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account for the deaths of 8 million individuals a year by 2030 
(Mathers & Loncar, 2006). Furthering our understanding of the 
genetic contribution of smoking-related behaviors may ulti-
mately facilitate advances in cessation treatment through the 
identification of novel treatment targets, which may help to re-
duce the substantial health concern associated with tobacco use.

There is consistent evidence from twin and adoption studies 
that genetic factors contribute to the etiology of cigarette smok-
ing, playing an important role in smoking initiation, progression 
to heavy use, and persistence (Fowler et al., 2007; Kendler et al., 
1999; Lessov et al., 2004; Munafo & Johnstone, 2008; Sullivan & 
Kendler, 1999). A meta-analysis (Li, Cheng, Ma, & Swan, 2003) 
reported that genetic factors were responsible for approximately 
50% of the variation noted in both initiation and persistence. 
However, despite a large number of candidate gene studies (fo-
cusing primarily on targets in relevant neurotransmitter path-
ways and enzymes associated with nicotine metabolism), few 
reported associations between gene variants and smoking-relat-
ed phenotypes have proven to replicate reliably. Recently, how-
ever, variation in the 15q24 nicotinic acetylcholine receptor 
(nAChR) gene cluster CHRNA5-A3-B4 (responsible for encod-
ing a5, a3, and b4 nAChR subunits) has shown promise as a 
candidate region for smoking behavior. Polymorphisms in this 
cluster have been linked to multiple smoking-related pheno-
types, such as nicotine dependence (Bierut et al., 2008; L. S. 
Chen, Johnson, et al., 2009; Grucza et al., 2008; S. F. Saccone et 
al., 2007; Spitz, Amos, Dong, Lin, & Wu, 2008; Thorgeirsson et 
al., 2008), smoking quantity (Amos et al., 2008; Berrettini et al., 
2008; Keskitalo et al., 2009; Lips et al., 2009; Stevens et al., 2008; 
Thorgeirsson et al., 2008), and smoking cessation (Freathy et al., 
2009) as well as smoking-related diseases, such as lung cancer 
(Amos et al., 2008; Hung et al., 2008; Lips et al., 2009; P. Liu 
et al., 2008; Spitz et al., 2008; Thorgeirsson et al., 2008), chronic 
obstructive pulmonary disease (Pillai et al., 2009; Young et al., 
2008), peripheral arterial disease (Thorgeirsson et al., 2008), 
and upper aerodigestive tract cancers (Lips et al., 2009). 
Whether the associations noted between these variants and dis-
eases are direct or mediated via the variants’ association with 
smoking-related behaviors, or both, remains a topic of debate 
(see Thorgeirsson & Stefansson, 2010).

Abstract
Introduction: Variation in the CHRNA5-A3-B4 gene cluster is 
a promising candidate region for smoking behavior and has 
been linked to multiple smoking-related phenotypes (e.g., nico-
tine dependence) and diseases (e.g., lung cancer). Two single 
nucleotide polymorphisms (SNPs), rs16969968 in CHRNA5 
and rs1051730 in CHRNA3, have generated particular interest.

Methods: We evaluated the published evidence for association 
between rs16969968 (k = 27 samples) and rs1051730 (k = 44 
samples) SNPs with heaviness of smoking using meta-analytic 
techniques. We explored which SNP provided a stronger  
genetic signal and investigated study-level characteristics (i.e., 
ancestry, disease state) to establish whether the strength of as-
sociation differed across populations. We additionally tested for 
small study bias and explored the impact of year of publication.

Results and Conclusions: Meta-analysis indicated compelling 
evidence of an association between the rs1051730/rs16966968 
variants and daily cigarette consumption (fixed effects: B = 0.91, 
95% CI = 0.77, 1.06, p < .001; random effects: B = 1.01, 95% CI = 
0.81, 1.22, p < .001), equivalent to a per-allele effect of approxi-
mately 1 cigarette/day. SNP rs1051730 was found to provide a 
stronger signal than rs16966968 in stratified analyses (p

diff
 = 

.028), although this difference was only qualitatively observed in 
the subset of samples that provided data on both SNPs. While 
the functional relevance of rs1051730 is unknown, it may be a 
strong tagging SNP for functional haplotypes in this region.

Introduction
Tobacco use is one of the greatest public health concerns facing 
modern society, currently accounting for the deaths of 5.4 
million people a year (World Health Organization [WHO], 
2008). While overall prevalence rates suggest that tobacco use is 
now falling in high-income countries, the epidemic has shifted 
to the developing world where tobacco use is increasing (WHO, 
2008). Current predictions estimate that tobacco use will 
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Two single nucleotide polymorphisms (SNPs) in the 
CHRNA5-A3-B4 region, rs16969968 in CHRNA5 and rs1051730 
in CHRNA3, have generated particular interest with respect to 
smoking-related behaviors. The SNP rs16969968 is notable as a 
missense mutation, resulting in an amino acid change (aspar-
tate to asparagine) at position 398 in the a-5 subunit protein 
(Bierut, 2010). This polymorphism appears to be of functional 
significance—in vitro studies have demonstrated that a4b2a5 
receptors with the aspartic acid variant exhibit a greater response 
to a nicotine agonist than a4b2a5 receptors containing the 
asparagine substitution (Bierut et al., 2008). Reduced nAChR 
function may therefore predispose to nicotine dependence. This 
finding complements evidence from a number of population-
based genetic studies/candidate gene association studies linking 
this specific polymorphism to phenotypes, such as nicotine de-
pendence and smoking quantity (Grucza et al., 2008; Lips et al., 
2009; S. F. Saccone et al., 2007, N. L. Saccone et al., 2009). An 
association between this variant and smoking quantity was also 
identified in a recent meta-analysis of primarily new unpub-
lished data conducted by N. L. Saccone et al. (2010). The SNP 
rs1051730 (a polymorphism in strong linkage disequilibrium 
[LD] with rs16969968 and frequently used interchangeably with 
this SNP in the literature) has also shown promise as a strong 
candidate for further research. Associations between this vari-
ant and both nicotine dependence and smoking quantity have 
been replicated in several independent samples (X. Chen, Chen, 
et al., 2009; S. F. Saccone et al., 2007; Thorgeirsson et al., 2008). 
Moreover, three recent genome-wide meta-analyses have high-
lighted an association between this locus and smoking quantity 
(Furberg et al., 2010; J. Z. Liu et al., 2010; Thorgeirsson et al., 
2010).

The CHRNA5-A3-B4 cluster clearly shows promise as a 
candidate region for smoking behavior, with an established link 
between SNPs rs16969968 and rs1051730 and smoking quanti-
ty. To date, however, no study-level meta-analysis has been 
conducted to determine the strength of association between 
rs1051730 specifically and smoking quantity, to determine 
whether the strength of association between both SNPs and 
smoking quantity differs according to sample ancestry or disease 
status, or to assess small study bias. It is of note that typically 
only one of these two SNPs tends to be used in analyses in the 
wider literature for practical reasons. It is therefore of interest to 
determine whether they should continue to be used inter-
changeably. We sought to (a) evaluate the strength of evidence 
for the association between the rs16969968 and rs1051730 SNPs 
and heaviness of smoking (both in pooled and in independent 
analyses), as measured by daily cigarette consumption, using 
meta-analytic techniques to synthesize existing published data; 
(b) explore which SNP provides a stronger genetic signal; (c) 
test for the possibility that small study sample sizes may have 
biased findings; (d) explore the impact of year of publication; 
and (e) investigate the impact of ancestry and disease state as 
potential moderating variables.

Methods
Selection of Studies for Study Inclusion
Studies were included that reported data on the CHRNA5 poly-
morphism rs16969968 and/or the CHRNA3 polymorphism 
rs1051730 and smoking quantity. If data regarding smoking 

quantity were presented categorically, or were available but not 
reported by genotype, we contacted the authors to determine 
whether data in an appropriate format for inclusion were avail-
able. Three attempts were made to contact study authors. If 
these attempts did not result in the provision of data, the study 
was included but coded as “data not available.” Studies in any 
language reporting data on samples of any ethnic origin were 
included as were studies reporting data on either single-sex 
samples or samples including both males and females.

Studies were excluded if no data on smoking quantity were 
available, neither of the SNPs of interest was investigated, or if 
extreme smoking quantity phenotypes had been selected for anal-
ysis. Reviews, letters to the editor, and editorials were excluded if 
these did not present new or relevant data. Family-based studies 
were also excluded. Additionally, studies were excluded if an 
inappropriate study design was employed (e.g., DNA pooling).

Search Strategy
The search was performed in Scopus and PubMed. These  
databases were searched from the first date available in each 
database up to May 12, 2010, using the following search terms: 
“CHRNA5 or CHRNA3 or CHRNB4”; “rs16969968 or rs1051730”; 
“smok* and 15q2*.” Once articles had been collected, references 
were hand searched for additional studies of interest.

The titles and abstracts of studies identified by these search 
strategies were examined, and those clearly fitting the inclusion 
or exclusion criteria were retained or excluded, respectively 
(initial screening conducted by JW). Of the remaining studies, a 
more thorough examination of the full text and supplementary 
material (if available) was required to determine retention or 
rejection (full-text assessment conducted by JW). All duplications 
were deleted. Where studies reported previously published data, 
we included data from only one of the publications, namely that 
reporting the largest sample. Ten percent of all studies identified 
by the search strategy were additionally assessed for eligibility by 
a second reviewer (interrater agreement >90%). Disagreements 
between reviewers were resolved by mutual consent.

Data Extraction
For each study the following data were extracted: (a) authors and 
year of publication, (b) sample characteristics (ancestry and disease 
state), (c) SNP(s) studied, and (d) M, SD, and N for cigarettes per 
day by genotype. Genotype frequencies were used to calculate 
deviation from Hardy–Weinberg equilibrium (HWE). Ancestry 
was coded as European or “other,” given the paucity of studies re-
porting data on non-European samples. To be coded as European, 
a sample had to be comprised of at least 95% European individuals.

Data Analyses
Given the high LD between rs16969968 and rs1051730 (European: 
r2 = .902, Japanese/Chinese: r2 = 1.000, African: r2 = unavailable; 
calculated using HapMap data in conjunction with SNAP  
[http://www.broadinstitute.org/mpg/snap/ldsearchpw.php]), we 
initially conducted pooled analyses incorporating data from all 
samples, regardless of SNP studied, omitting one dataset if data 
on both SNPs had been collected for a sample. The standard 
additive model of genetic action was used for evaluation. Small 
study bias was assessed using the Egger test (Egger, Davey Smith, 
Schneider, & Minder, 1997) for both pooled and independent 
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SNP analyses. The impact of year of publication on effect size 
estimate was also examined. Data were analyzed within both a 
fixed- and random-effects framework. Individual study effect 
sizes were pooled to generate a summary effect estimate and 
95% CI, the significance of which was determined using a Z test. 
Stratified analyses by sample ancestry (European vs. other) and 
disease state (control/population vs. disease/partial disease) 
were conducted to ascertain the potential moderating effects of 
these variables. We also explored which SNP provided a stron-
ger genetic signal. The differences in pooled effect sizes were 
determined using a Z test.

Between-study heterogeneity was examined using a  
chi-square test and quantified through calculation of I2—
the conventional bounds for low, medium, and high hetero-
geneity based on the I2 statistic being 25%, 50%, and 75%, 
respectively.

Data were analyzed with Comprehensive Meta-Analysis 
Version 2 statistical software (Biostat, Englewood, NJ).

Results
Study Selection
The search of Scopus and PubMed databases provided 585 
records. Two additional records were identified through other 

sources (hand-searching references of identified papers). After 
adjusting for duplications, 432 records remained. Of these, 325 
were discarded because after reviewing the abstracts, it appeared 
that these papers clearly did not meet the required criteria. The 
full texts of the remaining 107 studies were examined in detail 
(Figure 1). Of these, 37 were identified for inclusion in the 
meta-analysis (Supplementary Tables S1 and S2).

Characteristics of Included Studies
A total of 37 studies published between 2006 and 2010 were 
identified for inclusion in the meta-analysis. Of these, 19 studies 
(comprising k = 57 independent samples and a further k = 15 
duplicate samples) provided data contributing to the meta-
analysis (Amos et al., 2008; Breitling et al., 2009; Broderick et al., 
2009; X. Chen, Chen, et al., 2009; Etter et al., 2009; Freathy et al., 
2009; Greenbaum, Rigbi, Teltsh, & Lerer, 2009; Greenbaum et 
al., 2006; Grucza et al., 2008; Keskitalo et al., 2009; Lambrechts 
et al., 2010; Landi et al., 2009; Le Marchand et al., 2008; Lips et al., 
2009; Schwartz, Cote, Wenzlaff, Land, & Amos, 2009; Shiraishi 
et al., 2009; Spitz et al., 2008; Young et al., 2008; Zienolddiny 
et al., 2009). The remaining 18 studies identified for inclusion 
did not contribute data as data from these studies were not 
available or the sample(s) featured had been included in another 
study, which we had already included in our analyses (refer to 
Supplementary Tables S1 and S2; Baker et al., 2009; Caporaso 
et al., 2009; Conti et al., 2008; Hung et al., 2008; P. Liu et al., 

Figure 1.  Flow diagram of study selection.
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2008, 2010; McKay et al., 2008; Pillai et al., 2009; Ray et al., 
2010; Rigbi et al., 2008; Sherva et al., 2008; Thorgeirsson et al., 
2008, 2010; Furberg et al., 2010; Weiss et al., 2008; Wu et al., 2009; 
Yang et al., 2010; Young et al., 2009).

A total of 50 samples provided data on participants of 
predominantly European ancestry and 7 on participants of  
other ancestry. Twenty-one samples reported data on control/
population samples and 36 on disease/partial disease samples 
(e.g., lung cancer cases). Forty-four samples reported data on 
rs1051730 and 27 on rs16969968 (NB: k = 15 samples reported 
data on both SNPs). Two samples reported genotype frequen-
cies that deviated substantially from HWE (NB: one additional 
non-HWE sample was excluded from analyses as the homozy-
gous risk genotype group contained only one participant). 
Minor allele frequencies of rs16969968 (A) and rs1051730 (T) 
ranged from 0.03 to 0.43 (median = 0.35). The wide ranges were 
primarily driven by the inclusion of non-European samples in 
which the minor alleles were rare.

Smoking Quantity
Primary Analyses
Meta-analysis indicated strong evidence of association between 
the rs1051730/rs16966968 variants and daily cigarette con-
sumption (f﻿ixed effects: B = 0.91, 95% CI = 0.77, 1.06, p < .001; 
random effects: B = 1.01, 95% CI = 0.81, 1.22, p < .001; Table 1, 
Figure 2). There was evidence of moderate between-study het-
erogeneity, Q(56) = 85.46, p = .007, I2 = 34%.

Egger’s test indicated weak evidence of small study bias,  
t(55) = 1.84, p

one tailed
 = .036. To adjust for this, we utilized Duval 

and Tweedie’s (2000) “trim and fill” method. This method re-
moves studies with outlying effect size values identified on fun-
nel plots until symmetry is achieved and then replaces these 
along with imputed “mirror” values in order to retain symme-
try. This correction had minimal effect on the overall effect esti-
mate (adjusted value: B = 0.85, 95% CI = 0.62, 1.07). There was 
no evidence of an association between effect size estimate and 
year of publication (p = .27).

Stratified Analyses
Results from all stratified analyses, under both fixed- and random-
effects models, are displayed in Table 1. Random-effects model 
outcomes are presented here.

Evidence for an association between rs1051730/rs16969968 
variants and heaviness of smoking was observed irrespective of 
stratification by study level characteristics.

Two of the 57 samples included in our analysis deviated 
from HWE. We compared this pair of samples to the group of 
55 samples, which did not deviate from HWE. In both groups, 
there was strong evidence to suggest an association between 
rs1051730/rs16969968 and daily cigarette consumption (HWE: 
B = 0.99, 95% CI = 0.78, 1.20, p < .001; non-HWE: B = 1.89, 
95% CI = 0.76, 3.03, p = .001). There was no clear evidence 
to suggest a difference in effect size estimates between groups 
(p

diff
 = .12).

There was strong evidence of an association between 
rs1051730/rs16969968 and daily cigarette consumption in both 
European and other groups (European: B = 0.97, 95% CI = 0.76, 
1.18, p < .001; other: B = 1.58, 95% CI = 0.71, 2.46, p < .001). 
There was no clear evidence to suggest that this effect size 
differed between groups (p

diff
 = .18).

There was strong evidence of an association between 
rs1051730/rs16969968 and daily cigarette consumption in both 
the control/population group and the disease/partial disease 
group (control: B = 0.97, 95% CI = 0.55, 1.39, p < .001; disease/
partial: B = 1.04, 95% CI = 0.80, 1.27, p < .001). There was no 
evidence for a difference in effect size estimates between groups 
(p

diff
 = .79).

There was strong evidence of an association between both 
rs1051730 and rs16969968 SNPs and daily cigarette consump-
tion (rs1051730: B = 1.17, 95% CI = 0.95, 1.39, p < .001; 
rs16969968: B = 0.77, 95% CI = 0.50, 1.05, p < .001), and this 
effect size appeared to differ between groups (p = .028). How-
ever, although this difference was qualitatively observed in the 

Table 1. Meta-Analysis of rs1051730/rs16966968 and Heaviness of Smoking: Full and 
Stratified Analyses

k

Fixed effects Random effects

Effect size 95% CI p value I2 (%) p
diff

Effect size 95% CI p value p
diff

Full model 57 0.915 0.769 1.060 <.001 34 NA 1.012 0.806 1.218 <.001 NA
HWE
  Yes 55 0.898 0.752 1.045 <.001 34 0.989 0.781 1.196 <.001
  No 2 1.894 0.757 3.032 .001 0 .089 1.894 0.757 3.032 .001 .12
Ancestry
  European 50 0.887 0.739 1.036 <.001 34 0.971 0.763 1.178 <.001
  Other 7 1.634 0.874 2.394 <.001 20 .059 1.584 0.712 2.456 <.001 .18
Disease state
  No 21 0.838 0.533 1.143 <.001 33 0.968 0.547 1.390 <.001
  Yes/partial 36 0.937 0.772 1.103 <.001 37 .57 1.035 0.798 1.273 <.001 .79
SNP
  rs1051730 44 1.144 0.964 1.323 <.001 19 1.170 0.952 1.388 <.001
  rs16969968 27 0.648 0.444 0.852 <.001 30 <.001 0.775 0.499 1.051 <.001 .028

Note. Results under an additive model of genetic action displayed. HWE = Hardy–Weinberg equilibrium; SNP = single nucleotide polymorphism.
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subset of samples (k = 14) that contained data on both SNPs, 
with a slightly larger effect size observed for rs1051730 (B = 1.09, 
95% CI = 0.72, 1.46, p < .001) compared with rs16966968 (B = 
1.05, 95% CI = 0.65, 1.46, p < .001), this difference did not achieve 
statistical significance (p

diff
 = .89), suggesting that the observed dif-

ference in the full meta-analysis may be due to confounding arising 
from other study- or sample-level differences. One sample report-
ing data on both SNPs was excluded from analyses as the homozy-
gous risk genotype group contained only one participant.

Egger’s test indicated no evidence of small study bias for 
SNP rs1051730, t(42) = 0.92, p

one tailed
 = .18. Evidence of small 

study bias was observed for SNP rs16969968, however, t(25) = 
2.01, p

one tailed
 = .028. We utilized Duval and Tweedie’s “trim and 

fill” method to adjust for this, which led to a reduction in the 
overall effect estimate for this SNP (adjusted value: B = 0.49, 
95% CI = 0.19, 0.79).

Discussion
Our data suggest compelling evidence for a small effect of the 
rs16969968/rs1051730 SNPs on daily cigarette consumption, 

equivalent to a per-allele effect of approximately 1 cigarette/day. 
Interestingly, SNP rs1051730 may provide a stronger signal than 
rs16969968, although evidence for this is indirect and should 
therefore be treated with caution. No evidence for a difference 
in effect size between groups was observed in other stratified 
analyses (i.e., ancestry, disease state). Strong evidence for an 
association between rs16969968/rs1051730 SNPs and daily 
cigarette consumption was observed irrespective of study level 
characteristics, suggesting that the association is robust.

The nicotinic acetylcholine receptor (nAChR), to which 
nicotine binds, is a plausible and biologically relevant candidate 
for smoking etiology. Neuronal nAChRs are widely distributed 
throughout the central and peripheral nervous system. They are 
ligand-gated ion channels composed of five transmembrane 
subunit proteins arranged around a central pore. Neuronal 
nAChRs consist of a (a2-a10) and b (b2-b4) subunits (Gotti, 
Zoli, & Clementi, 2006), each of which is encoded for by a single 
CHRN gene, and may be homomeric or heteromeric in terms of 
subunit composition. Different combinations of subunits result 
in receptors differing in biological function (Bierut, 2010), and 
specific combinations of subunits may be found in specific loca-
tions throughout the brain. Expression of nAChRs in brain 

Figure 2.  Meta-analysis of association of rs1051730/rs16969968 single nucleotide polymorphisms with heaviness of smoking.
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areas implicated in drug addiction lends further credence for 
their study in this field. Of particular relevance to the current 
study, Berrettini et al. (2008) describe expression of both CHRNA5 
and CHRNA3 in multiple brain areas relevant to addiction, 
including the amygdala and nucleus accumbens.

Although the missense mutation rs16969968 appears to be 
of functional significance, a larger effect was observed for the 
synonymous SNP rs1051730 in full stratified analyses. While 
this SNP appears to be of no functional significance, which to 
some extent limits the interpretation of the observed associa-
tion, as a single marker, it appears superior to rs16969968 with 
regards to determining variation in smoking quantity. It is also 
noteworthy that evidence of small study bias was observed for 
SNP rs16969968 but not for rs1051730. Adjusting for this bias 
increased the difference in effect estimate between SNPs. It is 
possible that rs1051730 is a strong tagging SNP for functional 
haplotypes in this region, and it would therefore be important 
to focus research efforts on identifying these. It is crucial to 
note, however, that the difference in effect size estimates  
between SNPs was only qualitatively observed in the subset 
of samples which contained data on both rs1051730 and 
rs16969968. This may be due to the limited number of studies 
examined (k = 14) or confounding arising from other study- or 
sample-level differences. A large-scale study directly com-
paring both SNPs would be required to answer this question 
definitively.

The primary limitation of our meta-analysis was that we did 
not have the data necessary to perform a joint SNP analysis in 
which the effects of one SNP were conditioned on the other. 
This analysis would have enabled us to comment more authori-
tatively on the difference in genetic signal between these two 
SNPs, if any, which are known to be in LD. An additional limita-
tion of our meta-analysis was that the procedures used allowed 
only comparable data to be combined. As such a number of 
studies that would have ideally been included in our analysis 
had to be excluded, such as those examining extreme smoking 
quantity phenotypes (e.g., Stevens et al., 2008). We were also 
unable to include data from studies reporting only categorical 
smoking quantity data by genotype (e.g., Thorgeirsson et al., 
2008). An additional shortcoming was that we were only able to 
investigate a limited number of study-level characteristics. It is 
of note, however, that the analysis of study-level characteristics 
is indirect and may lead to ecological fallacy. Any differences 
observed should be considered hypothesis generating to be 
followed up in appropriately designed primary studies. Finally, 
it is of note that methods employed to correct for publication 
bias, such as Duval and Tweedie’s “trim and fill” approach  
as utilized here, are not widely accepted and rest on certain 
assumptions (see Munafo, Clark, & Flint, 2004). As such, cor-
rected findings should be interpreted with caution.

In conclusion, our analyses confirm that two SNPs 
(rs16969968 and rs1051730) located in the nicotinic acetyl-
choline receptor gene cluster CHRNA5-A3-B4 are robustly 
associated with heaviness of smoking. Interestingly, SNP 
rs1051730 may provide a stronger signal than rs16969968, al-
though evidence for this is indirect. Much variability in this 
phenotype remains to be determined, however. Smoking is a 
complex behavior determined by both genetic and environ-
mental factors. It is likely that many other loci will contribute to 
this phenotype as will multiple environmental factors. Further 

research into gene–environment interactions as well as gene–gene 
interactions is also called for.

Supplementary Material
Supplementary Tables S1 and S2 can be found online at http:// 
www.ntr.oxfordjournals.org.
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