABA). The  anti-Id antibodies, termed CId-1 and CId-2, respectively, were 
found to react with non-antigen-binding Vn determinants (19). The  CId-1 
antibody reacted by indirect immunofluorescence with a limited number  of 
clones of both chicken B and T cells, whereas the CId-2 antibody reacted 
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exclusively with Ig expressed by B cells. We have since found that the CId-1 
ant ibody recognizes a conserved de te rminan t  expressed by a small subset o f  
B A L B / c  mouse splenic T cells. Encouraged  by this observation,  we fused 
enr iched  CId-1 ÷ T lymphocytes obtained f rom Streptococcus A-immune B A L B /  
c mice with the AKR BW 5147 cell line. Among  the resulting 72 hybrids were 
two clones that reacted by indirect  immunof luorescence  with the CId-1 mono-  
clonal antibody. In this paper,  we describe the generat ion o f  these T cell hybrids 
and an initial character izat ion o f  their  CId-1 determinants .  

Mate r i a l s  a n d  M e t h o d s  
Antisera. The preparation and characterization of the monoclonal CId-1 and CId-2 

anti-Id antibodies (IgMx) have been described (19). The rat monoclonal antibodies to 
mouse Lyt-1 and Lyt-2, the mouse monoclonal antibodies to mouse I-A d and I-A k and 
monoclonal fluorescein isothiocyanate (FITC)-conjugated anti-Thy-l.2 antibodies were 
from Becton, Dickinson & Co., Sunnyvale, CA. The mouse anti-I-J d and I-J k alloantisera 
were gifts from Dr. Chella S. David, Mayo Clinic, Rochester, MN. The anti-H-2 d alloan- 
tiserum was a gift from Dr. Lori Flaherty, Albany, NY. Affinity-purified goat antibodies 
specific for mouse Ig isotypes were prepared as described (20). 

Immunization. BALB/c mice (H-2 d) were immunized intraperitoneally three times at 
5-d intervals with 109 heat-killed Streptococcus group A strain J 17A4 (Strep A) organisms. 

Enrichment of Cld-1 ÷ Splenic T Lymphocytes. 3 d after the last immunization, the mice 
were killed and spleen mononuclear cells were isolated by centrifugation over Ficoll 
(Pharmacia Fine Chemicals, Piscataway, NY)-Hypaque (Winthrop Laboratories, NY) 
gradients. To enrich for T lymphocytes, the spleen cell suspension was panned twice on 
culture dishes (Costar, Data Packaging, Cambridge, MA) precoated with 100 ~g/ml of 
affinity-purified goat anti-mouse Ig (21). To enrich further for CId-1 ÷ T lymphocytes, 
the nonadherent cells were treated with 200 ~g/ml of the CId-1 monoclonal antibody for 
30 min at 4°C, washed with phosphate-buffered saline (PBS) supplemented with 5% fetal 
calf serum (FCS), and panned on dishes precoated with 100 ~g/ml of affinity-purified 
goat antibodies to mouse # chains. After a 90-min incubation at 4°C, the dishes were 
washed five times with 5% FCS in PBS and 10 ml of complete RPMI 1640 medium (Gibco 
Laboratories, Grand Island, NY) supplemented with 15% FCS, 2 mM glutamine, 5 × 
10 -5 M 2-mercaptoethanol, 100 U/ml of penicillin, 100 #g/ml of streptomycin, and 0.25 
#g/ml of Fungizone (Gibco Laboratories, Grand Island, NY) were added to each plate. 
After a 1-h incubation at 37°C, the adherent cells were recovered with a sterile rubber 
policeman and washed before cell fusion. 

Cell Fusion and Cloning. After enrichment for CId-1 ÷ cells, T cells were fused with the 
hypoxanthine guanosine phosphoribosyl transferase-resistant AKR (H-2 k) thymoma line 
BW 5147 and dispensed into 24-well culture dishes. Hybrid growth was detected 10-14 
d after fusion. Screening for CId-1 ÷ T cell hybrids was performed using the indirect 
immunofluorescence assay described below. Hybrid cells were cloned by limiting dilution 
(22). 

Immunofluorescence Screening for Cld-1 ÷ Hybrids. The surface and cytoplasmic immuno- 
fluorescence techniques have been described (19). Capping of the CId-1 ÷ molecules was 
done by incubating CId-1 stained cells at 37°C for 20 min. Cell surface analysis was 
performed by fluorescence microscopy and on a fluorescence-activated cell sorter (FACS 
IV; B-D FACS Systems, Becton, Dickinson & Co.) 

Lectin Treatment ofCId-1 ÷ Hybrid Cells. CId-IB hybrid cells at 106/mi were cultured 
overnight at 37°C in the presence of 10-20 #g/ml of concanavalin A (Con A), lentil lectin 
(LL), wheat germ agglutinin (WGA) (Sigma Chemical Co., St. Louis, MO), pokeweed 
mitogen (PWM), and lipopolysaccharide (LPS), or with 2% phytohemagglutinin (PHA) 
(Gibco Laboratories). The surface distribution of the CId-1 determinant was then analyzed 
by immunofluorescence. 

Treatment of Cld-I ÷ Hybrid Cells with Tunicamycin, Pronase, and Trypsin. CId-IB hybrid 
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cells at 2 × 106/ml were incubated with 0.5 ~g/ml of tunicamycin (Calbiochem-Behring 
Corp., LaJolla, CA) in complete RPMI 1640 overnight at :37 °C. For pronase and trypsin 
treatment, CId-IB cells were washed in Hanks' balanced salt solution (HBSS) at pH 7.9 
and cultured at 2 x 106/ml with 50-100 #g/ml of pronase (Caibiochem-Behring Corp.) 
or 25-50/~g/ml of trypsin (Gibco Laboratories) in HBSS for 30 min at 37°C. The CId-1 
expression was then analyzed by the FACS IV. 

Results 

The monoclonal CId-1 Antibody Cross-reacts with BALB/c Splenic T Lymphocytes. 
BALB/c spleen cell suspensions were stained by indirect immunofluorescence 
with the CId-1 anti-Id antibody, followed by rhodamine isothiocyanate (RITC)- 
conjugated goat antibodies to mouse/~ chains, and counterstained with FITC- 
conjugated anti-Thy-l.2 or rat monoclonal anti-Lyt-1 or Lyt-2, followed by 
FITC-conjugated goat antibodies to rat IgG. Approximately 0.2% of Thy-l .2 + 
BALB/c spleen cells co-stained with the monoclonal CId-1 antibody (Fig. 1). 
CId-1 + BALB/c spleen cells were equally distributed between the Lyt-1 + and 
the Lyt-2 + T cell subsets. When the CId-1 antibody was replaced with a mono- 
clonal anti-chicken Ia antibody (23) as a control IgM antibody in the staining 
procedure, no doubly stained cells were found. 

Generation ofCId-1 + T Cell Hybrids. BALB/c splenic T cells, enriched for CId- 
1 + cells (see Materials and Methods), were fused with the AKR BW 5147 cell 
line and dispensed into 216 wells. Among the resulting 72 wells with hybrid 
growth, two hybrids (CId-IA and CId-IB) reacted by indirect immunofluores- 
cence with the monoclonal CId-1 anti-Id antibody and not with the CId-2 
antibody. None of the remaining 70 T cell hybrids were reactive with either 
CId- 1 or CId-2. Essentially all CId- 1B hybrid cells stained with the CId- 1 antibody 
in a ringlike pattern of discrete mini-patches on the cell surface (Fig. 2). The 
faint staining was confirmed by the FACS profiles of the CId-IA and CId-IB 
cells (Fig. 3). The fluorescence intensity exhibited by both the CId-IA and CId- 
1B hybrids was clearly above background, but "~ 10-20-fold less than that of 
BALB/c splenic B lymphocytes stained with goat anti-mouse #-chain antibodies 
(data not shown). The CId-1 surface staining of the CId-IB hybrids was com- 
pletely inhibited by preincubating the antibody with 20 ~g of affinity-purified 
chicken anti-NAGA but not with 80 ~g of anti-PABA antibodies. 

FIGURE | .  CId-1 expression by Thy-1.2* BALB/c spleen cells in a two-color immunofluo- 
rescence assay. The cell indicated by arrow co-expressed the CId-1 and Thy-1.2 determinants: 
(A) phase contrast, (B) anti-Thy-1.2 staining, and (C) CId-1 staining. 
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FIGURE 2. CId-1 surface immunofluorescence staining of the CId-IB hybrid cells illustrating 
the circumferential patchy staining pattern. 

~ A i B 

C~d-2 

d-I 

Fluorescence Intensity (Locj scale) 
FIGURE 3. Fluorescence profiles of(A) CId-lA and (B) CId-lB hybrid cells stained by indirect 
immunofluorescence with CId-1 and CId-2 monoclonal antibodies. 

To determine the intracellular distribution of CId-1 determinants, we exam- 
ined fixed CId-IA and CId-IB cells. Diffuse patchy immunofluorescence with 
CId-1, but not with CId-2, antibody could be visualized in the cytoplasm of the 
CId-lA and B hybrid cells (Fig. 4). 

Cell Surface Analysis of CId-IA and CId-IB Hybrids and the Parental AKR BW 
5147 Line. The cell surface phenotypes were analyzed with a fluorescence 
microscope and the FACS (Table I). Both CId-IA and CId-B hybrid cells lacked 
CId-2 and mouse Ig heavy- and light-chain determinants (Fig. 5). They stained 
with the anti-H-2 d ailoantiserum and with the monoclonal FITC-conjugated anti- 
Thy-l.2 antibody (Fig. 6A) and expressed the Lyt-1 antigen faintly (Fig. 6B) but 
lacked the Lyt-2 antigen. They expressed neither the parental I-A d (BALB/c) 
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FIGURE 4. Cld-1 cytoplasmic immunofluorescence staining of the CId-IB hybrid cells: (A) 
phase contrast and (B) CId-1 cytoplasmic staining. A similar staining pattern was observed with 
the Cld-IA hybrid cells. 

(Fig. 6 C) nor the I-A k (AKR) alleles but were positive for both the parental I-J d 
and I-J k alleles (Fig. 6D). The staining patterns of the CId-1B hybrids visualized 
by immunofluorescence with anti-Thy-l.2, anti-Lyt-1, anti-H-2 d, anti-I-J d, and 
anti-I-J k antibodies were all distinct from that seen with the CId-1 antibody. 

The CId-I Determinant Is Distinct from the Thy-l.2, Lyt-1, H-2 d, I-J d, and I-J k 
Molecules. To determine whether  the CId-1 determinant was physically associ- 
ated with Thy-l .2,  Lyt-1, H - 2  d, I-J d, or I-J k molecules on the cell membrane, 
CId-1B hybrid cells were incubated with the CId-1 antibody followed by RITC- 
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TABLE I 

hnmunofluorescence Analysis of Cell Surface Antigens on the CId-IA and Cld-IB Hybrids and the 
Parental BW 5147 Cell Line 

An t ib o d y  specificities 

CId-1 CId-2  Ig  ~ a n d  ~ H-2 d T h y - l . 2  Lyt-1 Lyt-2 I-A d I-A k I-J e I-J k 

B W 5 1 4 7  . . . . . . . . . . .  + 
C l d - I A  + - - - + + + - - - + + 
C I d - I B  + - - - + + + - - - + + 

~ C l d - 2  

onti- mouse 

Fluorescence Intensity (too scole) 
FIGURE 5. C I d - I B  hyb r id  cells lack l ight chain  d e t e rmin an t s .  F luorescence  prof i les  o f  t he  
C I d - I B  hyb r id  cells s ta ined  with CId-2  a n d  aff ini ty-purif ied goa t  an t i -mouse  K- a n d  ~-chain 
ant ibodies .  [ m m u n o f l u o r e s c e n c e  reactivity o f  t he  h y b r id  cells was also n o t  seen wi th  an t ibodies  
to m o u s e  I g , . ,  7,  ~, ¢, a n d  a de t e rmin an t s .  

A JIl[f CId'2 ti'Lyt "1 

!I A A: 

~ ~--~onti-t-A" 

ID (~ anti-I- J k ~ nti-I- J~ 

Fluorescence Intensity ( Log scole) 
FIGURE 6. F luorescence  prof i les  o f  the  Cld-1B hybr id  cells s ta ined wi th  (A) an t i -Thy-1 .2 ,  (B) 

d d anti-Lyt-1,  (C) ant i - I -A , a n d  (D) anti-I-J a n d  anti-I-J k ant ibodies .  

conjugated goat antibodies to mouse tz-chains under  capping conditions. The  
CId-IB cells were then stained either with CId-1 antibody followed by FITC- 
conjugated goat antibodies to mouse t~-chains to verify completeness of  CId-1 
capping, or with FITC-conjugated anti-Thy-l.2 antibody. After the CId-1 
marker was capped (Fig. 7), Thy- l .2  molecules were still distributed over the 
entire surface of  the hybrid cells. Similarly, CId-1 antibody-induced capping of 
the CId-1 determinant  did not result in co-capping of Lyt-1, H-2 d, I-J d, or I-J k 
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FIGURE 7. CId-I antibody-induced capping of the Cld-1 determinant does not result in 
redistribution of the Thy-1.2 antigen:: (A) phase contrast, (B) CId-1 staining under capping 
conditions, and (C) anti-The,-1.2 staining after capping of the CId,1 marker. Similar results 
were obtained with the H-2 ~, Lyt-l, I-J a, and I-J k antigens. 

molecules. Reverse capping exper iments  were then pe r fo rmed  with anti-I-J a and 
-I-J k alloantibodies. Capping o f  the I-J a and I-J k molecules did not  result in 
redistr ibution o f  the CId-I  de te rminant  

Lectin-induced Modulation of the CId-1 Determinant. Since most cell surface 
proteins are glycoproteins, we tested a panel o f  lectins for  their  ability to bind to 
and modula te  the CId-1 de te rminan t  on the CId- IB hybr id  cells. Incubat ion o f  
CId- IB hybrid ceils with 10-20  # g / m l  o f  Con A or  LL at 37°C resulted in 
capping o f  the CId-1 marker  to one  cellular pole (Fig. 8). Incubat ion o f  CId- IB 
hybrids with PHA,  PWM, LPS, or  WGA had little or  no apparen t  effect on the 
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FIGURE 7C 

FIGURE 8. Con A-induced capping of the Cld-I determinant: (A) phase contrast, and (B) 
CId-1 staining after Con A treatment. 

surface distribution of the CId-1 marker. Con A- and LL-induced capping of 
CId-1 determinants did not result in co-capping of Thy-l .2,  Lyt-1, H-2 d, I-J d, or 
I-J k molecules. These results suggest that the CId-1 marker is a glycoprotein and 
further support the idea that the CId-1 determinant is distinct from the Thy- 
1.2, Lyt-1, H-2 a, I-J d, and I-J k antigens. 

Effects of Tunicamycin, Pronase, and Trypsin on Expression of the CId-1 Determi- 
nant. Incubation of  the CId-IB hybrids with 0.5/~g/ml oftunicamycin resulted 
in a shift of  fluorescence intensity to near background level (Fig. 9A). In contrast, 
immunofluorescence analysis of  fixed cells revealed that the cytoplasmic expres- 
sion of CId-1 determinants was not reduced by the tunicamycin treatment. 
Incubation of CId-IB cells with 50-100 #g/ml  of pronase or 25-50 #g/ml  of 
trypsin also resulted in a shift of  the fluorescence intensity of the treated cells to 
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FIGURE 9. Fluorescence profiles of the Cld-I B hybrid cells before and after treatment with 
(A) tunicamycin, (B) pronase, and (C) trypsin. 

background level (Fig. 9,B and C). These results suggest that the CId-1 deter- 
minant is on a glycoprotein, and that glycosylation is required for normal surface 
expression of the molecule. 

Discussion 

The idiotope defined by the monoclonal CId-1 anti-Id antibody appeared to 
be a non-binding-site-associated idiotope on the heavy chain of chicken anti- 
NAGA antibodies, which suggests a Vn Id (19). The CId-1 Id was found to be 
conserved in all outbred and inbred chickens tested, as evidenced by its expres- 
sion on "--20-25% of outbred and inbred chicken anti-NAGA antibodies and on 

1 and 0.4% of chicken B and T cells, respectively. Furthermore, the mono- 
clonal CId-1 anti-Id antibody was cross-reactive with 0.2% of BALB/c mouse 
spleen cells that expressed the Thy-l .2  antigen. CId-1 ÷ BALB/c splenic T cells 
were found by indirect immunofluorescence within both the Lyt-1 + and Lyt-2 ÷ 
T cell subsets. The fact that CId-1 is a mouse IgM antibody precluded testing of 
its reactivity with mouse B cells by indirect immunofluorescence, but "-0.5% of 
human plasma cells expressed CId-1 ÷ molecules (unpublished observation). Idi- 
otypic cross-reactivity has been reported within inbred strains of mice (24, 25) 
and rabbits (26, 27), as well as between different strains of mice (28, 29). Idiotypic 
cross-reactivity has also been demonstrated between human and mouse, in the 
case of phosphorylcholine-binding myeloma proteins (30) and antibodies to 
acetylcholine receptor (31), and between goat and sheep antibodies to sickle cell 
hemoglobin (32). 

Based on the observation that the CId-1 antibody reacted with a limited 
number of BALB/c mouse T cells, we fused enriched CId-1 ÷ BALB/c T cells 
with the AKR BW 5147 line and generated two of 72 hybrids, termed CId-IA 
and CId-IB, that reacted with the monoclonal CId-1 anti-Id antibody. Both cell 
hybrids lacked mouse Ig determinants and detectable Lyt-2 and I-A allelic 
determinants of both parental cells; each expressed the Thy-l .2,  H-2 d, and I-J d 
antigens of BALB/c origin, the I-J k antigen of AKR origin and the Lyt-1 antigen. 
These results suggest that both CId-IA and CId-IB cells were T cell hybrids 
resulting from fusion events between BALB/c and AKR cells. 

The relative immunofluorescence intensity of the CId-1 marker on CId-IA 
and CId-1B hybrids was "~ 10-20-fold less intense than that of  BALB/c p-bearing 
splenic B lymphocytes stained with the same preparation of goat antibodies to 
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mouse #-chains. Assuming that a mature B lymphocyte expresses ,~ 105 surface 
IgM molecules (33), the CId-IA and CId-IB hybrids would appear to express 
"~5 × 103 CId-1 + surface molecules per cell. This figure is consistent with the 
idea that the antigen-binding molecules on T cells may be 10-100-fold less dense 
than that expressed by B cells, and with the observation that T cell hybrids 
synthesize extremely small amounts of antigen-binding materials (34). A low 
density of antigen-binding molecules on the T cell surface could also contribute 
to the difficulty encountered in demonstrating specific antigen binding by T 
cells. 

The binding of CId-1 antibody to the CId-IB hybrids was inhibited by 
preincubating the antibody with affinity-purified chicken antibodies to NAGA, 
but not by antibodies to PABA. The lack of binding to the T cell hybrids by the 
control CId-2 antibody and other mouse monoclonal antibodies of IgM isotype 
also strongly argues against the possibility of nonspecificity of the CId-1 binding 
to the CId-IB hybrid cells. Moreover, this possibility would not explain the 
specific immunofluorescent staining of  cytoplasmic constituents in the CId-IA 
and -1B hybrid cells after fixation. The latter observation may also be pertinent 
to future biosynthetic studies of the CId-1 molecule. 

The CId-1 surface marker could be easily capped by incubating CId-1B hybrid 
cells with the CId-1 monoclonal antibody at 37°C. CId-1 antibody-induced 
capping of  the CId-1 determinant did not result in redistribution of other surface 
structures, including Thy-l .2,  Lyt-1, H-2 a, I-J a, and I-J k. Similarly, capping of 
the I-J a and I-J k determinants did not alter the global distribution of the CId-1 
determinant, which suggests that the CId-1 marker was not physically linked to 
these surface molecules. 

Con A, in subagglutinating concentrations, has recently been reported to block 
the function of cytotoxic T cells, presumably by binding to surface structures 
essential for recognition or lysis of  target cells (35). Incubation of CId-1 B hybrids 
with Con A or LL resulted in the capping of the CId-1 determinant to one 
cellular pole, whereas incubation with PWM, PHA, LPS, or WGA did not alter 
surface distribution of the CId-1 determinant. The Con A-induced modulation 
of the CId-1 determinant did not result in a concomitant modulation of the Thy- 
1.2, Lyt-1, H-2 a, I-J a, or I-J k molecules, which further suggests that the CId-1 
determinant is a distinctive cell surface component. 

Treatment  of CId-IB hybrids with tunicamycin, a compound that selectively 
prevents protein glycosylation (36), dramatically reduced surface expression of 
CId-1 + molecules, but did not affect cytoplasmic expression of the antigen. 
Treatment  of CId-1B hybrid cells with pronase or trypsin also resulted in a near- 
complete shift of fluorescence intensity of the CId-1 surface marker to back- 
ground level. Taken together, these results suggest that the CId-1 antigen is on 
a protein molecule that is glycosylated en route to the cell surface, where it can 
be modulated by Con A or LL independently of the other surface structures 
recognized on the CId-1B hybrid cells. 

It should be noted that we have no evidence of antigen binding or other 
functional activity for the CId-1 + molecule on the T cell hybrids CId-IA and 
CId-IB. However, the pool size of circulating CId-1 + T cells in the chicken was 
selectively increased after injections of either the CId-1 antibody or Strep A 
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organisms bearing the NAGA antigen (19). CId-1 + T cells in mice represent a 
very small subpopulation ("~0.2%) of the T cell pool. Clonal restriction in 
expression of this Vn idiotope is further emphasized by its low incidence ('~3%) 
of expression by T cell hybrids that were produced by fusion of T cells, from an 
NAGA-immune donor, preselected by adherence to a CId-1 antibody-coated 
plate. We conclude that these T cell hybrids, which express a surface glycoprotein 
recognized by the monoclonal CId-1 antibody with VH idiotope specificity, may 
provide a useful model system for identification and molecular characterization 
of the T cell antigen receptor. 

S u m m a r y  
Two mouse monoclonai antibodies to chicken immunoglobulin Vmassociated 

idiotypes (Id), CId-1 and CId-2, were used as probes for Id determinants on 
mouse T cells. CId-1, which recognized chicken antibodies to N-acetyl glucosa- 
mine (NAGA), and ~0.4% of chicken T lymphocytes also reacted with '~0.2% 
of BALB/c splenic Thy-l .2  + cells. When enriched CId-1 ÷ splenic T cells from 
NAGA-immune BALB/c mice were fused with the AKR thymoma BW 5147 
cell line, 2 of 72 resulting hybrids, termed CId-IA and CId-IB, were reactive by 
indirect immunofluorescence with the CId-1 antibody. CId-1 determinants were 
expressed both in the cytoplasm and on the cell surface. Immunofluorescence 
studies revealed that both CId-1 ÷ T cell hybrids were phenotypically identical: 
CId-2-/Ig-/Lyt-l+2-/Thy-l .2+/H-2d+/I-Ad-/I-Ak-/I-Ja+/I-J k+. Incubation of 
CId-IB hybrid cells with concanavalin A or lentil lectin resulted in capping of 
the CId-1 determinant, whereas incubation with pokeweed mitogen, lipopolysac- 
charide, phytohemagglutinin, and wheat germ agglutinin had no effect on the 
cell surface distribution of the CId-1 molecule. Trypsin or pronase treatment 
resulted in the loss of detectable CId-1 determinant on the cell surface. Treat- 
ment of CId-IB cells with tunicamycin also reduced the immunofluorescence 
intensity of the surface CId-1 determinant, but had no effect on its cytoplasmic 
expression. CId-1 antibody-induced capping of the CId-1 marker did not affect 
the surface distribution of Lyt-1, Thy-l .2,  H-2 d, I-J d, or I-J k molecules. Con- 
versely, capping of I-J d and I-J k determinants did not alter the surface distribution 
of CId-1. These results suggest that the CId-1 determinant is on a glycoprotein 
that is not physically linked to the Lyt-1, Thy-1.2, H-2 d, I-J d, and I-J k molecules. 
The clonai restriction of CId-1 expression by T cells suggests that the CId-1 + 
molecule could be a T cell antigen receptor. 
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