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Abstract
Immediately after cardiac injury, the immune system plays major roles in repair and regeneration as it becomes involved in a 
number of processes including damage-associated signaling, inflammation, revascularization, cardiomyocyte dedifferentia-
tion and replenishment, and fibrotic scar formation/resolution. Recent studies have revealed that different immune responses 
occur in the various experimental models capable or incapable of cardiac regeneration, and that harnessing these immune 
responses might improve cardiac repair. In light of this concept, this review analyzes current knowledge about the immune 
responses to cardiac injury from a comparative perspective. Insights gained from such comparative analyses may provide 
ways to modulate the immune response as a potential therapeutic strategy for cardiac disease.
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Introduction/Background

Heart failure is a major cause of morbidity and mortality, in 
part because of the inability of the human heart to replenish 
lost muscle tissue from cardiomyopathies including myocar-
dial infarction (MI). Instead, fibrotic scar forms during the 
repair process, compromises cardiac function, and eventu-
ally leads to adverse remodeling and failure. Interestingly, 
recent studies have reported that adult cardiac muscle cells 
(cardiomyocytes, CMs) retain some capacity to divide in 
both mice [7, 21, 44, 64, 92, 94, 108, 131, 125] and humans 
[5, 6, 77], thus raising the possibility of promoting endog-
enous cardiac regeneration in patients.

Regenerative and non-regenerative models provide 
opportunities for comparative analyses to gain knowledge 
regarding cardiac regeneration, as well as to develop new 

therapeutic strategies for human cardiac disease [17, 99, 
104]. Interestingly, comparative studies between neona-
tal and adult mice [3, 59], and between phylogenetically 
related species such as zebrafish (Danio Rerio) and medaka 
(Oryzias latipes) [58] have suggested that the capacity for 
regeneration does not solely rely on genetic makeup, envi-
ronmental conditions (e.g., hypoxia), or evolutionary com-
plexity; instead, the type and extent of the immune responses 
to cardiac injury seem to be a major difference between these 
regenerative and non-regenerative models [3, 58, 59], and 
may largely influence the recovery post experimental MI, as 
well as clinical prognosis [30, 96].

Injury models

To study cardiac repair and regeneration, various injury 
models have been established to induce myocardial lesion, 
including myocardial infarction (MI), resection, cryoinjury 
and genetic ablation (Fig. 1). Experimental MI is induced by 
ligating the left anterior descending coronary artery to cut off 
blood flow, leading to ischemic cell death of the downstream 
tissue. This method is usually performed in rodents and 
larger mammals and best mimics the pathological condition 
in humans (Fig. 1) [26, 40, 94]. In the ischemic reperfusion 
(I/R) MI model, the vessel ligature is released after 30 min, 
mimicking the pathophysiology of clinical reperfusion. In 

Cellular and Molecular Life Sciences

 *	 Shih‑Lei Lai 
	 Ben.S.Lai@ibms.sinica.edu.tw

 *	 Didier Y. R. Stainier 
	 Didier.Stainier@mpi‑bn.mpg.de

1	 Department of Developmental Genetics, Max Planck 
Institute for Heart and Lung Research, Bad Nauheim, 
Germany

2	 Institute of Biomedical Sciences, Academia Sinica, Taipei, 
Taiwan

http://orcid.org/0000-0002-1409-4701
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-018-2995-5&domain=pdf


1366	 S.-L. Lai et al.

1 3

contrast to permanent MI, reperfusion salvages ischemic 
myocardium but paradoxically causes injury due to reactive 
oxidative species (ROS) production and altered inflamma-
tion [39]. Since vessel ligation is more practical in larger 
animals with a distinct coronary system, other injury meth-
ods have been established. For example, resection can be 
performed on almost all animals by surgically removing a 
part of the ventricle (Fig. 1). Although resection efficiently 
induces tissue loss, unlike MI, it induces less cell necrosis 
and fibrotic scar formation in the remaining tissue [22, 93, 
95). Cryoinjury is another frequently adopted method and 
it consists of cauterizing the ventricle with a metal probe 
(cryoprobe) equilibrated in liquid nitrogen (Fig. 1). Similar 
to MI, cryoinjury results in cell necrosis alongside healthy 
tissue and formation of a prominent fibrotic scar, which 
also closely resembles the pathophysiological condition 
in humans [12, 35, 106, 115]. Alternatively, genetic abla-
tion can be achieved by expressing bacterial Nitroreductase 
(NTR) or Diphtheria toxin receptor (DTR) specifically in 
CMs (Fig. 1). NTR catalyzes the reduction of innocuous 
prodrugs such as Metronidazole (Mtz) into a cytotoxic prod-
uct leading to cell death [19, 20]. Expression of DTR in 
CMs makes them susceptible to Diphtheria toxin-induced 
cell death [101]. Although genetic ablation is a convenient 
way to induce CM death without any surgery, the resulting 
fibrotic scar is difficult to quantify and compare [59].

Animal models

With respect to animal models, general capacity for tissue 
regeneration seems to inversely correlate with evolutionary 
complexity across the animal kingdom [124, 137]. Unlike 

mammals, some vertebrates are capable of endogenous 
heart regeneration in adulthood, including certain fish and 
amphibians [124]. Zebrafish are a favored model as they 
exhibit a remarkable regenerative capacity after various car-
diac insults [12, 35, 95, 106, 139]. Recently, another fresh 
water teleost, medaka (Oryzias latipes), has been reported 
to lack revascularization and CM proliferation after cardiac 
injury, subsequently displaying excessive fibrosis and an 
unresolved scar [47]. Direct comparison between zebrafish 
and medaka represents a unique platform to identify and 
investigate mechanisms underlying cardiac regeneration 
[58]. Another recent study reported differential regenerative 
capacity in Mexican cavefish (Astyanax mexicanus) living in 
surface dwellings versus those living in caves, and revealed 
a complex interplay between CM proliferation and scar reso-
lution [114]. QTL analysis further revealed 3 loci modulat-
ing heart regeneration in cavefish and modern genomic and 
genetic approaches should lead to their identification in the 
near future.

In terms of the mammalian models, newborn mice retain 
a certain level of regenerative capacity in response to cardiac 
injury [40, 93, 115]. Despite this regenerative capacity, vari-
able amounts of residual fibrotic tissues remain in neonatal 
hearts after recovery, depending on the injury model used 
and the extent of injury [55, 107]. This regenerative capacity 
is mostly lost by 7 days after birth, and adult mice exhibit 
minimal CM replenishment, unresolved scars and contractile 
dysfunction after cardiac injury [40, 93, 115]. Comparative 
studies between neonatal and adult mice have already been 
very informative [3, 59, 73], and they are like to remain a 
powerful approach.

Fig. 1   Cardiac injury models. Illustration of myocardial infarction 
(MI), resection, cryoinjury and genetic ablation of cardiomyocytes 
(CMs). MI is induced by surgically ligating the left anterior descend-
ing coronary artery, leading to tissue death downstream of the liga-
ture. Resection is used to remove part of the ventricle. Cryoinjury 
is used to cauterize part of the ventricle with a cryoprobe. Genetic 

ablation is achieved by driving CM-specific Nitroreductase (NTR) 
expression, which in turn converts a prodrug into a cytotoxic prod-
uct leading to CM death; alternatively, CM-specific expression of the 
Diphtheria toxin receptor (DTR) will render the CMs susceptible to 
diphtheria toxin (DT)-induced cell death
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Inflammatory signaling and cellular contribution

The immune response post MI can be temporally divided into 
the pro-inflammatory phase and the inflammatory resolution/
reparative phase, involving components of both the innate and 
adaptive immune systems. Inflammation after cardiac injury 
is mainly triggered by molecules released from necrotic cells 
and it is programmed to be resolved when the cell debris is 
cleared. This process takes place in both regenerative and non-
regenerative models, yet profound differences can be observed 
which lead to scar resolution and tissue replenishment in the 
former, and scar maturation and tissue remodeling in the latter. 
These differences are due at least in part from the differen-
tial response of cardiac resident cells and recruited immune 
cells in regenerative versus non-regenerative models. Of note, 
prolonged and unresolved inflammation seems to enhance the 
fibrotic response and worsen functional recovery during the 
recovery phase [30]. This review tries to distill our current 
understanding of the roles of the immune response during 
cardiac repair with a focus on inflammation. We also discuss 
the differential immune response in regenerative versus non-
regenerative models, as well as potential strategies to modulate 
the immune response to improve cardiac recovery.

Inflammation

After MI, tissue damage rapidly triggers the response of the 
immune system. Immune cells are initially recruited to the 
injured tissue, clear debris and dead cells, and degrade the 
extracellular matrix [29]. Later, programmed resolution of 
inflammation allows the recruitment and activation of myofi-
broblasts for extracellular matrix (ECM) deposition and 
vascular cells to stabilize the new vessels [29]. Inflamma-
tion is both essential and deleterious for cardiac repair and 
regeneration, depending on its precise spatial and temporal 
regulation. Inflammation is required for cardiac regenera-
tion post injury [3, 45, 58, 59]. In addition, acute inflamma-
tion initiates a reparative response in neonatal mouse hearts 
[36] and can precondition the heart for effective regenera-
tion in zebrafish [23]. On the other hand, studies in mice 
suggest that inflammation extends tissue damage post MI, 
while minimizing inflammation reduces the infarct size and 
adverse remodeling [2, 86, 120]). In light of the importance 
and complexity of the inflammatory response, we discuss 
in detail the tight regulation of inflammation initiation and 
resolution during cardiac healing.

Triggers of inflammation: DAMPs, complements, 
reactive oxygen species (ROS) and TLR signaling

Pathogen-associated innate immune responses are well 
described and are canonically induced through pat-
tern recognition receptors (PRRs), including Toll-like 

receptors (TLRs) and the receptor for advanced glyca-
tion end products (RAGE), which are expressed in both 
recruited leukocytes and tissue resident cells [8, 14, 119]. 
In contrast, sterile inflammation, which occurs during MI, 
is triggered by endogenous molecules known as damage-
associated molecular patterns (DAMPs) or alarmins [16]. 
Similar to how pathogens induce inflammation, DAMPs 
also trigger the innate immune response and inflamma-
tion by binding to PRRs (Fig. 2) [8, 14, 119]. On the 
other hand, release of cellular components such as pro-
teases, hydrolases, and mitochondrial ROS also activates 
the complement system and generates further DAMPs, 
including fragmented ECM, to initiate and propagate the 
inflammatory response [56]. Activation of PRRs on sur-
veillant immune cells including resident macrophages and 
circulating monocytes, as well as resident cells, further 
induces the expression and secretion of various inflam-
matory cytokines and chemokines, and propagates the 
inflammatory response [8, 14, 119]. This sterile inflam-
matory response seems to be essential to clear the initial 
insult (necrotic cells) and activate reparative responses 
such as CM dedifferentiation and proliferation, but at the 
same time might lead to extended injury if not resolved 
in a timely manner.

DAMPs

High-mobility group B1 (HMGB1) is the best characterized 
MI-induced DAMP. In the mouse MI model, HMGB1 is an 
important chromatin-binding protein released by necrotic 
cells and/or secreted by macrophages [9]. HMGB1 promotes 
the maturation and migration of immune cells by interact-
ing with PRRs, such as TLR2/4 and RAGE [54, 111]. Upon 
release or secretion, HMGB1 facilitates tissue repair and 
healing by promoting the switch of macrophages to a tissue-
healing phenotype, the activation and proliferation of stem 
cells, and neoangiogenesis [10]. In addition, HMGB pro-
teins also function as universal sentinels for nucleic acid-
mediated innate immune responses. Extracellular DNA and 
RNA released by necrotic cells bind to macrophage TLRs 
and activate the secretion of pro-inflammatory cytokines, 
including IL-6, IL-12, and Tumor Necrosis Factor alpha 
(TNFα) [48, 134]. Released nucleic acids play dual roles 
upon cardiac insult. On the one hand, extracellular RNA 
released during both I/R injury and MI promotes myo-
cardial inflammation and reducing serum RNA levels by 
RNase administration conferred cardiac protection against 
I/R injury [15, 63]. Conversely, extracellular DNA acti-
vates TLR9 signaling and promotes the proliferation and 
differentiation of cardiac fibroblasts into myofibroblasts. 
Myofibroblasts in turn promote ECM deposition and prevent 
cardiac rupture after MI in mice [84]. Interestingly, admin-
istration of the TLR9 agonist CpG-ODN prior to I/R injury 
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induced preconditioning and attenuated myocardial injury 
via upregulation of the anti-inflammatory cytokine IL-10 
[11, 66]. Furthermore, administration of the TLR3 agonist 

poly I:C after cardiac injury promoted regeneration in the 
non-regenerative medaka [58]. The roles of TLR signaling in 
cardiac healing will be discussed in detail in a later section.
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The ECM provides mechanical support and maintains the 
structural integrity of the heart. During the inflammatory 
phase of MI in mice, high matrix metalloproteinase (MMP) 
activity from necrotic cells, neutrophils and macrophages 
degrades the cardiac ECM. The resulting ECM fragments 
play active roles in inflammatory propagation/modulation, 
signal transduction and mechanical remodeling during car-
diac repair [25, 31, 129]. Interestingly, a common transition 
from the early fibrin-enriched ECM environment to the late 
collagen-based mature scar occurs after cardiac injury in 
both regenerative and non-regenerative models [31, 35]. The 
transient fibrin-based ECM modulates inflammation by reg-
ulating leukocyte engagement via integrin receptors, influ-
encing immune cell behavior, and stimulating macrophage 
chemokine secretion through TLRs [18, 27, 112]. It may also 
serve as a scaffold for migrating inflammatory cells and as 
a support for proliferating endothelial cells and fibroblasts 
[31]. Accordingly with their critical roles, ECM synthesis 
genes are amongst the most upregulated ones post injury in 
both the neonatal mouse heart [40] and the zebrafish heart 
[58, 61, 71]. The ECM components fibronectin and tenascin-
C are essential for cell cycle re-entry and proliferation of 
CMs during zebrafish and newt heart regeneration [71, 127]. 
Subsequently, the mature collagen-based scar resolves with-
out causing adverse remodeling in regenerative models [35, 
93]. The cellular and molecular mechanisms of scar resolu-
tion are still unknown. From a comparative perspective, it 
may be extremely valuable to determine the potential differ-
ences in ECM composition and dynamic changes in regen-
erative and non-regenerative models, and further investigate 
how the ECM potentially modulates cardiac healing. As a 
recent example, AGRIN was identified as a cardiac ECM 
component enriched in neonatal compared to adult mice, and 
it is required for the full reparative capacity in neonates [4]. 

Moreover, a single administration of AGRIN could promote 
regenerative capacity in adult mice after MI [4].

The complement system

The complement system is another critical component of 
innate immunity, and it functions as the first defense to elimi-
nate pathogens by marking them for phagocytosis or directly 
lysing them via the assembly of the membrane attack com-
plex [13, 100]. In addition, the complement system triggers 
inflammation via C3a and C5a fragments (anaphylatoxins) 
[13, 100]. These fragments facilitate neutrophil recruitment 
through activation of the endothelium to increase vessel per-
meability and leukocyte adhesion [13, 100]. Moreover, C3a 
and C5a fragments might induce fibrotic repair after MI by 
facilitating and modulating cardiac pluripotent/progenitor 
cell (CPC) differentiation towards fibroblasts/myofibroblasts. 
On the other hand, the complement system is also involved 
in tissue repair and regeneration [100, 116]. In the heart, 
the complement receptor gene C5aR1 is activated in CMs 
and endothelial cells after cardiac resection in regenerative 
models including axolotl, zebrafish and neonatal mice [82]. 
Inhibition of C5aR1 significantly attenuated the activation of 
CM proliferation in all three species, suggesting that C5aR1 
mediates an evolutionarily conserved response to cardiac 
injury [82]. Of note, differences in macrophage infiltration 
of the injured zone between C5aR1 WT and knockout mice 
were observed, despite the fact that C5aR1 expression was 
not colocalized with macrophage markers [82]. These find-
ings suggest a role for C5aR1 in non-myeloid cells during 
cardiac regeneration, but the detailed mechanisms remain 
unclear. Clearly, a lot more work needs to be done on the 
complement system to understand its role in modulating 
the immune response and other aspects of the regenerative 
process.

Reactive oxygen species (ROS)

ROS have been implicated as the cue to promote immune 
cell infiltration into sites of injury [78, 83]. ROS released 
from mitochondria of necrotic cells or secreted by neu-
trophils trigger the inflammatory response through direct 
activation of the inflammasome in cardiac resident cells 
including fibroblasts [51] and mast cells [32]. Inflamma-
some activation leads to the maturation and secretion of the 
pro-inflammatory cytokines Interleukin 1β (IL-1β) and Inter-
leukin 18 (IL-18) [68].

Excessive generation of ROS during reperfusion induces 
inflammation and extended myocardial injury [79]. Consist-
ently, ROS production in the mouse heart during the first 
week of birth causes DNA damage and cell cycle arrest in 
CMs, and may account for the decreased regenerative capac-
ity in adults [97]. Furthermore, chronic hypoxia minimizes 

Fig. 2   Inflammation induced by cardiac injury. Sterile inflammation 
can be triggered by various components released by necrotic cells, 
including DAMPs, proteases, hydrolases and mitochondrial ROS. 
DAMPs directly activate PRRs on surveillant cells, including tissue 
macrophages, circulating monocytes and neutrophils, as well as on 
resident cells, including endothelial cells, fibroblasts and CMs. Pro-
teases, hydrolases and ROS activate the complement system as well 
as inflammasomes, and degrade the ECM, altogether further propa-
gating the inflammatory response. Activated tissue resident mac-
rophages secrete cytokines to attract monocytes and neutrophils, 
activate endothelial cells to promote cell adhesion and permeability, 
and remodel the ECM. Infiltrating monocytes and neutrophils clear 
cell debris by phagocytosis and help terminate the initial insult. 
After wound clearance, myofibroblasts secrete ECM to help prevent 
the injured heart from rupturing. Differentiated Tregs tune down the 
inflammation by secreting anti-inflammatory cytokines, in parallel 
with M1–M2 macrophage polarization and programmed neutrophil 
apoptosis. Inflammation initiation, propagation and resolution can 
occur in both regenerative and non-regenerative models. However, in 
the regenerative models, these processes seem to facilitate CM dedif-
ferentiation and proliferation and scar resolution by mechanisms yet 
to be determined

◂



1370	 S.-L. Lai et al.

1 3

ROS production and induces CM proliferation following MI, 
resulting in significant recovery of left ventricle (LV) sys-
tolic function [53, 81]. These findings support the hypothesis 
that reduction in ROS and oxidative DNA damage favors 
CM cycling.

Besides their harmful role when present at high levels 
during early reperfusion, minimal ROS levels during ischae-
mia and/or at reperfusion are critical for the redox signal-
ing of cardioprotection, which reduces the extent of infarct 
[79]. In the context of regeneration, hydrogen peroxide, a 
major ROS, initiates inflammation by rapid recruitment of 
leukocytes to the wound in zebrafish [83], and promotes 
CM proliferation and cardiac repair [37]. Nevertheless, 
how redox signaling is balanced during heart regeneration 
and if it can be better modulated in non-regenerative models 
remain elusive. These findings underscore the importance of 
redox signaling during cardiac healing and call for further 
investigation.

TLR signaling

As the most prominent members of PRRs, TLRs belong to 
a family of transmembrane receptors responding to various 
DAMPs, resulting in the activation of pro-inflammatory 
cytokine and chemokine genes [96]. Functional studies indi-
cate that TLRs are important mediators of the post-infarction 
inflammatory reaction, whereby the loss of function of some 
TLRs seems to be beneficial for cardiac healing after MI [2, 
86, 120].

Despite a general acknowledgment of their role in trig-
gering inflammatory responses, a detailed understanding of 
TLR signaling in cardiac regeneration remains elusive. TLR 
signaling seems to trigger CM proliferation during regen-
eration. Administration of zymosan or lipopolysaccharides 
(LPS), TLR2 and TLR4 agonists, respectively, precon-
ditions CMs for cell cycle re-entry in zebrafish [23], and 
induced CM proliferation in the neonatal mouse heart [36]. 
In zebrafish, LPS administration also triggers the expression 
of the retinoic acid synthesizing enzyme Aldh1a2, which 
has been shown to be required for CM proliferation dur-
ing heart regeneration [52]. Furthermore, in non-regener-
ative medaka, IP injection of the TLR3 agonist poly I:C 
promotes macrophage recruitment, revascularization, and 
CM proliferation [58]. Altogether, these data suggest that 
although damage signals appear to trigger inflammation and 
lead to extended infarction in adult mammalian MI models, 
differential responsiveness of TLR signaling to particular 
stimuli might induce protection or regeneration. To better 
understand how differential TLR responsiveness modulates 
cardiac healing, thorough examination of transcriptomic and 
cytokine responses upon various TLR ligand stimulation 
should be performed in both regenerative and non-regener-
ative models. The detailed function of each TLR should also 

be determined to reveal the mechanisms of preconditioning 
and how each TLR contributes to the overall inflammatory 
response post cardiac injury.

Cellular components involved in inflammation

Damage signals trigger inflammation in both resident cells 
(including endothelial cells, fibroblasts, mast cells, tissue 
resident macrophages, CMs, and epicardial cells), as well 
as in recruited cells (including neutrophils, monocyte-
derived macrophages, lymphocytes, and dendritic cells). 
The outcome following cardiac injury appears to depend 
largely on the number, kinetics, and phenotypes of these 
cells. Amongst them, innate immune cells, including mono-
cytes, macrophages and neutrophils, have more established 
functions in clearing cell debris, propagating and resolv-
ing inflammation, and even promoting tissue restoration by 
secreting growth factors and remodeling the ECM [30]. On 
the other hand, the contribution of adaptive immune cells in 
cardiac repair and regeneration is slowly being revealed. For 
example, B cells are associated with autoimmunity against 
healthy CMs after cardiac injury [140], while T cells play 
versatile roles in autoreactivity, inflammation modulation 
and tuning macrophage polarity [122, 128, 141]. Undoubt-
edly, the question of cell-specific contributions to the overall 
injury response still requires extensive investigation. Here, 
we summarize information on a set of resident and recruited 
cells with more defined roles in modulating inflammatory 
response post cardiac injury.

Cardiac resident cells

Endothelial cells  As the most abundant cardiac resident 
cells, endothelial cells constitute > 60% of the non-myocytes 
in the mouse and zebrafish hearts [88, 90]. Endothelial acti-
vation is required for leukocyte extravasation during inflam-
mation. For example, upon activation by DAMPs, P-selectin 
is significantly upregulated in endothelial cells allowing 
neutrophil adhesion and infiltration after I/R injury [130]. In 
addition to adhesive interactions, activated endothelial cells 
secrete cytokines and chemokines, including the monocyte 
chemoattractant protein-1 (MCP-1) to attract monocytes to 
the injured myocardium [57]. The roles of endothelial cells 
in immunity have recently been reviewed.

The cardiac endothelium is composed of endocardial 
and coronary endothelial cells, and both have been shown 
to be instrumental for heart regeneration. In zebrafish, early 
coronary invasion of the injured area is critical to support 
the regenerative response (Fig. 3) [65]. Such a fast coro-
nary invasion, which has started by 15 h after cryoinjury in 
zebrafish, is not observed in non-regenerative models such 
as mice and medaka [65]. In addition, stable revasculariza-
tion is dependent on timely macrophage recruitment, while 
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delayed macrophage recruitment compromises revasculari-
zation (Fig. 3) [58]. Interestingly, while medaka lack a dis-
tinct coronary system, administration of the TLR3 agonist 
poly I:C can accelerate revascularization which is contrib-
uted by the endocardium in a macrophage-dependent manner 
(Fig. 3) [58]. These findings support a critical and instructive 
role of fast revascularization in accelerating cardiac regen-
eration. Correspondingly, accelerated revascularization after 
reperfusion coincided with higher inflammatory cell influx 
and better functional recovery when comparing I/R and per-
manent MI [123]. Despite the hints from these and other 
experimental studies, clinical attempts to promote revascu-
larization through administration of different growth factors 
resulted in leaky and unstable blood vessels, revealing the 
urgent need to better understand the biology behind angio-
genic revascularization. For example, combined approaches 
to stabilize new vessels by triggering pericyte/smooth mus-
cle cell coverage might be essential for clinical therapeutics 
[76, 117]. Understanding the potential relationship between 
the immune response and coronary invasion/revasculari-
zation represents an important step in cardiac healing and 
requires further investigation.

Fibroblasts  Fibroblasts constitute the second largest popu-
lation of cardiac resident cells in mouse, and they are usually 
quiescent and enmeshed in the interstitial tissue and perivas-
cular matrix. Upon severe ischemia, interstitial fibroblasts 
serve as sentinels to detect myocardial injury and trigger 
inflammation [109]. DAMP-PRRs activation on fibroblasts 
leads to altered cellular function including changes in pro-
liferation and migration, transdifferentiation into myofibro-
blasts, ECM turnover, and production of fibrotic and inflam-
matory paracrine factors [121]. In addition to DAMPs, ROS 
also stimulate inflammasome activation and IL-1b produc-
tion in cardiac fibroblasts [51]. During this pro-inflamma-
tory phase, cardiac fibroblasts are activated by DAMPs and 
ROS, and are maintained by IL-1 signaling. Later in the res-
olution/reparative phase, when the wound has been cleared 
by phagocytic cells and inflammation has been resolved, 
these fibroblasts transdifferentiate into myofibroblasts with 
a matrix synthetic function [105]. In non-regenerative mod-
els, cardiac repair following sudden loss of a large number 
of cardiomyocytes is dependent on the clearance of dead 
cells and the formation of a collagen-based scar to maintain 
structural integrity [109]. The active termination and the 
finely tuned fibrotic response of fibroblasts are, thus, critical 
to minimize hypertrophic remodeling and organ failure.

However, it remains unclear how fibroblasts contribute 
to heart regeneration, especially during scar resolution. Col-
lagenous scar formation and maturation occur in regenera-
tive models just as in non-regenerative models. However, 
scar resolution occurs only in regenerative models and it is 
dependent on fibroblast function. In salamanders, alternative 

activation of fibroblasts after macrophage depletion resulted 
in a permanent, highly cross-linked ECM scar and com-
promised heart regeneration. Similarly in zebrafish, fibro-
blasts appear to be required for scar resolution, as ablating 
col1a2-expressing fibroblasts impaired CM proliferation and 
scar resolution [102]. These data illustrate the critical and 
dynamic roles of fibroblasts in propagating inflammation 
and promoting scar formation and resolution during post 
infarct healing. Our understanding of the contribution, regu-
lation and alternative activation of fibroblasts, as well as how 
fibroblasts interact with immune cells clearly requires more 
detailed studies.

Resident macrophages  Tissue-resident macrophages are 
the most abundant immune cell population in the heart, and 
they respond to damage signals by producing inflammatory 
cytokines and initiating neutrophil recruitment [89, 132]. 
Macrophages in adult mouse hearts constitute a heteroge-
neous population. The majority of cardiac resident mac-
rophages derives from the yolk sac and is maintained in the 
heart through local proliferation [24]. These resident mac-
rophages are distinct from mononuclear cells sorted from 
the spleen and brain of adult mice, and with a gene expres-
sion profile similar to anti-inflammatory M2 macrophages 
[91]. After genetic CM ablation in adult mice, this M2-like 
resident macrophage population was replaced, or out-num-
bered, by monocyte-derived macrophages which are promi-
nently pro-inflammatory (Fig.  4) [59]. Furthermore, after 
systematic macrophage depletion, cardiac inflammation or 
aging, CCR2+Ly6Chi monocytes replace embryonic-derived 
resident macrophages and coordinate cardiac inflammation 
[24, 74].

On the contrary, after MI in neonatal mice, the popu-
lation of embryonic-derived resident macrophages which 
generates minimal inflammation expands and helps to 
mediate cardiac recovery by promoting angiogenesis and 
CM proliferation (Fig. 4) [59]. In neonatal mice, depletion 
of phagocytes (presumably resident macrophages) by clo-
dronate liposomes compromised angiogenesis and regenera-
tion [3]. Similarly, in zebrafish, depletion of macrophages 
by clodronate liposomes before cryoinjury led to defects in 
revascularization and CM proliferation at 7 dpci, despite the 
presence of macrophages (Fig. 3). These defects could be 
due to the loss of tissue-resident macrophages or a shift in 
macrophage polarity, which will be further discussed in the 
monocyte and macrophage section below.

Recruited inflammatory cells

Neutrophils  Neutrophils are rapidly recruited to injured 
tissues by DAMPs, cytokines and chemokines, activated 
complements, and histamine [70, 113]. They dominate the 
infarcted myocardium in the first 2 days post MI in adult 
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mice [133], as well as post cardiac injury in zebrafish [58]. 
Corresponding to their well-established anti-pathogen func-
tion, neutrophils clear cell debris in the infarct, produce 
inflammatory cytokines, and accelerate monocyte influx 

[113]. Due to their pro-inflammatory and cytotoxic proper-
ties, excessive neutrophil activity has been associated with 
poor prognosis, remodeling and mortality after MI [1, 72].
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In line with previous findings in adult mice, excess and 
prolonged neutrophil activity is largely associated with an 
unresolved inflammatory response, and potentially affects 
cardiac repair and regeneration. Ly6G+ neutrophil numbers 
recruited to the injured myocardium are reduced in neona-
tal mice compared to adults, which may lead to decreased 
pro-inflammatory cytokine production and decreased collat-
eral tissue damage from neutrophil activity (Fig. 4) [3, 59]. 
In adult mice, insufficient removal of neutrophils resulting 
from decreased macrophage recruitment post MI leads to 
enhanced matrix degradation, delayed collagen deposition 
and increased susceptibility to cardiac rupture [62]. Com-
parative analyses of zebrafish and medaka revealed that 
neutrophil clearance after cardiac injury is delayed in the 
latter (Fig. 3). Similarly, neutrophil retention was associated 
with an excessive fibrotic response and unresolved scar upon 
macrophage depletion by clodronate liposomes in zebrafish 
(Fig. 3) [58].

On the beneficial side, neutrophils play an active role in 
the resolution of inflammation by secreting myeloperoxi-
dase, which dampens the hydrogen peroxide burst after tis-
sue wounding [87]. In addition, neutrophils orchestrate post-
MI healing by polarizing macrophages towards a reparative 
phenotype [43]. Furthermore, neutrophils promote angio-
genesis during inflammation by secreting VEGF [34], and 
their arrival in the injured area precedes the initiation of 
revascularization during zebrafish heart regeneration [65]. 

These findings suggest that therapeutic strategies to reduce 
acute inflammation driven by neutrophils after MI should be 
carefully considered as they might interfere with the healing 
response modulated by neutrophils including revasculariza-
tion, macrophage polarization and resolution of inflamma-
tion. The potential roles played by neutrophils immediately 
after cardiac injury are particularly interesting and beg for 
further investigation in both regenerative and non-regener-
ative models.

Mononuclear phagocytes–monocytes and  mac-
rophages  Monocytes are a type of leukocytes which can 
differentiate into macrophages and dendritic cells. Mono-
cyte-derived macrophages scavenge dead CMs, degrade 
their released macromolecules, and promote ECM remode-
ling and blood vessel formation [80]. Monocytes and mono-
cyte-derived macrophages are functionally heterogenous 
[133]. Distinct Ly6Chi and Ly6Clow monocyte subsets are 
sequentially recruited to injured hearts. Ly6Chi monocytes 
peak during the early pro-inflammatory phase and exhibit 
phagocytic, proteolytic, and inflammatory functions, while 
Ly6Clow monocytes come later in the resolution phase, 
exhibit attenuated inflammatory properties, and express 
VEGF [80]. Differentially polarized M1- and M2-like mac-
rophages are involved in biphasic repair processes (pro-
inflammatory and resolution/repair phases) post MI [80, 
110, 133]. In adult mice, CD206+F4/80+CD11b+ M2-like 
macrophages predominantly populate the infarct area and 
exhibit strong reparative abilities after MI, while their 
depletion resulted in a worsened prognosis and frequent car-
diac rupture [110]. This phenomenon was due at least in part 
to impaired fibroblast activation and reduced collagen fibril 
formation [110]. In addition, this decreased tissue repair 
could be rescued by an external supply of M2-like mac-
rophages, or an increase in M2-like macrophages by IL-4 
administration [110]. Interestingly, M2 macrophages in the 
reparative phase of infarcted hearts seem to be derived from 
Ly6Chi monocytes and proliferate locally to affect inflamma-
tion resolution and wound healing [41]. These data support 
the requirement of both Ly6Chi and Ly6Clow monocyte sub-
sets, and the beneficial effect of promoting M2 macrophage 
polarization during cardiac repair in adult mice.

The importance of macrophage polarization in heart 
regeneration has also been shown in zebrafish. Delayed 
macrophage recruitment by clodronate liposome pre-deple-
tion compromised heart regeneration, despite control-like 
macrophage numbers in clodronate-treated hearts at 7 dpci 
(Fig. 3) [58]. Correspondingly, macrophage recruitment was 
also found to be delayed and significantly reduced in non-
regenerative medaka post cardiac injury, and the kinetics and 
function of macrophage could be restored by poly I:C injec-
tions (Fig. 3) [58]. These findings indicate that macrophage 
polarization shifts during the regenerative response and the 

Fig. 3   Comparative analyses in zebrafish and medaka after cardiac 
injury. At 6–48 h post cryoinjury (hpci) in zebrafish, neutrophils and 
macrophages have been recruited to the damaged tissue, coincident 
with angiogenic sprouting from existing coronaries and activation 
of aldh1a2 expression in both the epicardium and endocardium. In 
medaka, we observed reduced macrophage recruitment compared to 
zebrafish, but similar neutrophil recruitment. Furthermore, medaka 
lacks both angiogenic sprouting and induction of endocardial aldh1a2 
expression during this period. At 4–7 days post cryoinjury (dpci) in 
zebrafish, neutrophils are gradually cleared by the increasing numbers 
of macrophages, while the coronary network expands to the whole 
injury area. Regulatory T cells (Tregs) are recruited to the dam-
aged tissue and contribute to CM proliferation. On the other hand, in 
medaka, neutrophils are not cleared due to the reduced macrophage 
recruitment and remain in the injured area. Sporadic vessel-like struc-
tures formed by endocardial-derived cells appear at the border zone 
and there is no significant increase in CM proliferation. At 14–21 
dpci in zebrafish, CMs actively proliferate and replace the collagen 
scar in a fully vascularized injured area. In medaka, vessel-like struc-
tures formed by the endocardial extensions are not stable and the 
collagen scar persists in the absence of replenishing CMs. Delayed 
macrophage recruitment in zebrafish, following pre-depletion, led 
to neutrophil retention, aberrant revascularization and reduced CM 
proliferation at 7 dpci. On the other hand, poly I:C-injected medaka 
exhibited enhanced macrophage recruitment and neutrophil clearance 
at 7 dpci, coincident with vessel formation and increased CM prolif-
eration. How the immune response facilitates revascularization, CM 
dedifferentiation and proliferation, as well as scar resolution, seems 
to be key for a successful cardiac regeneration when comparing 
zebrafish to medaka

◂
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underlying mechanisms remain to be elucidated. As men-
tioned earlier, M2-like resident macrophages dominate in the 
neonatal mouse heart post MI and are essential for cardiac 
regeneration (Fig. 4) [59]. Together, these data support a role 
for macrophage polarization in modulating the inflammatory 
response and promoting heart regeneration.

Of note, the M1/M2 paradigm was initially based on the 
distinct function/phenotype of macrophage populations 
induced by a selected set of ligands [67]. Thus, the M1/M2 
paradigm might be too simplistic in the context of tissue 
injury, as macrophages might constitute a broad spectrum 
of mixed phenotypes, an issue which requires significant 

Fig. 4   Comparative analyses in neonatal and adult mice after car-
diac injury. In neonatal mice, embryonic macrophages with M2-like 
properties expand and dominate the injured area, leading to mini-
mal inflammation, angiogenesis, and vigorous CM proliferation. T 
cells are also prone to differentiate into Tregs at this stage, resolving 
inflammation and stimulating CM proliferation by secreting mito-

gens [138]. The high reparative capacity leads to functional recov-
ery in neonatal mice. However, in adult mice, this M2-like resident 
macrophage population is replaced, or out-numbered, by monocyte-
derived macrophages which are prominently pro-inflammatory [59]. 
This functional difference leads to an unresolved scar and contractile 
dysfunction
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further study [67]. The interactions between infiltrated mac-
rophages and the complex and dynamic microenvironment 
of the cardiac infarct, the kinetics of macrophage polariza-
tion, and the potential macrophage phenotypes/functions 
await further investigation. Temporally coordinated differ-
entiation of monocyte-derived M1 and M2 macrophages by 
distinct cytokines, DAMPs and other signaling molecules 
might accelerate cardiac healing and possibly even promote 
regeneration.

Lymphoid cells  Circulating lymphocytes comprise both B 
and T cells, which are the major cellular components of 
adaptive immunity. T cells are divided into CD8+ and CD4+ 
subsets: CD8+ T cells directly lyse target cells, while CD4+ 
T cells secrete various cytokines and orchestrate the immune 
response. Depending on their cytokine repertoire, CD4+ T 
cells are further classified as Th1 (IFN-γ, IL-2 and TNFα), 
Th2 (IL-4, IL-5, IL-13), Th17 (IL-17, IL-21, and IL-22) and 
regulatory T cells (Tregs) (TGF-β, IL-35). The significance 
of lymphocyte activation by autoantigens such as α-MHC 
released by the infarcted myocardium has only begun to be 
unraveled [42]. CD4+ T cell depleted mice, but not those 
lacking CD8+ T cells, exhibited significantly smaller infarcts 
than WT mice after I/R injury [135, 136]. Similarly, deple-
tion of mature B lymphocytes impeded monocyte mobiliza-
tion, limited myocardial injury and improved heart function 
post MI [140].

Among CD4+ T cells, Foxp3+CD25+ Tregs play a critical 
role in myocardial healing. Tregs enhance the recovery of 
damaged tissues by suppressing the immune response, pro-
moting revascularization, and modulating monocyte/mac-
rophage differentiation toward the M2 phenotype (Fig. 2) 
[128, 141]. In adult mice, expansion of Tregs by adoptive 
transfer or a CD28 superagonistic antibody attenuated the 
post-infarction inflammatory response, protecting the heart 
from adverse remodeling after MI [69, 118]. Clinical use of 
statin to decrease cholesterol levels after acute MI has also 
been shown to modulate the immune response by enhancing 
regulatory T-cell numbers and inhibiting pro-inflammatory 
T-cell subpopulations [28]. These lines of evidence suggest 
that Tregs are potent modulators of the immune response, 
which can limit and resolve inflammation, as well as attenu-
ate ventricular remodeling, thereby improving cardiac func-
tion after MI.

It has been proposed that the mature and complex adap-
tive immune system in adult mammals compared to neo-
nates and other evolutionarily more ancient animals (such as 
amphibians and fish) might be responsible for their limited 
regenerative capacity [33]. Consistently, immunomodula-
tion aiming to restore cardiac tolerance was proposed to 
tune down adaptive immunity and accelerate regenerative 
therapies [103]. Comparison of CD4+ T cells in neonatal 
and adult mice revealed that T cells from neonates have an 

intrinsic “default” mechanism to become Tregs in response 
to T-cell receptor (TCR) stimulations, and that this ability 
gradually diminishes within the first 2 weeks after birth 
(Fig. 4) [126]. In line with this observation, the human fetal 
immune system generates more Tregs that suppress immune 
responses, especially autoantigen-specific immunity [75]. As 
first shown in zebrafish, Tregs are essential for heart regen-
eration (Fig. 3). Foxp3+ Treg-like cells (zTregs) home to 
damaged cardiac tissue starting from 3 days post injury and 
promote CM proliferation through the secretion of the CM 
mitogen Neuregulin [46]. Conditional ablation of zTregs 
impaired CM proliferation and heart regeneration [46]. In 
mouse, Tregs have been reported to promote CM prolifera-
tion during pregnancy, in both maternal and fetal hearts, as 
well as after MI in adults [138]. In addition, Tregs are indis-
pensable for heart regeneration in neonatal mice, potentially 
by promoting monocyte/macrophage recruitment as well as 
CM proliferation (Fig. 4) [60] (a preprint article on biorxiv 
without peer-review). These data support an active role of 
Tregs in cardiac regeneration through immune modulation 
and the secretion of Neuregulin [46]. As promoting Treg 
function in cardiac repair may be therapeutically valuable, 
it will be important to reach a mechanistic understanding of 
this response.

Resolution of inflammation

Timely resolution and containment of inflammation are criti-
cal for cardiac healing. Conversely, a prolonged inflamma-
tory response leads to increased CM loss, cardiac remod-
eling, extensive fibrotic response, and even cardiac rupture 
[30]. From a comparative point of view, it is often speculated 
that the inflammatory response in non-regenerative mod-
els is excessive and prolonged after cardiac injury [104]. 
However, the precise spatial and temporal regulation of the 
inflammatory response toward scar-free regeneration after 
MI remains unclear. Compiling evidence puts macrophage 
function and polarization at center stage. Functionally het-
erogeneous M1 and M2 macrophages dominate the injured 
mouse heart at earlier (M1, 1-3 days) and later (M2, after 
5 days) stages. Pro-inflammatory M1 macrophages express 
high level of pro-inflammatory cytokines, such as TNFα, 
IL-1 and IL-6; while reparative M2 macrophages express 
high level of anti-inflammatory cytokine IL-10, in addi-
tion to pro-inflammatory cytokines [133]. For a summary 
of macrophage phenotypes and their respective markers 
(mostly cytokines and chemokines) in mice, please see Kain 
et al. [50].

There have been several strategies proposed to inhibit 
post-MI inflammation, but early attempts have often 
resulted in adverse outcomes in clinical trials [38, 85]. On 
the other hand, approaches that focus on resolving post-MI 
inflammation have been sparsely used [50]. As an example, 
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administration of the pro-resolving lipid mediator Resolv-
ing D in mice accelerated the inflammation resolution fol-
lowing MI and improved LV function [49]. Consistently, 
faster inflammatory resolution occurred after reperfusion, 
and coincided with increased inflammatory cell recruitment, 
accelerated revascularization, improved LV function and 
reduced remodeling [123]. These data suggest that facilitat-
ing active resolution may prevent persistent inflammation 
and heart failure. Strategies aiming to modulate inflamma-
tion sometimes lead to the opposite outcome (e.g., adverse 
remodeling vs. cardiac preconditioning/protection). This 
phenomenon is of great interest and worthy of systematic 
investigation to gain mechanistic insights. One hypothesis 
is that improved revascularization post reperfusion acceler-
ates debris clearance, immune cell recruitment, turnover, 
and function, as well as inflammatory resolution, in a situa-
tion more similar to that in regenerative models (despite still 
not optimal enough for regeneration). Immune stimulation 
in a permanent MI model might achieve similar effects of 
an accelerated immune response and preconditioning/car-
diac protection, but the same treatment might lead to over 
stimulation and/or unresolved inflammation in an I/R model. 
Of note, in both the comparisons between I/R injury and 
MI, as well as between zebrafish and medaka, an acute and 
robust immune response is associated with better functional 
outcome and is compatible with heart regeneration.

Concluding remarks

Despite growing interest in the field, previous clinical trials 
that modulate inflammation after cardiac injury have been 
largely unsuccessful, partly due to the biphasic aspect of 
inflammation (lack of temporal control), as well as the gen-
eral cytokines/immunosuppressors adopted (lack of speci-
ficity). Based on recent findings on the differential immune 
response between regenerative and non-regenerative models, 
modulating cellular processes exerting biphasic functions, 
including macrophage polarization and T-cell activation 
into Tregs, may represent a promising direction to promote 
cardiac healing and even regeneration. Understanding the 
potential interactions between immune cells (e.g., mac-
rophages and Tregs) and between immune and non-immune 
cells (e.g., macrophages and fibroblasts) also requires more 
extensive studies (Fig. 2). In addition, the pleiotropic roles 
of TLR signaling represent another interesting aspect to 
explore in the context of MI, since activation of some TLR 
members seem to mediate immune modulation and precon-
ditioning rather than conventional inflammation. In addition 
to the neonatal mouse model, where information directly 
relevant to regeneration is often mixed with the physiologi-
cal changes of development, growth, and maturation [98], 
more information may be gained from non-mammalian 

models to further deepen our understanding of the permis-
sive and instructive processes leading to heart regeneration. 
Clearly, complementary information from various models 
will greatly accelerate the understanding of endogenous 
regeneration and provide hints towards the development of 
effective therapies.
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