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Abstract: (1) Background: Considerable inconsistency exists regarding the neural substrates of
anosognosia in dementia in previous neuroimaging studies. The purpose of this study was the evalua-
tion of anosognosia perfusion correlates across various types of dementia using automated Brodmann
areas (BAs) analysis and comparison with a database of normal subjects. (2) Methods: We studied
72 patients: 32 with Alzheimer’s disease, 26 with frontotemporal dementia—FTD (12 behavioral FTD,
9 semantic FTD, 5 Progressive Non-Fluent Aphasia), 11 with corticobasal syndrome, and 3 with pro-
gressive supranuclear palsy. Addenbrook’s Cognitive Examination—Revised (ACE-R) mean(±SD)
was 55.6(±22.8). For anosognosia measurement, the Anosognosia Questionnaire—Dementia was
used. Total anosognosia score mean(±SD) was 22.1(±17.9), cognitive anosognosia score mean(±SD)
was 18.1(±15.1) and behavioral–mood anosognosia score mean(±SD) was 3.3(±4.7). (3) Results:
Higher anosognosia total score was associated with hypoperfusion in the inferior temporal, anterior
cingulate, and inferior frontal cortices of the right hemisphere (BAs 20R, 24R, 32R, 45R). Higher
anosognosia cognitive score was correlated with hypoperfusion in the left middle and anterior tem-
poral cortices, and right dorsal anterior cingulate cortex (BAs 21L, 22L, 32R). No association was
found with behavioral–mood anosognosia. (4) Conclusions: Automated analysis of brain perfusion
Single Photon Emission Computed Tomography could be useful for the investigation of anosognosia
neural correlates in dementia.

Keywords: anosognosia; dementia; brain perfusion; SPECT; Brodmann areas

1. Introduction

Anosognosia is a term used across a wide range of neurological clinical cases and
refers to the unawareness of the presence of a disorder and its associated deficits, such
as cognitive and behavioral impairments [1–5]. The symptoms have also been described
as loss of insight, impaired self-awareness, or self-consciousness [1]. Anosognosia was
described for the first time in 1914 by Joseph Babinski in stroke patients who appeared
unawareness of limb weakness or paralysis and progressed to dementia after some time [6].

Diagnostics 2022, 12, 1136. https://doi.org/10.3390/diagnostics12051136 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12051136
https://doi.org/10.3390/diagnostics12051136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-8863-3635
https://doi.org/10.3390/diagnostics12051136
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12051136?type=check_update&version=1


Diagnostics 2022, 12, 1136 2 of 13

Anosognosia has been reported in various forms of degenerative dementia [7–9].
Demented patients are frequently unaware of their cognitive and behavioral impairments
and underestimate their deficits in multiple domains, despite facing major changes in
their lives as a result of cognitive and socioemotional deterioration [10]. Anosognosia
in dementia is a major problem, with significant consequences for patients and their
caregivers, because it may delay medical evaluation and treatment, expose patients to risky
behaviors, cause accidents, and worsen the prognosis, as well as increasing the caregivers’
burden [11,12].

The incidence and prevalence of anosognosia vary greatly across dementia types [13].
In Alzheimer’s disease (AD), the symptom may be observed in the early stages, even in
the mild cognitive impairment stage [14,15]. The incidence ranges from 21% to 38.3% and
the prevalence from 24% to 80% and increases as the disease worsens, affecting awareness
of memory deficits in parallel with behavioral alterations [16–20]. Among the syndromes
of the frontotemporal lobar degeneration (FTLD) spectrum, anosognosia has been reported
mainly in the behavioral variant of frontotemporal dementia (bv-FTD) [7,21,22] and targeted
specific domains such as personality [21], language, executive functions, and behavioral
disturbances [22]. In the remaining syndromes of the FTLD spectrum, there are limited
data regarding the frequency and characteristics of anosognosia [3,23].

The neuroanatomical correlates of anosognosia are very imprecise and an improved ex-
ploration is needed to shed light on the underlying mechanisms, resulting in interventions
that would lessen the impact of the symptom on well-being. Previous nuclear neuroimag-
ing studies have assessed anosognosia mainly in AD and bvFTD [15,24,25], examining only
limited brain regions using the region of interest (ROI) approach [15,25].

The aim of this study was to evaluate perfusion correlates of anosognosia in demented
patients with various forms of dementia using brain Single Photon Emission Computed
Tomography (SPECT) and automated analysis of Brodmann areas (BAs) perfusion after
comparison with a normal subjects database. We included in the analysis the whole brain
cortex and not arbitrary selected regions used in the ROI method, avoiding the possibility of
overlooking significant areas associated with anosognosia. Changes in perfusion in specific
BAs may provide a further understanding of anosognosia in dementia of various etiologies.

2. Materials and Methods
2.1. Patients

Patients from an outpatient Memory Clinic were prospectively studied. We used
the Diagnostic and Statistical Manual IV (DSM-IV) criteria for the clinical diagnosis of
dementia [26], the National Institute of Neurologic and Communicative Disorders and
Stroke, and the AD and Related Disorders Association Work Group (NINCDS-ADRDA)
criteria for the diagnosis of AD [27], the Neary criteria for the diagnosis of FTD [28], the Bak
and Hodges criteria for the diagnosis of Corticobasal Syndrome (CBS) [29], and the National
Institute of Neurological Disorders and Stroke and Society for Progressive Supranuclear
Palsy-PSP (NINDS-SPSP) criteria for the diagnosis of PSP [30].

All the patients underwent a neuropsychological evaluation with a battery of tests, in-
cluding the Mini Mental State Examination (MMSE) for dementia rating and Addenbrook’s
Cognitive Examination–Revised (ACE-R). The Anosognosia Questionnaire—Dementia
(AQ-D) was used for anosognosia measurement [31]. The AQ-D is a 30-item questionnaire,
and it is divided into two sections for the assessment of awareness of both cognitive deficits
and behavioral–mood changes. Each answer is rated as follows: never (0 points), sometimes
(1 point), usually (2 points), and always (3 points). According to this instrument, higher
scores correspond to more severe anosognosia. It is administered to patients and caregivers,
and the discrepancy between the scores (caregiver score–patient score) is defined as the
anosognosia score. Additionally, all the patients underwent Computed tomography (CT)
or Magnetic Resonance Imaging (MRI) to exclude vascular or structural brain lesions.
Patients with psychiatric or other neurological disorders, based on their clinical history or
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the information received from their families or caregivers and the neuropsychological tests,
as well as pregnant women, were excluded from the study.

Informed consent was obtained from all patients or their caregivers before the study
according to the Hospital Ethics Committee guidelines based on the ethical guidelines of
the Helsinki Declaration of 1975, as revised in 2000. All patients and caregivers received
written directions on radioprotection before the study.

2.2. SPECT Studies

All the patients underwent a brain SPECT 20 min after the intravenous admin-
istration of 740 MBq of 99mTechnetium (99mTc) hexamethyl propylene amine oxime
(HMPAO-Ceretec, Nycomed Amersham Sorin S.R.L., GE Healthcare Amersham Health) on
a dual-head gamma camera (ADAC Forte) equipped with low-energy ultra-high resolution
parallel-hole collimators. Acquisition parameters involved step-and-shoot mode (128 pro-
jections, 35 s/projection), 128 × 128 matrix, and photopeak centered at 140 keV with a
symmetrical 10% window. We used the filtered back-projection technique for reconstruction
and a Generic Wiener filter for smoothing.

On the reconstructed data, we applied the NeuroGamTM software (SegamiCorpora-
tion, Columbia, SC, USA www.segamicorp.com) with a predefined BA template for the
automated comparison of perfusion in BAs of the left (L) and right (R) hemispheres in
our patients’ group with BA perfusion of a database of normal subjects with the same
age (provided by the software), as we have described in detail previously [32–34]. SPECT
acquisition parameters in our study were the same as those used in the normal database
subjects. Perfusion values in BAs are expressed as standard deviation (SD) differences from
the age-matched normal subjects.

2.3. Statistical Analysis

Quantitative variables were expressed as mean values (standard deviation) and as
median (interquantile range), while qualitative variables were expressed as absolute and
relative frequencies. Spearman correlation coefficients (rho) were used to explore the
association between anosognosia scales and BA perfusion. Via linear regression analysis, it
was examined the association between anosognosia scales and BA perfusion after adjusting
for gender, age, ACE-R, and years of education. Adjusted regression coefficients (β) with
standard errors (SE) were computed from the results of the linear regression analyses. For
cognitive and psychological anosognosia scales, logarithmic transformation was used, due
to a lack of normality in their distribution. All reported p values are two-tailed. Statistical
significance was set at p < 0.05 and analyses were conducted using IBM SPSS statistical
software (version 22.0), New York, NY, USA.

3. Results

The sample consisted of 72 patients (66.7% females) with mean age 68.0 years
(SD = 9.7 years). Their characteristics are presented in Table 1. Mean years of educa-
tion were 10.5 (SD = 4.7 years). The majority of the patients (44.4%) were diagnosed with
AD and mean years from disease onset were 3.2 (SD = 1.9 years). Mean ACE-R was 55.6
(SD = 22.8) and mean MMSE was 19.1 (SD = 7.3). Total anosognosia score ranged from −15
to 67, with mean value 22.1 (SD = 17.9); cognitive anosognosia score ranged from −18 to 65,
with mean value 18.1 (SD = 15.1), and behavioral–mood anosognosia score ranged from −5
to 18, with mean value 3.3 (SD = 4.7) (Table 2).

www.segamicorp.com
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Table 1. Sample characteristics.

N (%)

Gender
Males 24 (33.3)
Females 48 (66.7)

Age, mean (SD) 68 (9.7)
Years of education, mean (SD) 10.5 (4.7)
Diagnosis

AD 32 (44.4)
bvFTD 12 (16.7)
PNFA 5 (6.9)
svFTD 9 (12.5)
CBS 11 (15.3)
PSP 3 (4.2)

Dextrality
Right 71 (98.6)
Left 1 (1.4)

Years from disease onset, mean (SD) 3.2 (1.9)
MMSE, mean (SD) 19.1 (7.3)
ACE-R, mean (SD) 55.6 (22.8)

Total anosognosia, mean (SD) 22.1 (17.9)
median (IQR) 20 (8–34.5)

Cognitive anosognosia, mean (SD) 18.1 (15.1)
median (IQR) 15 (9–29)

Behavioral–mood anosognosia, mean (SD) 3.3 (4.7)
median (IQR) 3 (0–6)

AD Alzheimer’s disease, FTD frontotemporal dementia, bvFTD behavioral variant FTD, PNFA Progressive Non-
Fluent Aphasia, svFTD semantic variant FTD, CBS corticobasalsyndrome, PSP progressive supranuclear palsy,
MMSE Mini Mental State Examination, ACE-R Addenbrook’s Cognitive Examination—Revised, SD standard
deviation, IQR interquantilerange.

Table 2. Descriptive statistics for the anosognosia dimensions.

Mean (SD) Median (IQR)

Total anosognosia 22.1 (17.9) 20 (8–34.5)
Cognitive anosognosia 18.1 (15.1) 15 (9–29)

Behavioral–mood
anosognosia 3.3 (4.7) 3 (0–6)

A higher total anosognosia score was significantly associated with hypoperfusion
in the right inferior temporal cortex (BA 20R) (r = −0.24; p = 0.041), left middle temporal
cortex (BA 21L) (r = −0.29; p = 0.015), left anterior temporal cortex (BA 22L) (r = −0.29;
p = 0.014), left ventral anterior cingulate cortex (BA 24L) (r = −0.27; p = 0.021), right ventral
anterior cingulate cortex (BA 24R) (r = −0.26; p = 0.027), right dorsal anterior cingulate
cortex (BA 32R) (r = −0.25; p = 0.036), left fusiform gyrus (BA 37L) (r = −0.24; p = 0.040), left
inferior frontal gyrus—triangular part(BA 45L) (r = −0.26; p = 0.027), right inferior frontal
gyrus—triangular part (BA 45R) (r = −0.24; p = 0.040), and left dorsolateral prefrontal cortex
(BA 46L) (r = −0.25; p = 0.033) (Table 3). Moreover, a higher anosognosia cognitive score was
significantly associated with hypoperfusion in the left dorsolateral prefrontal cortex (BA
9L) (r = −0.35; p = 0.003), rightdorsolateral prefrontal cortex (BA 9R) (r = −0.26; p = 0.028),
left anterior prefrontal cortex (BA 10L) (r = −0.26; p = 0.029), right inferior temporal cortex
(BA 20R) (r = −0.25; p = 0.039), left middle temporal cortex (BA 21L) (r = −0.30; p = 0.012),
right middle temporal cortex (BA 21R) (r = −0.24; p = 0.048), left anterior temporal cortex
(BA 22L) (r = −0.34; p = 0.004), left ventral anterior cingulate cortex (BA 24L) (r = −0.31;
p = 0.009), right ventral anterior cingulate cortex (BA 24R) (r = −0.27; p = 0.021), left dorsal
anterior cingulate cortex (BA 32L) (r = −0.29; p = 0.016), right dorsal anterior cingulate
cortex (BA 32R) (r = −0.30; p = 0.010), left fusiform gyrus (BA 37L) (r = −0.23; p = 0.050),
left angular gyrus (BA 39L) (r = −0.23; p = 0.050), right inferior frontal gyrus—opercular



Diagnostics 2022, 12, 1136 5 of 13

part (BA 44R) (r = −0.31; p = 0.008), left inferior frontal gyrus—triangular part (BA 45L)
(r = −0.30; p = 0.010), right inferior frontal gyrus—triangular part(BA 45R) (r = −0.33;
p = 0.005), left dorsolateral prefrontal cortex (BA 46L) (r = −0.33; p = 0.004), right dorsolateral
prefrontal cortex (BA 46R) (r = −0.31; p = 0.009), orbital part of left inferior frontal gyrus (BA
47L) (r = −0.27; p = 0.021), and orbital part of right inferior frontal gyrus (BA 47R) (r = −0.28;
p = 0.019). We did not find a significant correlation of anosognosia behavioral–mood score
with hypoperfusion in any BA.

Table 3. Spearman’s correlation coefficients of anosognosia scores with BA perfusion after comparison
with normal database.

BAs Total Anosognosia Cognitive Anosognosia Behavioral–Mood Anosognosia

123L 0.05 −0.03 0.19
123R 0.00 −0.08 0.10

4L 0.16 0.08 0.22
4R 0.16 0.09 0.16
5L 0.10 0.01 0.14
5R 0.05 −0.03 0.14
6L 0.11 0.02 0.17
6R 0.12 0.06 0.09
7L −0.03 −0.11 0.16
7R −0.03 −0.10 0.06
8L −0.09 −0.22 0.09
8R −0.10 −0.20 0.04
9L −0.23 −0.35 ** −0.01
9R −0.16 −0.26 * −0.02
10L −0.16 −0.26 * −0.03
10R −0.09 −0.18 −0.01
11L −0.01 −0.05 −0.05
11R 0.00 −0.03 −0.04
12L 0.05 0.01 −0.04
12R 0.03 0.01 −0.05
17L 0.04 −0.04 0.11
17R 0.17 0.08 0.16
18L −0.01 −0.09 0.06
18R 0.11 0.01 0.16
19L −0.09 −0.16 0.05
19R 0.05 −0.02 0.09
20L −0.19 −0.19 −0.05
20R −0.24 * −0.25 * −0.13
21L −0.29 * −0.30 * −0.05
21R −0.21 −0.24 * −0.06
22L −0.29 * −0.34 ** −0.04
22R −0.13 −0.18 −0.09
23L −0.17 −0.20 −0.03
23R −0.09 −0.16 0.04
24L −0.27 * −0.31 ** −0.11
24R −0.26 * −0.27 * −0.07
25L 0.00 −0.04 0.01
25R 0.08 0.05 0.11
28L −0.05 −0.05 −0.03
28R −0.20 −0.19 −0.11
31L −0.01 −0.08 0.14
31R 0.05 −0.02 0.14
32L −0.22 −0.29 * −0.07
32R −0.25 * −0.30 * −0.10
36L −0.14 −0.13 0.03
36R −0.20 −0.20 −0.07
37L −0.24 * −0.23 * 0.01
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Table 3. Cont.

BAs Total Anosognosia Cognitive Anosognosia Behavioral–Mood Anosognosia

37R −0.20 −0.20 −0.06
38L −0.13 −0.16 0.00
38R −0.14 −0.18 −0.08
39L −0.22 −0.23 * 0.03
39R −0.16 −0.17 −0.10
40L −0.21 −0.23 0.01
40R −0.13 −0.15 −0.06
44L −0.14 −0.23 −0.04
44R −0.22 −0.31 ** −0.06
45L −0.26 * −0.30 ** −0.12
45R −0.24 * −0.33 ** −0.13
46L −0.25 * −0.33 ** −0.10
46R −0.21 −0.31 ** −0.07
47L −0.20 −0.27 * −0.14
47R −0.19 −0.28 * −0.07

* p < 0.05; ** p < 0.01; BAs: Brodmann areas, L: left, R: right.

After adjusting for gender, age, ACE-R, and years of education, it was found that
a higher anosognosia total score was associated with hypoperfusion in the right inferior
temporal cortex (BA 20R) (β = −3.78; SE = 1.92; p = 0.041), right ventral anterior cingulate
cortex (BA 24R) (β = −5.86; SE = 2.72; p = 0.030), right dorsal anterior cingulate cortex
(BA 32R) (β = −3.91; SE = 1.90; p = 0.029), and right inferior frontal gyrus–triangular
part (BA 45R) (β = −2.83; SE = 1.40; p = 0.026) (Figures 1 and 2). Furthermore, a higher
anosognosia cognitive score was significantly associated with hypoperfusion in the left
middle temporal cortex (BA 21L) (β = −0.07; SE = 0.03; p = 0.035), left anterior temporal
cortex (BA 22L) (β = −0.07; SE = 0.03; p = 0.039), and right dorsal anterior cingulate cortex
(BA 32R) (β = −0.07; SE = 0.03; p = 0.042) (Figure 3).
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4. Discussion

Anosognosia in dementia is a highly disruptive symptom and the exploration of its
neuroanatomical correlates is of particular interest. The purpose of this study was the
evaluation of the perfusion correlates of anosognosia in a population with various types
of neurodegenerative dementias to reveal specific BAs implicated in the symptom across
disparate dementia etiologies. Moreover, we examined the whole brain cortex using a
voxel-based method to avoid overlooking certain regions.

We found that higher anosognosia total scores were correlated with hypoperfusion in
the frontal and temporal areas, as well as in the bilateral (but mainly on the right) anterior
cingulate. Moreover, higher anosognosia cognitive scores were significantly associated with
hypoperfusion in the frontal and temporal regions, in the bilateral anterior cingulate, and in
the angular gyrus of the left parietal lobe. However, after adjusting for gender, age, ACE-R,
and years of education, we found that a higher anosognosia total score was associated
with hypoperfusion in the right inferior frontal gyrus—triangular part (BA 45R), right
anterior (ventral and dorsal) cingulate cortex (BA 24R, 32R), and right inferior temporal
cortex (BA 20R), while a higher anosognosia cognitive score was significantly associated
with hypoperfusion in the right dorsal anterior cingulate cortex (BA 32R), as well as in the
left middle and anterior temporal cortex (BA 21L, 22L). Our findings are, in general, in
concordance with the findings of other studies, although there is great heterogeneity in the
literature concerning patient selection and the specific type of dementia studied, since most
studies were performed in AD and bvFTD, as well as anosognosia assessment instruments,
neuroimaging techniques, and SPECT quantification methods. The previous factors may
have influenced the findings in various studies and may account for the discrepancies
between them and our study.

In AD, anosognosia was found to correlate with decreased perfusion in frontal ar-
eas [35–39] such as the left orbitofrontal cortex and the correlated regions extended to
the right orbitofrontal cortex [24], the right dorsolateral frontal cortex [25], and the right
inferior frontal gyrus [15], as well as in the anterior cingulate [35]. Brain glucose metabolism
with 18F-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) studies showed
dysfunction of the cortical midline areas [5,14,40–42] in the early stages of AD and involve-
ment of the frontal cortex in the later stages [43–45]. This pattern parallels the histological
changes as described by Braak and Braak [46], according to whom the mediotemporal
cortex is initially affected, followed by the posterolateral cortical areas and extension to
the frontal cortex at later stages [47]. Additionally, grey matter volumes in MRI studies
have been reported to associate significantly with the presence of anosognosia. More specif-
ically, the majority of these studies highlight an association between the symptom and
reduced volumes in the prefrontal cortex [48–51], cingulate cortex [35,52], medial temporal
lobe [50,52,53], subcortical structures [51], and cerebellum [52]. In FTD, anosognosia was
found to correlate mainly with either hypoperfusion, hypometabolism, or atrophy in the
right frontal lobe [2,51,54,55], in bilateral temporal poles [4], or in an area posterior to
the right superior temporal sulcus [56]. However, the main research has been conducted
in bvFTD, while limited data are available regarding the remaining neurodegenerative
disorders that share pathological and genetic features with FTD, such as the CBS or the
PSP [3,23]. Muñoz-Neira and his colleagues recently reviewed the neuroimaging neural
correlates of impaired insight in various forms of FTD [57]. They reported a correlation
that varies according to the object of insight in FTD syndromes. More specifically, impaired
insight of the presence of disease or diagnosis or health condition was associated with
hypometabolism or hypoperfusion in the right frontal cortex [2,58] or atrophy of frontal
areas involving the left orbitofrontal cortex and the right anterior cingulate [59]. Addition-
ally, altered insight into social cognition correlated with grey matter atrophy in the right
inferotemporal regions [60], and altered insight for memory was correlated with the frontal
and parietal lobes and limbic structures [61].

Several theoretical models have been proposed for the pathogenesis of anosognosia
in degenerative dementias and mainly in AD, and previous neuroimaging studies, as
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well ours, are generally in alignment with these models [62]. It is considered that specific
prefrontal areas, such asthe medial prefrontal cortex and the anterior cingulate, may have
a pivotal role in the executive system and impaired connections within the system may
result in executive anosognosia [63–65]. It is also considered that memory or executive
anosognosia is associated with the degeneration of frontotemporal networks, which are
believed to be responsible for the integrity of the cognitive awareness system [66]. In
addition, anosognosia has been linked to the temporoparietal cortex since impairment
in this area can result in a variety of disorders associated with knowledge of body and
perception [67]. Other researchers assume that the pathological substrates of memory
anosognosia are located in regions responsible for autobiographical conceptual memory,
such asthe medial temporal lobe [53,68]. Moreover, in functional neuroimaging studies,
it has been shown that the temporoparietal regions (especially on the right) are activated
when subjects are asked to distinguish themselves from others’ attributes [4,69], which
means that this brain region may be part of the network that encloses the representation of
the self and has a role for self-awareness [70].

In FTD, the main research has been focused on bvFTD, and it has been reported
that disease unawareness correlates with the right frontal cortex, while altered insight
into social cognition correlates with the frontal areas, as well as with the temporal gyrus,
insula, parahippocampus, and amygdala, and impaired insight into memory problems
seems to be related tothe frontal cortex, postcentral gyrus, parietal cortex, and posterior
cingulate [57]. Interestingly, MRI studies in psychiatric diseases have shown that poor
awareness of illness is associated with grey matter thinning in the left middle frontal and
inferior temporal cortices, suggesting that the neural correlates of insight involve a network
of brain structures, which are located not only in the frontal lobes but in the parietal and
temporal lobes, too [71,72].

Concerning the hemispheric predominance of anosognosia neural correlates, it has been
reported a correlation of global anosognosia for cognitive impairment with the right hemi-
sphere in AD, as well as in hemiplegic patients due to stroke or brain injury [15,24,25,73–75].
In these studies, the symptom was associated with hypoperfusion in the prefrontal, tem-
poroparietal, and temporo-occipital regions. However, in bvFTD patients, anosognosia
has been found to correlate with hypoperfusion in the left temporal pole [4] and the right
frontal regions [2]. It is considered that the right lateralization of findings in previous
studies associated with anosognosia, especially in FTD, could be attributed to the existence
of a specific association between lack of insight and impairment of the right frontal lobe,
which dominates emotions [2,76–78]. In our study, we also found a correlation of total
anosognosia score with the right frontal, temporal, and cingulate cortices. We also found
that cognitive anosognosia was correlated with hypoperfusion in the left temporal cortex
and right anterior cingulate. Cocchini et al. [79] reported that the frequency of anosognosia
in left-hemisphere brain damages may have been underestimated and that anosognosia at
least for motor impairment may also be associated with left-hemispheric lesions.

In our study, we did not find a significant correlation between anosognosia behavioral–
mood score and hypoperfusion in any BA. It would be supposed with caution that these
specific features in the AQ-D instrument share completely different brain regions across var-
ious dementia types. In concordance with the previous opinion, it has been considered that
insight into specific neuropsychological/behavioral domains is sustained by specific brain
regions [57]. To our knowledge, there are no published studies dealing with behavioral–
mood anosognosia and neuroimaging, or the existing published studies investigated the
neural substrates in specific objects such as memory and executive function. Additionally,
there is significant diversity regarding anosognosia evaluation methods in the literature, as
well as high complexity of the term and a lack of consensus about its definition [57].

5. Potential limitations

A potential limitation of our study is that anosognosia BA perfusion correlates were
not tested separately in the different dementia types. We did not present results from this
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analysis because the number of patients and the statistical power per dementia type were
not the same (and in some cases was very small) and could lead to a biased conclusion. For
this reason, we analyzed dementia types altogether and made adjustments for ACE-R.

6. Conclusions

The findings of this study suggest an association between anosognosia and decreased
perfusion in the frontal, temporal, and anterior cingulate cortices. Brain perfusion SPECT
with automated BA analysis and comparison with a normal database would serve as a neu-
roimaging biomarker to provide insight into the mechanism of anosognosia in dementia, as
well as in other neurological diseases. The understanding of anosognosia neural substrates
is of great clinical interest and would aid in the disease prognostication.
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