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Most metabolic profiling approaches focus only on identifying pre-known metabolites on NMR TOCSY
spectrum using configured parameters. However, there is a lack of tasks dealing with automating the
detection of new metabolites that might appear during the dynamic evolution of biological cells.
Novelty detection is a category of machine learning that is used to identify data that emerge during
the test phase and were not considered during the training phase. We propose a novelty detection system
for detecting novel metabolites in the 2D NMR TOCSY spectrum of a breast cancer-tissue sample. We
build one- and multi-class recognition systems using different classifiers such as, Kernel Null Foley-
Sammon Transform, Kernel Density Estimation, and Support Vector Data Description. The training mod-
els were constructed based on different sizes of training data and are used in the novelty detection pro-
cedure. Multiple evaluation measures were applied to test the performance of the novelty detection
methods. Depending on the training data size, all classifiers were able to achieve 0% false positive rates
and total misclassification error in addition to 100% true positive rates. The median total time for the nov-
elty detection process varies between 1.5 and 20 seconds, depending on the classifier and the amount of
training data. The results of our novel metabolic profiling method demonstrate its suitability, robustness
and speed in automated metabolic research.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Metabolic profiling involves the investigation of metabolite
concentrations and systematic metabolic variation, caused by
new stimuli such as different drugs, dieting, microbiological causes
or gene modulation, for the purpose of the characterization of the
effects of external interventions [1]. Due to the nature of the bio-
logical fluids, cells and tissues, metabolites change to reach a
dynamic equilibrium. As a result, any biological process will induce
metabolic alteration, which can be related to the diagnosis or prog-
nosis of specific diseases or therapeutic status [2,3]. Metabolites
drive essential cellular functions, like signal transduction, energy
production, storage, and apoptosis [4]. ATP, acetyl-CoA, NAD+,
and S–adenosyl methionine metabolites can contribute to the reg-
ulation of post-translational modifications that affect protein activ-
ity[5,6]. Additionally, metabolite and protein interactions can aid
to cellular responses, thus evincing the metabolites role in signal
transduction [7,8].

NMR spectroscopy is one of the most robust tools applied in
multicomponent analysis of samples from urine, blood plasma or
tissue [2,9,10]. Nevertheless, major challenges of NMR spec-
troscopy include peak overlapping, chemical shift variations, noise
and biological matrix effects owing to the continuous change of
chemical environments [11]. These challenges can introduce con-
siderable variations in the spectral signature of individual mole-
cules in comparison to its pattern in complex mixtures [11].
Though the identification of metabolites in 2D NMR spectra is sim-
pler than 1D NMR, the straightforward metabolic profiling in 2D
NMR is valid only to first order systems with weak coupling [2].
Even in 2D NMR, the identification of metabolites with low con-
centration or peaks partially or totally overlapping is a complicated
task [2]. Consequently, the complexity of experimental measure-
ments, noise, artifacts in addition to phase and baseline distortion,
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cause peak shifts, misaligned peaks as well as peaks with slight
deviation from the expected peak shape, make metabolic profiling
a demanding task [11,12]. Furthermore, the manual analysis of 2D
NMR spectra is prone to error and missing assignments in cases of
complex mixtures [12].

In biology and medicine, machine learning supports scientists
in the prediction, evaluation, uncertainty estimation and model
interpretation of medical images, including X-ray, MRI and mam-
mography images in addition to enabling the utilization of data
produced from high-throughput omics to identify new molecular
biomarkers [13].

NMR spectroscopy and machine learning create a promising
interdisciplinary research area that could achieve a notable pro-
gress in NMR spectroscopy. Establishing an automatic assignment
system that can detect emerging new metabolites or unknown
molecule in samples will enhance and support many applications
that rely on 2D NMR spectra [12,14]. In machine learning, novelty
detection refers to systems that try to distinguish normal control
samples from potentially abnormal variant samples. The concepts
normal control and abnormal variant samples are used to differen-
tiate known categories which are consistent with the training
model, from new uncommon data that appear in new experiments
[15,16]. Often, due to the complexity of real systems, defining a list
of categories that might appear in future samples is inapplicable.
Consequently, conventional multi-class classification algorithms
are inappropriate for this issue because they will assign a wrong
label to the new data sample by employing the predefined cate-
gories [15]. Normally, novelty detection is required in two situa-
tions. The first is when there are few examples to represent a
known class within the training dataset; for instance, a particular
category happens rarely, so the classification system does not have
enough instances to represent this category. In this case, it is better
to consider the rare category as novel or abnormal and test it
against the model of normality. The second situation occurs when
the training list is incomplete. Although enough instances are
available to form a training model, it is expected that new classes
will appear in the future [17]. In this article, we introduce the con-
cept of novelty detection of metabolites in 2D NMR TOCSY spectra
where one or more metabolites appear in the spectra.
2. Related work

Previous related studies indicate that peak overlap, the absence
of reference spectral database of metabolites, and the diversity of
metabolites are common challenges when analyzing complex bio-
logical mixtures [18]. According to [18], a consistent technique for
reporting novel metabolites in NMR is still unavailable. Overall, the
identification of metabolites in complex biological mixtures is
based only on the most abundant metabolites. The identification
of metabolites is done by analyzing 1D and 2D NMR using the lit-
erature or online spectral libraries such as HMDB and BMRB
[19,20]. For large-scaled applications, biomarker identification
can be boosted through using software tools such as, Chenomx
NMRsuite [21], COLMAR query [22] or MetaboMiner [23]. These
tools provide a list of possible metabolites based on visual compar-
ison or similarity scores. However, in complex mixtures with
crowded and overlapped spectrum, the interpretation of the NMR
signal becomes doubtful and unclear. When these methods fail,
the most common way to identify novel metabolites is structure
elucidation, metabolic purification and isolation in addition to
applying further complementary mass spectroscopy techniques
[2,18,24–26]. Recently, potential novel biomarkers related to pros-
tate cancer and skin cancer have been identified in 1H NMR
employing principal component analysis and least squares dis-
criminant analysis to detect metabolites and outliers [27–30]. A
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protocol with multiple workflows to detect known and unknown
metabolites using 1D and 2D NMR has been thoroughly discussed
[31]. Similarly, it reports principal component analysis, structure
discriminant analysis, structure elucidation, and an extensive use
of matching biological databases [31]. Nonetheless, these methods
are traditional methods that could be time consuming, imperfect
and of limited precision [18].

Various approaches have been proposed for breast cancer clas-
sification using machine learning. Most of these approaches use
magnetic resonance imaging (MRI), mammography and ultra-
sonography images to detect and classify breast tumors tissue
[32–36]. Machine learning techniques dealing with 1D and 2D
NMR spectra that provide peak assignment, chemical shifts predic-
tion and identifying molecular structure have been recently sug-
gested [37–44]. A recent review listed various approaches that
use deep learning in NMR acquisition, spectral reconstruction,
de-noising, automated peak picking and chemical shift annotation.
However, though they regarded the chemical shift and their corre-
sponding frequencies as the most informative variable in NMR,
they reveal that chemical shift is a hard deterministic parameter
to be calculated [45]. This study explicitly detects and assigns
new metabolites in a crowded 1D NMR spectrum using only the
horizontal and vertical frequencies of the 2D TOCSY spectra by
employing machine learning.
3. Hypothesis and concept analysis

In our previous published work [44], we established an auto-
mated metabolic assignment based on the spectral deconvolution
of 2D TOCSY NMR by employing machine learning methods. We
customized four semi-supervised learning classifiers and extended
them for automatic metabolite assignment of a real breast cancer
tissue sample under different training of dataset sizes. The classifi-
cation results were pooled using the concept of confidence bands,
thus, classification results that did not comply with the confidence
band values were excluded. Moreover, we constructed a database
of metabolites by using a wide range of available 1D NMR meta-
bolic data [46], including the Biological Magnetic Resonance Data
Bank (BMRB) [19] and the Human Metabolome Database (HMDB)
[20]. The performance of the customized machine learning classi-
fiers was evaluated by comparing the obtained results with those
analyzed by NMR specialists. Accordingly, the KNFST and SVM
classifiers show better accuracy and smaller mislabeling rates
regardless of the sizes of the initially labeled training dataset. On
the other hand, under the same settings, cubic and quartic polyno-
mial classifiers were inadequate.

Based on our previous work of employing 2D TOCSY spectra
[44], the method is extended to automate the identification of
not only known but also potential novel metabolites that might
appear due to the dynamicity of living cells.

Fig. 1 summarizes the novelty detection protocol: automatic
peak picking is performed on the first 2D TOCSY spectra, two char-
acteristic frequencies (F2, F1) are assigned to form the training
dataset. The training models will be created based on the KNFST,
SVDD and KDE classifiers with different training data volume,
observing the classifier performance and the corresponding execu-
tion time. The training model will be used in the testing phase to
detect novel classes, i.e., novel metabolites in this case. Subse-
quently, the automatically derived peak picking parameters from
the training phase are applied to the second TOCSY. The character-
istic frequencies (F2, F1) are studied using the classifiers to identify
novel peaks (i.e., metabolites) compared to the reference training
models from the previous step. During the testing phase, training
models are deployed to assess the novelty of particular metabolites
and the success of the learning paradigm.



Fig. 1. Schematic illustration of the novelty detection procedure in metabolic profiling in a real biological sample based on 2D TOCSY NMR spectra.
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4. Experimentations (NMR)

4.1. Breast cancer tissue samples

The breast cancer tissue data used in this work has been
previously analyzed and published [30]. The work was part
of a comprehensive study in our group focusing on the
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heterogeneity of cancer tumor tissue. In the study, breast
tumor tissue samples from 18 patients were analyzed. After
surgery, a specimen for pathological diagnosis was immedi-
ately procured and the remaining tissue was snap frozen
and stored at –80 �C within 10 min. Six cores each taken
from a different patient were analyzed blindly by HR MAS
1H NMR [30,47].
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4.2. NMR data acquisition and processing

As described in [30,47], 1H NMRmeasurements were performed
using HR MAS probe-head operated by a Bruker Avance III 600
spectrometer at 600.13 MHz for 1H at 276 K. HR MAS spinning fre-
quency was set to 5 kHz, and the magic angle was adjusted typi-
cally according to the KBr measurement [30,47]. The B0 magnetic
field shimming was performed manually until the linewidth of
the alanine signal at 1.46 ppm adjusted to be within the range of
1.20–1.83 Hz. Metabolites were deduced from the 1H NMR spec-
trum based on expert knowledge with the assist of 1H, 1H-TOCSY,
13C-1H-HSQS and the Chenomx NMR Analysis Software. Details
are reported in [30,44,47].

The 1H-1H-TOCSY in this work were specifically recorded with
suppressing zero-quantum coherences [48] in order to avoid blur-
ring of the multiple patterns. 1H-1H-TOCSY were measured with a
spectral range (SWH) of 7 kHz in both F2 and F1 dimensions. Mix-
ing time and relaxation delay were set to 80 ms and 1 s respec-
tively. Zero filling was performed to 16 K and 128 data points in
F2 and F1 dimensions before the 2D Fourier transform applied
[30,44,47]. The spectral widths in F2 and F1 dimensions were
12.00 ppm, while the spectral width of 9.0 ppm (5600 Hz) is an
enlargement of the area of interest in the TOCSY (cross-peaks of
the metabolites appeared). The 1D NMR spectral projections on
the F2 and F1 axes are external projections from extra 1D NMR
measurement using the CPMG pulse sequence with embedded
water suppression by excitation sculpting. CPMG was used to sup-
press protein, lipids and other macromolecules and it was recorded
employing 400 echoes with 1 ms echo time. NMR spectra acquisi-
tion and processing were achieved by using the TopSpin software
package 3.6.

4.3. TOCSY crosspeak picking and de-noising

The cross-peaks entries in F2 and F1 dimensions in ppm and Hz
are deduced from the 2D contour lines of the experimental 2D
TOCSY NMR spectrum by employing the automatic peak picking
function (pp2d) in TopSpin 3.6 provided by Bruker for acquisition
and processing. Before applying automatic peak picking, the con-
tour projection magnitude threshold was adjusted for every ppm
range in F2 dimension according to the amplitude of the 1D NMR
spectrum internal projection on F2 axis to avoid picking artifacts
and noise crosspeaks. Afterward, the collected peaks were listed
and transferred as text file for data de-noising and artifact cross-
peak elimination. In a TOCSY spectrum, every real cross-peak
appearing in the upper diagonal (F2, F1) due to the J-coupling
should have a mirror (transpose) crosspeak in the lower diagonal
(F2, F1) within tolerance threshold of � 30 Hz, based on that we
could exclude cross peaks that do not fulfill this criterion. More-
over, most crosspeaks in vicinity of water and solvent signals are
associated with t1-noise [49]. Fortunately, t1-noise appears in
TOCSY spectrum as random or semi-random spurious streaks along
the indirect F1 dimension of a 2D NMR spectrum and they have no
transpose (mirror) in the lower diagonal entries (F2, F1). Typically,
no metabolite signals in vicinity are taken for assignment, since
other characteristic peaks in different F2 and F1 ranges can be con-
sidered. It is worth mentioning that, metabolites that have no cou-
pled protons will show singlet signals in 1D NMR and therefore, no
crosspeaks in TOCSY. Such signals will only have contour projec-
tions in the diagonal. Typically, 2D TOCSY spectra provide informa-
tion about correlated protons of the same spin system. However,
peaks in the diagonal can be used as a part of the data to solve
the issue of metabolites with no intrinsic coupling if they are not
severely overlapping. A spectroscopic more favorable approach
would be correlation measurements between 1H–13C as in HSQC
[50,51].
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5. Machine learning and novelty detection

Machine learning is a set of methods used to automatically dis-
tinguish between patterns and then uses its knowledge to detect
future patterns or to make decisions with some uncertainty with-
out explicit programming [52]. A machine learning system uses
three types of datasets: The first data type is the training dataset,
which is the labeled training data used to build a generalization
model. The second data type is the testing dataset, which is the
unlabeled data that is to be learned [26]. To tune the parameters
of the classifiers, the validation dataset is used. Importantly, all
datasets must belong to the same distribution, but the testing data-
set is still unknown to the classifier during the training phase. In
cases where new categories of data appear during the testing
phase, novelty detection is used. Novelty detection is assorted into
distance-, probabilistic-, or domain-based approaches [15].
Distance-based methods learn a distance metric to identify the
similarity between different samples. They use the assumption
that similar data are located near each other, while novel instances
are located far away from known data. Probabilistic methods are
based on using density estimation of the data to distinguish normal
reference from abnormal unknown instances. Domain-based
methods try to describe boundaries that encloses the training data
and typically ignore the class density. Depending on the location of
the sample with respect to the boundary, the class membership
can be determined [15]. The output of the classification algorithms
takes the form of a score or a measure that determines the class
membership of the test sample. Scores represent the degree of nor-
mality or novelty of a data sample. Thresholds are incorporated on
the novelty scores as boundaries to differentiate between known
and unknown samples [53].

In this work, for the purpose of novelty detection, the following
three classifiers are studied:

5.1. Kernel null Foley-Sammon transform

The Kernel Null Foley-Sammon transform (KNFST) is a distance-
based method which computes the projection distance in the null
space by decreasing the within-scatter between the similar classes
while increasing the between-scatter between dissimilar classes.
KNFST maps the input feature space with C classes into a low-
dimensional embedding, called the null space projection u, such
that the null space is spanned by null projection directions u
[54]. KNFST is based on the Fisher discriminant criterion which
can be defined as.

J/ uð Þ ¼ uTS/bu
uTS/wu

ð1Þ

where S/b and S/w are the between-class and the within-class
scatter, respectively, in a mapped high-dimensional space /, i.e.,
kernel. KNFST tries to achieve the best separation between classes
based on the following conditions [54,55]:

� A zero within-class scatter uTS/wu ¼ 0;

� A positive between-class scatter uTS/bu > 0.

As a result, using KNFST, samples that belong to the same class
are mapped to one point but samples that belong to different
classes are mapped to different points.

Following the above conditions, we get J/ uð Þ ! 1 [56] and Eq.
(1) turns into the maximization problem [54]:
J/ uoptimal

� �
¼ argmax

uT S/wuj j¼0

uTS/bu
�� �� ð2Þ
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which tries to find the null projection direction matrix u of
KNFST ensuring the above conditions. KNFST is a joint multi-
class model, which is able to achieve classification of all classes
at once. The output of KNFST is used as a novelty score, where
the larger the novelty score, the more novel is the test sample. A
threshold is set to detect novelty borders. KNFST has been used
in image classification [54,57], gesture recognition [58], abnormal
event detection in object tracking [59], authentication on mobile
devices [60] and fault detection in machinery [61]. In this work,
the KNFST code implementation in [54] has been customized.

5.2. Support Vector data Description

Support Vector Data Description (SVDD) is a domain-based
method, which employs a hyperplane to represent a boundary
based on the training data. This hyperplane tries to maximize the
separation between different classes. SVDD was developed by
[62] as a one-class classifier that distinguishes a positive (normal)
class from all other classes in the dataset and builds its model
based on the single positive class [63]. This approach creates a
minimum-volume spherically shaped region that encompasses all
or most of the training data of a chosen class. The hypersphere acts
as a descriptor of normality and a sample is considered an outlier if
it falls outside the sphere [63,64]. The problem of SVDD is an opti-
mization problem that finds the center awith minimum radius R of
the hypersphere that encloses most of the training data. SVDD
enables the existence of outliers outside of the hypersphere, but
a larger distance from the hypersphere is penalized in Eq. (3).

min
R

R2 þ C
Xn
i¼1

ni

k/ xið Þ � ak � R2 þ ni ð3Þ
ni is a slack variable that permits the existence of outliers, C is a

parameter that controls the trade-off between the volume of the
radius and the number of outliers (set to 1%), and / xið Þ is the high
dimensional mapping of xi [65]. In this work, the binary classifica-
tion implemented in the Novelty Detection Toolbox (NDtool)
[15,66] is extended to a multi-class approach using one-vs-all clas-
sification. SVDD has several applications in image and gesture clas-
sification [67–71], biomarker detection in HSQC NMR spectroscopy
[72], and fault detection [73,74].The novelty threshold of SVDD is
defined as the radius of the hypersphere according to [62].

5.3. Kernel density estimation

Kernel density estimation (KDE) is a probability-based method
which computes the probability at each point in the data space
within a localized neighborhood area of that point. KDE is a non-
parametric approach that tries to estimate the probability of
unknown distributions. The main assumption of density estima-
Table 1
A subset of the training dataset showing the output of the data augmentation procedure

Metabolite Standard
From J-coupling

Ex
TO

F2
[Hz]

F1
[Hz]

F2
[H

Tyrosine 4303 4128 43
2353 1914 23
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tion is that samples reside in low-density areas indicate a low
probability of being a known class. Accordingly, this area tends
to contain novel data; whereas areas of high probability means
the existence of known samples [15]. The probability density func-
tion is approximated by estimating the probability density through
locating kernels at each point of the dataset, i.e., a kernel is cen-
tered at each data point, and then these kernels are summed up.
A typical kernel density estimation is the Parzen Window estima-
tor [65]. The Parzen estimator defines a fixed-width region R cen-
tered at the sample point x and counts the number of neighboring
sample points which fall in this region. Parzen estimators can be
defined as:

pðxiÞ ¼ 1
N

XN
i¼1

khðkxj � xiÞ ð4Þ

where xi 2 X ¼ fx1::::xng, N is the number of data samples and
kxj are the region centers which are sampled from X. The density
of xi is calculated based upon the distance between kxj and xi
and then representing it as a linear combination of the neighboring
kernel centers. kh is a kernel function centered at kxj and has an
associated parameter h related to the bandwidth parameter of
region R [75]. A common kernel choice is a multivariate Gaussian

kernel function Kðxa!; xb
!Þ ¼ expð� kxa

!�xb
!k2

2R2 Þ. Combing Kðxa!; xb
!Þ and

Eq. (4) we get:

p xjcð Þ ¼ 1
Nc

XNc

i¼1

1

2ph2
� �d

2

exp � x� x2i
2h2

� �
ð5Þ

Eq. (5) is the class conditional probability for class c. The vari-
able d is the dimensionality of the features space and the parame-
ter h is the standard deviation of the Gaussian component and can
be identified as the Parzen window width. The Parzen width
parameter is defined as the mean value of the distances between
each kxj and its k nearest neighbours. Since the probability must
sum up to 1, we normalize the density by 1

Nc
where Nc is the num-

ber of data points that belong to class c [65,76]. KDE has been
employed in tissue segmentation [77,78], Alzheimer’s disease
detection in MRI [79,80] and CT images [81,82]. In this work, the
binary classification implementation in NDtool [15,66] has been
extended to a multi-class approach using one-vs-all classification.

5.4. Threshold setting and novelty detection

Classifiers are designed to assign the already known classes and,
consequently, match the novel data sample to one of the known
classes. Novelty detection tries to learn a model of normality,
which is described by a novelty boundary. Normal instances are
expected to be included in the normality model and reside within
the novelty boundary, whereas unknown instances are expected to
lie outside these boundaries [83]. A validation dataset is used to
for tyrosine.

perimental
CSY

Augmented
Generated

z]
F1
[Hz]

F2
[Hz]

F1
[Hz]

16 4139 4320 4139
62 1920 4317 4134

4315 4140
2363 1922
2361 1921
2363 1919
. . .. . . . . .. . .



Fig. 2. The feature space of the training dataset for 27 metabolites deduced from the TOCSY spectrum of a breast cancer tissue. The insets are selected enlargements of peaks
that overlap in (F2, F1) dimensions.

Fig. 3. Novelty detection procedure by excluding one- and multi-metabolites from the pre-assigned 27 metabolites of the breast cancer tissue.
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Fig. 4. The Mnew, Fnew and Err values of breast cancer tissue sample for the
classifiers (a) KNFST, (b) KDE and (c) SVDD by applying one-class novelty detection.
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compute the novelty threshold for each known class in advance by
finding the threshold with the minimum error on a validation data-
set using grid search. During the testing phase, when classifying a
data point, the threshold is compared to the output of the corre-
sponding classifier. If the output does not comply with the pre-
computed threshold, the data sample will be classified as novel.
KNFST is a distance-based approach, which uses the assumption
that similar data are located near each other, while novel instances
are located away from known data. Thus, if the distance between
Fig. 5. ROC curves and AUC values showing the accuracy of the novelty threshold for di
curve obtained using (a) 2.5%, (b) 10% (b) and (c) 100% of the total training dataset is s
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the tested samples dðzÞ is larger than the novelty threshold T of
the class, the test sample is classified as novel, i.e.,
d zð Þ > T ! novel. This is also valid for SVDD, where the radius
of the hypersphere indicates the threshold. For KDE, if the posterior
probability p xð Þ is below the threshold T, the more probable the
test sample is a novel instance,i:e: p xð Þ < T ! novel [83,84].

6. Dataset

1D NMR and 2D TOCSY spectra were acquired according to the
settings described in [44]. The metabolite dataset is a two-
dimensional dataset which includes the horizontal and vertical
chemical shift frequencies of the 2D TOCSY. Data augmentation
is used to generate a more comprehensive set of probable data.
This improves the size, variety and description of the training data-
sets [85]. Data augmentation simulates the estimated shifts from
the original frequencies, resulting in replications of the samples.
Consequently, classifiers will treat the same metabolite in different
varieties [86]. Data augmentation is used to generate disjoint data-
sets of training and validation data sets. Following the procedure
described in [44], in the training dataset, white Gaussian noise is
added to the standard’s chemical shifts with different signal-to-
noise ratios [11]. The validation dataset is created by deviating
the chemical shift frequencies by a random shift assuming a chem-
ical shift constraint within 30 Hz (0.049 ppm), which is sufficient
to model the chemical shift variability caused by the NMR environ-
mental matrix change [87]. An example of the data augmentation
procedure for tyrosine is shown in Table 1.

7. Novelty detection of metabolites using breast cancer tissue

The classifiers KNFST, SVDD and KDE are customized and tested
for novelty detection. The training data of size 2940x2, where 2940
is the number of independent samples from all classes and 2 is the
dimension of the data, representing the horizontal and vertical fre-
quencies, is partitioned into eight portions. These portions are used
to test the system using different percentages of training data to
observe the relation between the performance and the availability
of training data and to examine the minimum size of the training
set sufficient to yield a satisfactory performance. The portion of
labeled training samples is increased every 50 cycles until all train-
ing samples are used in the classification process. In each cycle, dif-
ferent random permutations of training data are applied. The
introduction of multiple cycles is vital; this is due to the random
fferent sizes of training data for the metabolite tyrosine. From left to right, the ROC
hown.



Fig. 6. Novelty scores and threshold values of KNFST, KDE and SVDD classifiers using different training dataset sizes in the one-class novelty detection scenario (applied to
tyrosine, which has two instances as shown on the supplementary material). The red, green and blue crosses resemble the unknown test data, known test data and known
training data, respectively. Subfigures (a) to (c) correspond to the variations of the output of the classifiers when using (a) 2.5%, (b) 10% and (c) 100% of the training dataset.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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selection of the training data before starting the recognition pro-
cess, which leads to different results for each chosen training data-
set. Training portions of sizes 2.5%, 5%, 7.5%, 10%, 25%, 50%, 75% and
100% of the total training dataset size were used. In this experi-
ment, a TOCSY spectrum of a breast cancer tissue sample, which
contains the metabolites: Val: Valine; Ile: Isoleucine; Leu: Leucine;
Lys: Lysine; Glu: Glutamate; Ala: Alanine; Gln: Glutamine; Asp:
Aspartate; GPC: sn-glycero-3-phosphocholine; Ser: serine; PE: O-
phosphoethanolamine; Asc: ascorbate; mIno: myo-Inositole; Lac:
Lactate; Pro: Proline; HB: 3-Hydroxybutyrate; PCho: O-
Phosphocholine; Thr: Threonine; GSH: Glutathione; b-Glucose;
a-Glucose; Ino: Inosine; Tyr: Tyrosine; Phe, phenylalanine; Tau:
Taurine; Ura: Uracil; and Met: methionine is used [44]. The exper-
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imentally determined frequencies for the metabolites were added
to the supplementary material. Fig. 2 shows the feature space of
the metabolites contained in training dataset. It can be observed
that the frequency overlaps in the horizontal and vertical axes
and cannot be linearly separated.

To test novelty detection on the TOCSY spectrum of breast can-
cer tissue, two scenarios are applied. The first scenario handles the
one-class novelty detection case. This experiment is built by
excluding one of the metabolites from the training dataset, and
afterwards a training model is built based on the remaining 26
metabolites. The testing dataset includes all 27 metabolites, which
are the known 26 metabolites plus the excluded metabolite. On the
second experiment, multi-class novelty detection is employed by
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excluding multiple metabolites from the training set, and a train-
ing model is built based on the remaining metabolites. Subse-
quently, during the test phase the novelty scenario is tested
based on the known and the excluded metabolites. In both scenar-
ios, the classifiers are expected to detect the excluded metabolites
and regard them as novel metabolites. The procedure is illustrated
in Fig. 3.

The assessment of the results is based on the novelty detection
metrics used in [88]. The first metric is the percentage of novel
metabolites misclassified as known (i.e., missed novel-
ties)Mnew ¼ ð100 � FnÞ=Nc. The second metric is the percentage of
existing instances falsely misclassified as novel (i.e., percentage
of wrong detections)Fnew ¼ ð100 � FpÞ=ðN � NcÞ. The final metric is
the percentage of total errorErr ¼ 100 � ðFn þ Fp þ FeÞ=N, where Fn

is the number of novel metabolites misclassified as known
metabolites (i.e., false negative). Fp stands for the number of
known metabolites misclassified as novel metabolites (i.e., false
positives) and Fe denotes the misclassifications within known
metabolites, N is the total number of metabolites in the test dataset
and Nc is the number of novel metabolites in the test dataset.
Fig. 7. Mnew, Fnew and Err values of breast cancer tissue sample for the classifiers (a)
KNFST, (b) KDE and (c) SVDD by applying multi-class novelty detection.
7.1. One-class novelty detection

In the scenario of one-class novelty detection, the metabolite
entry (tyrosine) is considered novel by excluding it from the list
of 27 metabolites. Consequently, the training dataset consists of
the remaining metabolites whereas the testing dataset includes
the excluded novel metabolite tyrosine in addition to the known
training data. Excluding a metabolite during the training process
simulates the novelty of the excluded metabolite and ascertains
that the training model is only aware of all metabolites excluding
the exempted tyrosine. In breast cancer, tyrosine is the most fre-
quent reported metabolic biomarker [89].

Fig. 4(a-c) show the results of the novelty detection procedure
of the classifiers using the above assessment matrices for the
metabolite tyrosine. Fig. 4a shows that KNFST has a zero Mnew rate
regardless of the size of the training dataset, which means that tyr-
osine was correctly identified as novel. However, when using 2.5%
of training data, in addition to misclassifying some known classes
as novel classes, misclassification between known classes have a
median error of 4%. On the other hand, using 2.5% of the training
dataset, KDE and SVDD (Fig. 4b and 4c) have a Mnew value of around
4% and 50%, respectively, with a relatively high standard deviation.
Both classifiers show zero Mnew values after using only 5% of the
training dataset. In general, for all classifiers it can be seen that
the values of Fnew and Err decrease when increasing the size of
training samples. All classifiers achieve zero or near-zero values
forMnew , Fnew and Err when using 5% of the complete training
dataset.

To test the overall performance of the system for all possible
threshold settings, we use Receiver Operating Characteristic
(ROC) curve analysis to show the tradeoff between false positives
and true positives. ROC curves and Area under Curve (AUC) provide
an assessment of the classification performance without indicating
a decision threshold [90]. Fig. 5 shows ROC curves which are gen-
erated using the one-vs-all approach for one run. This involves
training one class per classifier, considering samples that belong
to this particular class as normal samples and all other samples
as novel [91]. As mentioned earlier, training portions of sizes
2.5%, 5%, 7.5%, 10%, 25%, 50%, 75% and 100% of the total training
dataset size were used, nevertheless, for clarity only portions of
sizes 2.5%, 10%, 100% are shown in the ROC curves, novelty scores
and thresholds figures. These percentages give an indication of the
performance using relatively small, medium and large amounts of
training data. In general, it can be seen in Fig. 5(a-c) that the clas-
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sifiers’ capability to distinguish novel metabolites from known
metabolites increases by increasing the size of the training dataset.
This can also be observed by the increasing values of the AUC,
which implies a high diagnostic accuracy for large training data
set sizes. Furthermore, it can be deduced that using 2.5% of the
training data results in an inaccurate threshold, and consequently
in a low recognition rate. By using 10% of the total training sam-
ples, the AUC of ROC curve of the metabolite tyrosine was over
97% for all classifiers. The AUC of the ROC curves are close to
100% for the three classifiers when using 100% of the training data.

Fig. 6 shows the corresponding difference in novelty scores
between known and unknown metabolites related to Fig. 5. The
decision threshold is calculated using the validation data and plot-
ted as a dotted line. The red, green and blue crosses resemble the
unknown test data, known test data and known training data,
respectively. It can be seen that the separation between the known
and the unknown instances becomes more representative by
increasing the training data size.

7.2. Multi-class novelty detection

Metabolites (leucine, tyrosine, proline and serine) are a subset
of the clinically most frequently reported metabolic biomarkers
related to breast cancer [89]. Therefore, in the multi-class novelty
detection the above-mentioned four metabolites were chosen to be
excluded for novelty testing under different conditions. Accord-
ingly, the classifiers were trained on 23 metabolites only. During
the test phase, all assigned 27 metabolites of the breast cancer
sample were included in the test dataset, likewise the one-class
novelty detection.



Fig. 8. Novelty scores and threshold values of KNFST, KDE and SVDD classifiers using different training data sizes for multi-class novelty detection. The red, green and blue
crosses resemble the unknown test data, known test data and known training data, respectively. The output of the classifiers is shown for (a) 2.5%, (b) 10% and (c) 100% of the
training dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7 shows theMnew, Fnew and Err values in multi-class novelty
detection scenario. When using 2.5% of the training data, KNFST
and SVDD have similar Mnew median values around 16%. The SVDD
Mnew distribution shows a negative skewness, which means most
Mnewvalues are low. Although KDE has a median of zeroMnew,
KDE and the other classifiers have a high standard deviation. This
means a low discrimination capability at extremely low training
dataset size. Similarly, the values of Fnew and Err showed unstable
standard deviations and median values in all classifiers. Starting
from 5% training data size, KNFST showed a negative skewness in
Mnew values, which implies a progressing discrimination of novel
metabolites. On the other hand, KDE and SVDD have zero for
Mnew and approximately zero value for Fnew and Err. Starting from
50% of the training data size, a median of zero Mnew values were
reached for KNFST. Using only 25% of the training data, all of the
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classifiers have reached less than 3% median values forMnew, Fnew
and Err values. In addition, already when using only 5% of the
training data, all classifiers reached near-zero median values
of Fnew and Err, indicating that the classifiers are able to correctly
classify known metabolites and detect novel instances.

Fig. 8(a-c) shows novelty scores of the KNFST, KDE and SVDD
classifiers using 2.5%, 10%, and 100% training dataset size by apply-
ing the multi-class novelty detection. The red crosses correspond
to the six-pattern related to tyrosine, proline, leucine and serine.
The validation data are used to compute the threshold for each
individual class. For clarity reasons, instead of plotting individual
thresholds, the median of the thresholds for each class is plotted
as a black dotted line. Comparable to one-class novelty detection,
the novelty threshold becomes more accurate and the separation
between normal and abnormal instances becomes more distinct



Fig. 9. Total time from training to classification for (a) one-class novelty detection and (b) multi-class novelty detection.
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when increasing the training dataset size. Remarkably, an accept-
able threshold could be calculated even when only 10% of the
training data were considered.

Unlike one-class classification, generating ROC curves for multi-
class classification tasks is not a straightforward problem. A typical
solution is to generate individual ROC curves for each class sepa-
rately using the one-vs-all method [90].

Fig. 9 shows the mean and standard deviation of the total clas-
sification processing time of 50 runs in one- and multi-class nov-
elty detection. The experiments were run on Windows 10 using
an Intel Xeon E5 machine with 16 GB memory and 2.8 GHz Quad
Core CPU. The computational complexity for KDE is OðN2Þ [92],
and OðN3Þ for KNFST [54] and SVDD [93]. The execution time for
KNFST and SVDD grows when increasing the amount of training
data. In one-class novelty detection, the execution time for KNFST
increases steadily until it exceeds the SVDD execution time. How-
ever, rather than increasing, the execution time for one- and multi-
class novelty in KDE remains almost constant when increasing the
size of the training dataset. This might be due to the fixed Parzen
window width of the kernel used by KDE. The estimation of the
optimal Parzen window width is the most effecting computational
factor [92]. As stated earlier, the Parzen width parameter is defined
as the mean distance between the k-nearest neighbours and the
instances in the training dataset. The number k of neighbours in
our experiments was two [94]. In SVDD, computational cost is
related to tuning the parameters of the kernel, and there is a direct
relation between the size of the training dataset and the execution
time [95]. This can be seen on SVDD time consumption on multi-
class novelty detection where, in comparison to the one-class sce-
nario, more novel samples are encountered. The main computa-
tional cost in KNFST comes from computing a joint kernel feature
space for all known classes and the eigenvalue decomposition of
the kernel matrix [54,96].

The confusion matrices of one- and multi-class novelty, in addi-
tion to the ROC curves for the multi-class novelty detection algo-
rithm, are presented in the supplementary material of this work.
The confusion matrix is used to describe the performance of the
classification algorithm in terms of true positive, true negative,
false positive and false negative values.
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8. Conclusions

In this work, the novelty detection was established based on 2D
NMR TOCSY spectra for metabolic profiling associated to dynamics
changes in biological systems, where metabolites of real breast-
cancer tissue samples were extracted from the TOCSY. The one-
and multi-class novelty detection tests were designed to consider
peak assignments appearing in the TOCSY spectrum as a reference
database. Subsequently, one and four metabolites were excluded
from the reference TOCSY to simulate their novelty. The KNFST,
KDE and SVDD classifiers were tested to detect the excluded
metabolites. The classifiers achieved explicit labelling to metabo-
lites that appear in the TOCSY and additionally detected new
metabolites which are unknown to the training model. Despite
the observed overlapping in the training dataset resulting from
chemical shifts, the implemented methods in this work achieved
0% false positive rates at 100% true positive rate. The resulting clas-
sification performance increases with increasing training dataset
size. Generally, the execution time also increases when increasing
the training dataset size for all classifiers, nevertheless, the execu-
tion time is relatively short. The results are supported by confusion
matrices and ROC curves in addition to plotting the novelty out-
puts. The presented machine learning based novelty detection
techniques provide promising perspectives for automated assign-
ment of metabolites that evolve in dynamic biological environ-
ments and triggers the metabolic pathways. For future strategies,
creating a more comprehensive and standardized metabolic data-
base using ppm, horizontal and vertical frequencies designed for
different NMR resolution frequency is essential to stimulate an
uncomplicated access to diverse NMR data. This perspective is crit-
ical due to the heterogeneity of metabolites and the associated
variables and implication. Furthermore, a new feature which is
related to spin–spin couplings can be added to the two already
existing features to increase the discriminative strength. Moreover,
additional 2D NMR methods such as HMBC or HSQC can be
employed and integrated in the automatic prediction. The output
of the classification using different techniques might then be com-
bined as ensemble classification to generate more accurate results
on more complex mixtures.
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