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Abstract: Ionizing radiation results in extensive damage to biological systems. The massive amount
of ionizing radiation from nuclear accidents, radiation therapy (RT), space exploration, and the
nuclear battlefield leads to damage to biological systems. Radiation injuries, such as inflammation,
fibrosis, and atrophy, are characterized by genomic instability, apoptosis, necrosis, and oncogenic
transformation, mediated by the activation or inhibition of specific signaling pathways. Exposure of
tumors or normal cells to different doses of ionizing radiation could lead to the generation of free
radical species, which can release signal mediators and lead to harmful effects. Although previous
FDA-approved agents effectively mitigate radiation-associated toxicities, their use is limited due to
their high cellular toxicities. Preclinical and clinical findings reveal that phytochemicals derived from
plants that exhibit potent antioxidant activities efficiently target several signaling pathways. This
review examined the prospective roles played by some phytochemicals in altering signal pathways
associated with radiation response.

Keywords: phytochemicals; radiation effects; therapeutics; signaling pathways; radioprotectors

1. Introduction

In recent years, there has been an increase in public interest within the scientific com-
munity regarding the hazardous effects of ionizing radiation. Ionizing radiation (IR) has
become an intrinsic component of several industries, including nuclear power, agricultural,
and medicinal industries. Different forms of IR, including α particles, β particles, protons, x,
and γ-rays, could potentially cause damage to biological systems at the cell, tissue, or body
levels [1]. Currently, cancer is seen as one of the leading causes of morbidity and mortality
worldwide. Biological systems have inbuilt mechanisms to protect themselves from the
harmful effects of low levels of exposure to IR as deployment radiation shielding mecha-
nisms. However, during unavoidable exposures to IR under certain conditions like nuclear
accidents and or planned exposures during cancer radiotherapy, the hazardous substances
produced by IR are massive and the body’s own defense mechanisms may not be appropri-
ate for protection [2]. In addition to chemotherapy, immunotherapy, hormonal therapy etc.,
radiotherapy is an important cancer treatment modality. The exposure of tumor cells to IR
leads to the induction of free radical species; reactive oxygen species (ROS) and reactive
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nitrogen species (RNS) which cause DNA damage, lipid peroxidation, and the release of
signal mediators (ligands like growth factors, cytokines, and hormones) [3]. Together, these
molecular players can activate the prominent paracrine and endocrine signaling pathways,
leading to target cell damage and radiation-induced bystander effects [4]. Preclinical and
clinical findings in malignant lesions demonstrate that perturbations of signaling pathways
in cancer cells play a crucial role in their sensitivity to ionizing radiation [4].

It has been shown that the extent of radiation-induced damage is highly systematic and
depend on the type of tissue or organ involved. For instance, the gastrointestinal system
is highly susceptible to radiation damage due to its rapidly dividing cells [5]. Radiation
injuries, like inflammation, fibrosis, and atrophy, are characterized by genomic instability,
apoptosis, necrosis, and oncogenic transformation, which are mediated by the activation
or inhibition of specific signaling pathways [6]. Both pro-survival pathways (PI3K/Akt,
JAK/STAT, etc.) as well as proapoptotic signaling cascades (Wnt and p53, etc.) play a vital
role, subsequently leading to radiation-induced responses [6]. The last decade of research
has identified several synthetic and semi-synthetic compounds which have shown promise
for use in radiation medicine [7]. Amifostine, the first FDA-approved chemical agent, is a
clinically effective chemotherapeutic substance used in normal tissue for radiological insults.
Conversely, the inherent toxicity and high cost of synthetic r’ radioprotectors warrants
the search for alternative radioprotective agents [8]. Recent reports have shown that
naturally occurring compounds, especially phytochemicals, have the potential to modulate
signaling pathways [9–12]. Several epidemiological studies have shown that the intake
of some phytochemicals can exert effects on several signalling pathways and reduce the
risk associated with radiation damage [13]. Owing to the promising antioxidant properties
of phytochemicals, in this review, we emphasize their critical roles in radioprotection and
analyze the signaling pathways involved in this process.

2. Radiation Damage and Phytochemical Action

IR adversely affects the biological system extensively. Along with surgery and
chemotherapy, radiation therapy (RT) is a crucial approach for the treatment and manage-
ment of cancer [14]. Nuclear accidents, RT, space exploration, and the nuclear battlefield
release massive amounts of radiation, leading to the exposure of biological systems. Inter-
action with IR leads to significant biological consequences characterized by inflammation,
radiation-induced fibrosis (RIF), carcinogenesis, and death. Radiation-induced responses
are mediated by its direct and indirect effects [15,16]. Directly, the IR can interact with
DNA and cause (double) strand breaks on the DNA. An indirect effect is characterized by
the generation of free radical species like ROS (•OH: hydroxyl radicals, •H, e−(aq), H2O2,
H3O+), as a result of radiolysis of water [17]. These charged species can interact with bio-
logical macromolecules, like DNA, RNA, protein, and membrane lipids, leading to cellular
dysfunction, damage, and/or death. [18]. Highly reactive oxygen free radicals can induce
DNA lesions, contributing to DNA mutation and genome instability. In addition to DNA
damage response, mitochondrial and endoplasmic reticulum (ER) stress responses may
increase ROS generation [19]. ROS and other IR-induced products inside cells augment
the release of diverse cytokines leading to local or systematic effects from cellular to body
levels [20].

It has been observed that about 50% of the patients receive RT along with surgery and
chemotherapy [15]. Despite the randomness of radiation reactions, the impact of radiation
is propagated in a sequence-specific manner, leading to the activation of several signaling
targets. It has been shown that multiple signaling pathways, e.g., ATM/TP53, MAPK, and
NFkB, could lead to the altered expression of several effector genes, in turn leading to a
knock-on effect on cells (Figure 1).
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models [26]. Under hypoxic conditions, betullinic acid, a triterpene, can function as a 
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The mechanistic pathways can influence cell cycle regulation, DNA repair, and cell
death or apoptosis. Altered activation of signaling pathways is involved in the modula-
tion of pleiotropic cytotoxic and cytoprotective cellular responses, which subsequently
lead to the regulation of cell proliferation, senescence, differentiation, and apoptosis [21].
Phytochemicals are known to have a constructive effect on biological systems and play
key roles in the treatment and/or management of numerous diseases, including chemo
and radiotherapy in cancer. Phytochemicals, owing to their inherent antioxidant abilities,
can scavenge free radicals and create a signals in response to electrophile and chemical
stress leading to activation or inhibition of several signaling responses. Figure 2 shows
different potential intermediate targets of phytochemicals during radiation-induced stress.
NF-E2-related factor 2 (Nrf2) signaling is linked to phase II detoxifying enzymes, phase II
transporters, anti-oxidative stress proteins, and stress defense molecules. Phytochemicals
have the ability to activate Nrf2, which ultimately acts against ROS and RNS or other
reactive carcinogenic metabolites [22]. Previous evidence shows that phytochemicals can
modulate multiple signaling pathways during stress responses associated with IR [23].
Apigenin (4′,5,7-trihydroxyflavone) is a dietary component that has been found to be ra-
dioprotective in lymphocytes [24,25], keratinocytes, and mice models [26]. Under hypoxic
conditions, betullinic acid, a triterpene, can function as a radiosensitizer in glioma cells [27].
After exposure to 7–8 Gy of gamma radiation, ascorbic acid at a dosage of 3 g/kg body
weight reduces radiation lethality and contributes to mouse survival [28]. Pretreatment
with caffeine can significantly inhibit radiation-induced micronuclei formation [29]. Cur-
cumin ([1,7 bis (4-hydroxy-3-methoxyphenyl) 1,6 heptadiene 3,5 dione]), a natural phenol
that significantly reduces radiation-induced clastogenicity, decreases ROS production and
lipid peroxidation, and inhibits radiation induced genotoxicity [30]. Resveratol (3,4′,5-
trihydroxy-transstilbene), a phytoalexin, has potential free radical scavenging activity and
is radioprotective against IR [31]. Lycopene, (tetra teepee hydrocatbon), a carotenoid, ex-
hibits free radical scavenging ability and is shown to be effective against radiation-induced
chromosomal aberration [32]. In addition, sesamol (3,4-methylenedioxyphenol), a nutri-
tional phenolic compound, is effective against radiation-induced genotoxicity, as well as
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radiation-induced intestinal and hematopoietic injury due to its antioxidant nature [33].
Furthermore, EGCG (epigallocatechin-3-gallate), a green tea catechin, has been evaluated
by several studies for its radiomodulatory ability. [24,34]. Mangiferin, a glycosyl xanthone,
successfully reduces radiation-induced mortality, oxidative stress associated with renal
injury, and decreases radiation-induced micronucleated binucleate cells [35]. Furthermore,
compounds like genistein, vanillin, hesperidin, eugenol, vinblastine, vincristine, orientin,
and vicenin, ellagic acid, gallic acid, quercetin, trigonelline, myricetin, naringin, etc. exhibit
potential antioxidant, anti-inflammatory, antiproliferative, anti-mutagenic, and radioprotec-
tive activities [9,24,36,37]. Therefore, diverse clinical trials and further characterization of
these compound are of paramount importance so far as the translational value is concerned.
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3. Phytochemicals and Their Possible Roles in Radioprotection via Different Signaling
Pathways
3.1. NFκB Signaling Targetted Pathway

NFκB is a family of dimeric transcription factors that control the transcription of a
variety of genes in the promoter regions of specific target genes. The enhancer element of the
immunoglobulin kappa light chain is where NFκB binds. NFκB is found in almost every cell
type and plays a role in cell proliferation, differentiation, immunological, and inflammatory
response [38]. Various studies have shown that exposure to radiation doses ranging from
0.1 to 2 Gy can activate NFκB. The protein binds to a sequence in the immunoglobulin
light chain enhancer in B cells, triggering several genes involved in inflammation, cell
proliferation, differentiation, and various stress responses [39]. In mammalian cells, the
protein encompasses five members of the Rel family, which include Rel A, RelB, c-Rel,
NFκB1 (p105/p50), and NFκB2 (p100/p52) [40]. During rest, the protein is inactive in the
cytoplasm, and its activity is exclusively dependent on a family of regulatory proteins
known as inhibitors of NFκB (IkB). The molecule plays a significant role in resistance
to radiation and chemotherapy, being involved in anti-apoptotic activity, cell growth,
and clonogenic capacity, as has been observed in numerous human cancer cell lines [41].
Although classical (canonical) and alternative pathways are crucial in activating the NFκB
and its translocation to the nucleus, the involvement of unique signaling pathways, type of
stimuli, and cell types are the major confounding factors. The classical pathway involves
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the IKK-β-dependent degradation of IκB-α, IκB-β, and IκB-ε, whereas the alternative
pathway involves the IKK-α- dependent activation of p52/Rel B [42]. IR, TNF-α (tumor
necrosis factor-α), PMA (phorbol 12-myristate 13-acetate), LPS (lipopolysaccharide), and
interleukins are the major stimuli that activate the classical pathway, thus causing IκB
degradation [43,44]. Ligands to certain members of the TNF receptor superfamily, such
as the B-cell-activating factor of the TNF family, CD40, or lymphotoxin β, can initiate the
alternative route, which is fully independent of IKK-β and IKK-γ. The two pathways are
the target sites for many natural radioprotectors, culminating in their response against the
harmful effects of IR [45].

Several studies have revealed the rescue effect of NF-κB in irradiated cells [46,47]. Once
the pathway is activated, it causes the inhibitor subunits IκB-α and IκB-β to be phosphory-
lated, followed by ubiquitination and degradation, resulting in the release of active NF-κB.
NF-κB translocates into the nucleus after activation, where it binds sequence-specifically
to the promoter/enhancer region of multiple target genes and transactivates their expres-
sion [48]. The presence of one or more NF-κB binding sites in the promoter/enhancer
region of TNF-α has been confirmed by multiple laboratories. Studies have demonstrated
NF-κB-mediated TNF-α expression by several inducers. IR-induced NF-κB activation
modulates anti-apoptotic signaling pathways in conjunction with telomerase activation in a
TNF-αmediated manner and thus imparts survival advantage in the bystander cells [49,50].
Drugs targeting NF-κB can inhibit tumor cell proliferation, and are thus considered as
anti-tumor agents. The survival effect of NF-κB is exerted by its downstream signaling
molecules, e.g., cellular inhibitors of apoptosis (cIAPs), B cell lymphoma family proteins.
DIM (3,3′-diindolylmethane) protects against radioactivity by inducing an ATM-driven
DDR-like response and the NF-KB signaling pathway [51]. Hesperidin was found to mod-
ulate inflammatory targets like NF-κB and thus play an essential role in radioprotection.
Although there is a lack of literature regarding the phytochemical action in radiation signal-
ing, accumulating evidence suggests the anticancer activity of many compounds of plant
origin that can be used in in vitro and in vivo models for modulating the NF-κB signaling
pathway. Parthenolide, a sesquiterpene lactone obtained from fruit and flower of Tanacetum
parthenium, inhibits NF-kB in MCF-7 cells and thus possesses anticancer activity [52]. The
NF-kB also acts as a potential target for phytochemicals like EGCG, pterostilbene, ATRA
(All trans- retinoic acid), and curcumin [53]. In LPS-RAW264.7 cells, procyanidins from
wild grape seed (WGP) prevent the stimulation of NF-κB and p38 MAPK pathways and
thus decrease the oxidative stress-mediated ROS and NO generation [54]. A study by Ren
et al. [55] showed the inhibitory effect of resveratrol on NF-KB signaling through the p65
and Ikappa B kinase activity.

3.2. Targeting Wnt Signaling Pathway

IR and radiotherapy are potential modulators of the Wnt signaling pathway [56]. The
acquisition of radioresistance and the development of invasive phenotypes are both aided
by the activation of Wnt/β-catenin. Accumulating evidence suggests that exposure to IR
and radiotherapy is intrinsically associated with the RIF, characterized by inflammation,
accumulation of high density of unorganized myofibroblasts, retractile fibrosis, and gradual
loss of parenchyma cells [57–59]. Activation of NF-κB during IR stress plays a significant
role in activating the Wnt pathway [60]. Wnt finetunes the cell growth, metabolism,
development, and maintenance of stem cells [58]. Inflammation resulting from RT and
IR leads to NF-κB generation and the production of TGF-β (transcription growth factor
β). TGF-β plays a chief role in the manufacture of fibroblast, which on differentiation
can form myofibroblast from the bone marrow progenitor cells [61]. Wnt ligands are
activated by inflammation. FZL and LRP5/6 receptors bind Wnt ligands leading to the
destruction and inactivation of AXIN/APC/GSK-3β complex. The inhibition of β-catenin
phosphorylation prevents it from being degraded by the proteasome. Accumulation
of β-catenin in the cytoplasm before translocating to the nucleus to bind TCF/LEF co-
transcription factor induces WNT target genes, including c-Myc and cyclin D1. TGF-β1 is



Antioxidants 2022, 11, 49 6 of 20

activated by inflammation and DNA damage, which activates the Smad pathway. TGF-β1
binds to TGF-β receptor type 2, causing the recruitment of TGF-β receptor type 1. Smad2/3,
which binds to Smad4, is phosphorylated by the hetero-tetramer that forms. The Smad
complex translocates to the nucleus to activate CTGF and other target genes [62,63].

Dickkopf-1 (DKK) is activated by PPAR γ agonists, which block WNT ligands and
prevent β-catenin accumulation by activating GSK-3β [64]. PPAR γ agonists reduce Akt
activity while stimulating PTEN, a PI3K inhibitor. Smad7 and PTEN are also stimulated by
PPAR γ agonists, which block the Smad pathway [65,66]. Diosmin, a citrus bioflavonoid
with antioxidant, anti-inflammatory, and anti-apoptotic characteristics, has been shown to
boost PPAR γ expression and inhibit the canonical WNT/β-catenin pathway, which can
help to prevent radiation-induced hepatic fibrosis [67]. Through the reduction of NF-κB
expression and downregulation of the STAT-3 pathway, PPAR γ activators can prevent
irradiation-induced inflammatory processes. It has also been reported that IR induces the
WNT/β-catenin signaling pathway via the up-regulation of several downstream genes,
such as MMP-2, MMP-9, VEGF, CD 44, and TCF 1, and thus increase the invasive potential
of U87 cells [68]. Further evidence provided by Huang et al. (2020) [69] revealed the
correlation between IR and promotion of WNT/β-catenin signaling during RT, which
significantly augments LIG4 (DNA ligase IV) activity in colorectal cancer cells (CSC) and
promotes radioresistance. Several compounds of plant origin have been developed as
potential radioprotective agents to modulate Wnt/β-catenin signaling. For instance, fisetin,
a flavone found in many plants, such as strawberry, apple, grapes, cucumber, persimmon,
onion, Acacia greggii, and Acacia berlandieri, inhibits Wnt through the expression of β-
catenin [70]. Furthermore, resveratrol inhibits wnt signaling in colon cells and significantly
decreases the invasiveness of a variety of tumor cells [71,72]. Arthur et al. (2014) [73]
revealed that the administration of Ajuga turkestanica extract protects from muscle injury by
modulating the Wnt and Notch pathways. Sulforaphane, an organosulfur compound, has
been observed to downregulate the Wnt/β-catenin self-renewal pathway in breast cancer
stem cells and protect skin against UV-induced damage [74].

Extracts of Ginko biloba exocarp have been reported to inhibit angiogenesis in Lewis’s
lung cancer cells, possibly by acting on the Wnt/β-catenin-VEGF, indicating its possible
radiomodulatory effect of the Wnt/β-catenin pathway [75]. Further studies have revealed
a radioprotective effect of indigo wood root extracts in alleviating radiation-induced mu-
cositis. Subsequent findings show indirubin, a major phytoconstituent, acts as an agonist of
the Wnt/β-catenin pathway [76,77]. Another indirubin derivative, indirubin-3′-oxime, is
an agonist candidate for Wnt/β-catenin and plays a significant role in preventing radiation-
induced bone injury.

3.3. Targeting Nrf2 Signaling Pathway

IR is a multi-faceted stress agent that poses a severe threat to the biological system by
producing a diverse amount of free radical species, e.g., ROS and RNS, which induce a
variety of responses, such as inflammation, cancer, oxidative stress, and genomic instabil-
ity [78,79]. To combat the deleterious effect of free radicals, new signaling pathways are
induced, which modulates the expression of the antioxidant-responsive elements signaling
pathway (induced by genes expression) and acts as the first line of protection against
oxidative stress. One of the keys signaling molecules involved in cellular stress response
is nuclear transcription factor erythroid 2p45 (NF-E2)-related factor 2 (Nrf2), whose role
is of paramount importance in the up-regulation of different antioxidants cytoprotec-
tive genes. Nrf2 contains a basic leucine zipper motif that acts as a transcription factor
that binds an antioxidant response element (ARE) or an electrophile response element
(EpRE). It thus activates phase II/detoxifying and other antioxidant gene expressions by
binding to the cis conserved core sequence (5′-A/GTGAC/GNNNGCa/c-3′) situated in
the promoter region as well as transactivators and coactivators small Maf-F/G/K and
cAMP response element-binding protein (CREB-binding protein or CBP), p300, which
regulates the ARE-driven antioxidant gene transcription. Accumulating evidence suggests
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the potential role of Nrf2 in ARE-mediated gene expression [80]. Glutathione S-transferase
(GST), UDP-glucuronosyltransferase (UGT), heme oxygenase-1 (HO-1), NADP(H): quinone
oxidoreductase (NQO), glutamate-cysteine ligase (GCL), and gamma-glutamylcysteine
synthetase (γGCS) are among the phase II detoxifying and antioxidant enzymes [81]. Under
normal/basal conditions, the Nrf2 is tethered in the cytoplasm as a sedentary complex with
a cytoskeletal binding protein which acts as a repressor called Kelch-like ECH-associated
protein 1 (Keap1), regulating its translocation to the nucleus. Nrf2 can be proteosomally
degraded by Cul3–Keap1 ubiquitin E3 ligase complex. Any agent interfering with the
interaction of Nrf2 and Keap1 by the covalent alteration or oxidation of cysteine residue of
Keap1 protein decreases E3 ligase activity, which subsequently causes the release of Nrf2
which is translocated to the nucleus and binds to ARE and EpRE, thus stimulating the
expression of cytoprotective genes [82].

Substantial epidemiological evidence revealed the possible mechanism of action of
phytochemicals and their mechanisms of action on Nrf2 signaling. EGCG, a major cate-
chol present in tea, stimulates Nrf2 expression and its translocation to the nucleus. The
compound induces HO-1 synthesis in rat neurons and acts as an effective neuroprotective
agent [83]. Accumulating evidence suggests that curcumin administration can stimulate the
HO-1 pathway by disrupting the Keap1/Nrf2 complex [84]. Curcumin attenuates oxidative
stress by modulating Nrf2 signaling. EGCG induces Nrf2 in a PI3K and ERK-dependent
manner in human mammary epithelial cells [85], possibly due to its (EGCG) antioxidant
activity reported earlier.

Furthermore, EGCG induced HO-1 expression by activating Akt and ERK1/2 in
endothelial and MAPK cells (P38) and Akt mediated signaling in B-lymphoblasts [86].
Similar findings showed that feverfew extracts could protect from oxidative DNA damage
by making DNA repair in skin cells through the P13K-dependent-Nrf2/ARE pathway [87].
The antioxidant effect of resveratrol in in vivo and in vitro models has been extensively
studied. Data show resveratrol stimulates Nrf2 mediated glutathione synthesis in human
lung epithelial cells [88]. The compound also stimulates Nrf2 mediated HO-1 synthesis
in PC12 cells [89]. Lycopene administration significantly induces antioxidant enzymes,
e.g., SOD, GR, and GSH, and decreases the lipid peroxidation marker malondialdehyde
(MDA). Subsequent findings showed that the administration of zerumbone, a sesquiterpene
derived from zinger, induces Nrf2 signaling and the expression of its target protein HO-1 in
mouse epidermal cells [90]. Quercetin activates Nrf2 expression and down-regulates Keap1,
thus inducing the Nrf2 mediated ARE pathway in an ERK and P38 MAPK dependent
manner [91]. Accumulating evidence reveals the possible antioxidant induction ability of
sulforaphane, an isothiocyante mostly rich in cruciferous vegetables, via the activation of
Nrf2 signaling and protection from the devastating effect of oxidative stress. Molecular
evidence revealed that sulforaphane significantly modulates Nrf2 signalling by activating
the MAPK pathway and epigenetically altering the Nrf2 promoter [92]. The protective effect
of different natural and synthetic flavonoids, such quercetin, fisetin, luteolin, eriodictyol,
galangin, baicalein, EGCG, 3,6-dihydroxy flavonol, and 3,7 dihydroxy flavonol, against
oxidative stress-mediated death in retinal pigment epithelial (RPE) cells was studied and
it was observed that these compounds have the potential to stimulate Nrf2 expression
and phase II detoxifying enzymes in RPE cells [93]. Baicalein has been shown to possess
a radioprotective effect by activating the ERK/Nrf-2 signaling, thus mitigating radiation-
induced hematopoietic injury [94].

3.4. JAK/STAT Pathway

The signal transducer and activator of transcription (STAT) and Janus kinase (JAK)
pathways play an essential role in cytokine signaling and thus regulate multiple cellular
responses, including cell survival and mortality, cellular differentiation, cell maintenance,
hematopoiesis, and inflammatory responses [95]. The interaction of ligands, such as inter-
leukin, growth factors, and hormones, through various transmembrane receptors regulates
their activity and controls cellular response. Ligand binding causes dimerization of the
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receptors and leads to the auto/transphosphorylation at specific tyrosine residues of the c
terminal tail of the receptor. The phosphorylated tyrosine residues serve as a docking site
at its –SH domain-containing the STAT molecule. Once the STAT molecules are phosphory-
lated at specific conserved tyrosine residues, they act as transcription factors that dimerize
and translocate to the nucleus. They bind specific promoters and modulate downstream
gene expression involved in cellular proliferation, differentiation, and apoptosis [96,97].
IR modulates the JAK/STAT pathway and plays a major role in regulating the immune
response associated with radiation toxicity. Studies have also shown that STAT proteins are
essential in IR induced stress [98]. Previous in vitro and in vivo studies also revealed that IR
modulates the expression of different cytokines, immune modulators, and growth factors,
including IL-1α, TNF-α, IL-6, IL-1β, type I IFN, GM-CSF, IL-4, IL-5, IL-10, IL-12, IL-18, and
TGF-β [99–101]. Previous reports demonstrated that the inhibition of the STAT3 increases
the radiation sensitivity of tumor cells, thus mediating radiation-induced apoptosis in
different cell lines [102,103]. An increase in the concentration of cytokines, including IL-1β,
TNF-α, IL-8, IL-6, or TGF-β, plays a prime role in modulating IR mediated response and
encourages inflammation, cancer cell invasion, and radiation-induced fibrosis [104]. Tar-
geting different chemical compounds gives rise to the effective radiosensitivity of tumors
cells without apparent toxicity, which implies that JAK/STAT signaling will be a prominent
molecular target by different phytochemicals to boost apoptosis of tumor cells.

A study by Chung and Vadgama et al. revealed that the activity of curcumin and
EGCG can suppress STAT3 and NF-kβ signaling at a concentration of 10 µM in breast
cancer stem cells [105]. Subsequent findings by Blaskovich et al. in 2003 revealed the potent
inhibitory activity of cucurbitacin I on phosphorylation of tyrosine resides in STAT 3 and
JAK in human and mice cancer cell lines [106]. Later on, the study showed the prospective
inhibitory effect of cucurbitacin on JAK/STAT signaling [107]. The impact of resveratrol
in modulating the JAK-STAT pathway is well understood. It has been observed that the
compound blocks or inhibits the phosphorylation of JAK and several STAT proteins in dif-
ferent cell lines, thus regulating the expression of several anti-apoptotic proteins [108,109].
Resveratrol can inhibit the src tyrosine kinase activity and block the JAK/STAT pathway
of tumor cells [110]. Studies have also documented the therapeutic activity of curcumin
in multiple myeloma cells, where the compound inhibits STAT3 phosphorylation and
significantly prevents its translocation to the nucleus [111]. Curcumin also reduced the
expression of cell proliferative genes, such as Bcl-XL, cyclin B1, and molecules involving cell
invasion (VEGF, MMP2, MMP7, and ICAM), by inhibiting STAT3 phosphorylation [112].
The potential role of EGCG in suppressing the STAT3 phosphorylation has been elucidated
and studies have shown that the compound significantly inhibits STAT3 phosphorylation
and its activity in different cell lines [113,114]. The suppressing ability of caffeic acid and
its derivative CADPE on the tumor angiogenesis was studied and the result indicates that
each compound prevents VEGF expression by blocking STAT3 phosphorylation [115].

3.5. Agents Targeting P53 Signaling Pathway

P53, a prominent protein also known as “guardian of the genome”, plays a significant
role in radiation signalling pathways. The protein is stimulated by different types of
stressors, e.g., IR, hypoxia, carcinogenesis, and oxidative stress. Under physiological
conditions, P53 concentration is low. However, it increases under the influence of IR.
It is then translocated into the nucleus from the cytoplasm where it modulates several
downstream signalling molecules and thus plays a significant role in the regulation of cell
cycle, DNA repair, and apoptosis, which promotes cell survival and differentiation [116].
The DNA damage response (DDR) pathway is the most effective signalling network which
is activated upon exposure to IR and studies have shown that DNA double-stranded breaks
(DSB) are created mainly by IR. Under normal conditions, the binding of Mdm2 to P53
promotes its ubiquitylation, whereas DNA damage activated several protein kinases that
phosphorylate P53, thus reducing its affinity for Mdm and decreases the degradation of
p53. Activated P53 activates its downstream effector P21, which regulates G1/S-Cdk and
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S-Cdk complexes and maintains cell cycle arrest at the G1 phase [117]. Depending on the
severity of damage in a coordinated and precise manner, P53 may activate DNA repair
genes or induce the expression of Bcl2, Bax, and Caspase3, which promote apoptosis.

Interestingly, P53 mutations are significantly associated with the resistance of many
cancer cells to several anticancer agents [118]. However, evidence shows that the expression
of wild-type P53 in response to radiation stimuli, mutant P53 is constitutively produced
in response to radiation [119]. DNA damage by IR as well as UV radiation has been
reported to stimulate the P53 activity [120]. Different stress stimuli, e.g., ATM, ATR, and
checkpoint kinases like Chk1 and Chk2, specially modulate the phosphorylation of several
post-translational modifications, which control the interactions P53 and MDM2 and thus
influence the stability of P53 [121]. The inhibitory activity of quercetin on P53 level was
shown in Dalton’s lymphoma mice and it has been observed that quercetin modulates the
PI3k-Akt-P53 signaling pathway via the downregulation of P53 and activation of Akt [122].
Furthermore, the apoptosis-inducing ability of resveratrol has been reported in MDA-
MB-231 cancer cell lines and it significantly reduces the expression of PI3K/Akt while
stimulating the expression of cleaved caspase-9, P53, and cleaved caspase-3 [123].

Furthermore, cyanidin reverses cisplatin-induced apoptosis ability in HK-2 proximal
tubular cells by modulating P53 phosphorylation [124]. Naringin downregulates the activa-
tion of P53 and thus suppresses the cisplatin-induced nephrotoxicity in the rat models [125].
According to evidence, paeonol, a phenolic molecule derived from the bark of the Moutan
cortex, the root bark of the Chinese peony tree, strongly suppresses the production of P53,
acetyl H3K14, and H4K16, which are elevated by H2O2-mediated oxidative stress, [126]. A
further study shows that indole-3-carbinol (I3C) present in cruciferous plants like broccoli
significantly inhibits p53–MDM2 interaction, thus leading to apoptosis [127]. Interest-
ingly, it was observed that inhibition of STAT3 activity by Penta-1,2,3,4,6-O-galloylbeta-
D-glucose is P53 dependent in prostate cancer cells in vitro and defeats prostate xenograft
tumor growth in vivo [128]. Earier studies revealed that γ irradiated fibroblast cells show
resistance to caffeine, due to the ATM-dependent phosphorylation of p53 [129]. Interest-
ingly, later on, it was observed that caffeine inhibits gamma and UV radiation-induced
phosphorylation of Ser15 and p53 residues in the ATM signalling pathway [130]. A recent
finding shows the potential affinity between NTD (N terminal domain) of p53 and EGCG,
which could be implicated in targeting p53 during radiation response [131]. Figure 3 shows
different phytochemicals and their radiation targets inducing different signaling pathways.

3.6. Notch Signaling

Notch signaling is an evolutionary conserved regulatory pathway that controls cell dif-
ferentiation, proliferation, apoptosis, and other biological processes. Notch 1–4, which are
single-pass transmembrane proteins, are found in mammals. Delta/Serrate/Lag-2 (DSL),
Jagged 1 and 2, and Delta1, 3, and 4 are single-pass transmembrane proteins expressed
on adjacent cells that interact with transmembrane ligand. The interaction between Notch
receptors and membrane-bound ligands is an important prerequisite for signaling response.
The binding of ligands leads to the cleavage and release of Notch intracellular domains
(NICD), which subsequently translocate to the nucleus and interact with its promoter
elements to modulate cellular responses [132]. Notch signaling has been associated with
radiation resistance in glioma cells [133] and breast cancer cells [134]. Radiation resistance
has also been observed in non-small lung cancer cells where the upregulation of Notch
signaling plays a vital role [135]. In vivo and in vitro studies revealed that radiation de-
creases osteoblast differentiation and proliferation, mediating cell cycle arrest, impairs
collagen synthesis, and induces apoptosis, thus impairing bone formation [136,137]. Thus,
increasing Notch 1 and Notch 2 expression in osteoblasts will be ideal for preventing
radiation-induced bone loss [138]. Genome-wide expression profiling indicates the in-
hibitory effect of genistein on Wnt 5a and Notch 2 expression in rat mammary epithelial
cells and CML patients having altered tyrosine kinase activity [139]. Curcumin in combi-
nation with piperine inactivates Notch by decreasing Notch 1 expression, thus reducing
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mammosphere formation in cancer. The inhibitory activity of resveratrol on Notch has also
been reported in lymphoblastic leukemia cells [140,141]. Curcumin also down-regulates
Notch1 expression and its downstream signaling molecules in different types of cancer
cells. Similar effects have been observed with diallyl trisulfide, which decreases Notch
downstream genes [142]. Soy isoflavone upregulates the Notch1 and Hes5 in the cerebral
cortex and prevents radiation-induced apoptosis [143]. Results from a clinical study have
shown that only gamma-secretase inhibitors alone or in combination with chemothera-
peutic agents are effective in inhibiting the notch signaling. However, an association of
gastrointestinal toxicity and cardiotoxicity prompted further validation in clinical applica-
tions [144]. Table 1 shows the effect of different phytocompounds and their possible roles
in radioprotection through different pathways.
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3.7. Hedgehog Signaling

Hedgehog (Hh) signaling is an intricate signal transduction mechanism that plays a
vital role in maintaining cellular proliferation, cell fate determination, embryonic develop-
ment regulation, and tissue homeostasis. Deregulation and impairment of the pathway are
implicated in stem cell renewal, congenital disability, and progression into various cancers.
The seven-helix transmembrane (7TM) protein smoothened (SMO) plays a significant role
in this process. In the absence of Hh ligand, SMO is inhibited by transmembrane protein
patched (PTC). However, the binding of Hh to its receptor PTC facilitates the signaling of
its downstream transcription factors such as Gli1(glioma-associated oncogene) and other
transcription factors, thus regulating the expression of its target genes [145]. Studies on
PTCH mutant mice indicate UV and IR-mediated basal cell carcinomas (BCC) by Hh target
gene activation play a significant role in BCC tumorigenesis [146]. Studies have shown that
mice with Ptch1+/− suffer from X-ray-induced cataracts more than the Ptch1+/+ mice,
suggesting the upregulation of ptch1 in normal mice, which eradicates radiation-induced
cataracts [147].

Further studies revealed the protective effect of sonic Hh signaling in human hepato-
cellular carcinoma cells against ionizing radiation [148]. Radiotherapy induced activation
of Hh transcription factor Gl1 expression by the mTOR/S6K1 pathway in head and neck
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squamous cell cancer (HNSCC) and its blockade by cyclopamine suggest the role of Hh
signaling in stromal resistance during radiotherapy [149]. Interestingly, a study shows the
role of activated Hh signaling in tumor repopulation after radiotherapy [109]. Radiation
stimulates the secretion of the Hh ligand, which can bind to the PTCH receptor, result-
ing in activation of GL1, thus regulating the progression of radiation-induced fibrosis in
hepatic cells [150]. Baicalin, a flavonoid, activates the sonic Hh pathway by stimulating
the expression of sonic Hh, SMO, and Gli1 proteins [151]. Genistein downregulates the
Hh-Gli1 signaling pathway and reduces mammosphere formation [152]. In another study,
long-term exposure to low doses of genistein showed the sensitization of breast cancer
cell lines to radiation and decreased stem cell growth and mammosphere formation [153].
Cyclopamine targets Hh signaling by inhibiting SMO activation and could play a signif-
icant role in hindering various cancers [154]. The inhibitory role of curcumin on Hh-GlI
signaling has also been reported [154]. Further studies in rat models showed the valuable
effects of panaxotriol saponin in the upregulation of VEGF and angiopoietin-1 expression
via the sonic hedgehog signaling pathway which protects against radiation-induced brain
injury [155].

3.8. PI-Akt Signaling

The phosphatidylinositol-3-kinase (PI3K)/Akt pathway plays a significant role in
controlling many pathological and physiological conditions governing various body pro-
cesses, e.g., cell survival, cellular proliferation, angiogenesis, cellular metabolism, and
differentiation. Inhibition of the PI3K pathway significantly decreases cellular survival,
promoting apoptosis, whereas the activation of PI3K blocks apoptosis. Evidence indicates
that activation of the PI3K/Akt signaling causes radiation resistance in cancer cells, whereas
in normal cells, it shows a radioprotective effect [156]. Activation of Akt is associated with
cell radioresistance and it has been observed that Akt causes the upregulation of several
proteins, e.g., IKKα, mTOR (mammalian target of rapamycin), and Mdm2, in turn causing
cell survival, growth, DNA repair, and cellular proliferation, as well as the downregulation
of Bad, Apaf/Caspase 9, GSK3β, and p27, thus leading to downstream signaling events
inducing cell cycle arrest and apoptosis [157]. Studies show that the activation of epidermal
growth factor receptors in response to IR in multiple tumor types in vitro induces the acti-
vation of RAF-1-MEK1/2-ERK1/2 and the PI3Kphosphoinositide-dependent kinase-1-AKT
pathways [158]. Moreover, studies have shown the association of the PI3K/AKT pathway
with metabolic response during chemotherapy and RT [159]. Therefore, it is crucial to
identify putative targets that cross-talk with other signaling cascades to achieve an efficient
response in radiation-induced normal and carcinogenic cells. Several phytochemicals have
been reported to play a tremendous role in regulating PI3K/Akt signaling, thus controlling
cell survival during radiation stress by reducing apoptosis. Benzyl isothiocyanate (BITC),
found in Alliaria petiolata, Salvadora persica, and other plants, has been found to prevent
tumor growth by inhibiting the PI3K/AKT/FOXO pathway [160]. Soy isoflavones, such as
genistein and daidzein, were shown to inhibit the IGF-1R/p-Akt, NF-κB, APE1/Ref-1, and
HIF-1α signaling intermediates and sanitize the tumor cells to RT [161].
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Table 1. Effect of phytocompounds and their possible role in radioprotection via different Signaling
pathways.

Compound Name Signaling Target Effect/Possible Role Reference

Allicin JNK pathway Downregulate ICAM-1 expression [162]

Apigenin Nf-kβ pathway Modulate p53, p21, Bax caspase3 & 9 [163]

Arctiin Wnt, MAPK pathway [164]

Baicalein Nrf2 pathway Stimulates ERK & Nrf2 activity [94]

Betullinic acid Nf-kβ pathway Act as a radio sensitizer in cancer cell [27]

Caffeine p53 signaling Increases ATM activity [129]

Carvacrol TNF α signaling Decreases radiation induced oxidative stress [165]

Chlorophyllin Nrf 2 & Nf-kβ pathway Possesses antioxidant, antiapoptotic activity [166]

Curcumin Notch pathway
Nrf2 pathway

Decreases Notch 1 & 2 activity
Induces PI3K, ERK, HO-1, P38-MAPK

[140,167]
[83,168]

DIM Nf-kβ pathway ATM, DBR [152]

Diosmin Wnt/β-catenin pathway Increases PPARγ expression & possess antioxidant,
anti-inflammatory, anti-apoptotic property [67]

Diospyrin (Diospyrin
dimethylether) P53 and Nf-kβ pathway Downregulate COX-2, Bcl-2, Upregulates p53, p21 [169]

EGCG Nrf2 pathway Induces PI3K, ERK, HO-1, P38-MAPK [83,168]

Ferulic acid c-JNK, ICAM-1, VCAM-1
mediated signaling Antioxidant and Anti-inflammatory Activity [170]

Fucoidan TGF-β, Smad pathway Inhibits TGF-β, Smad activity [171]

Genistein Hedghog pathway
Notch pathway

Down regulate Hedgehog-GLI 1 Activity
Decreases Notch 1 & 2 activity

[152]
[140,167]

Hesperidin Nf-kβ pathway Increases COX2 & NO activity [172]

Lycopene Nf-kβ, JAK-STAT pathway Possesses antioxidant, anti-inflammatory activity
Inhibits NF-kB, p65, STAT3, IL-6, TNF-α, COX2, PGE2 [173]

Mangiferin Nrf2 pathway Increases NOQ1 level [174]

Melatonin Nf-kβ, PI-Akt pathway Decreases p-AKT, p-ERK, COX2, p65 [175]

Parthenolide Nf-kβ pathway Inhibit NF-KB signaling [176]

Piperine Notch pathway Decreases Notch 1 & 2 activity [140,167]

Quercitin Nf-kβ pathway Inhibits ERK and p38 [177]

Resveratol Nf-kβ pathway
Notch pathway Decreases NF KB signalling of p65 & IKB kinase activity [55]

[140,167]

Rutin PI3K/AKT/GSK-3β/NRF-2-
pathway Increases p-PI3K, p-AKT and p-GSK-3β activity [178]

Saponin Hedgehog pathway Up regulate VEGF & Angiopoetin1 [178]

Soya isoflavon Notch pathway Up regulate Notch 1 & HES 5 activities [179]

Sulphora phane Wnt/β-catenin pathway Down regulate Wnt/B Catenine activity [74]

Thymol TNF α signaling Decreases radiation induced oxidative stress [165]

Ursolic acid Nf-kB and JNK pathway Decreases Nf-kB, IL-1β, TNF-α, IL-6 [179]

Vanillin P53-NOXA pathway Decreases p53 activity [180]

WGP Nf-kβ, P38-MAPK pathway Decreases level of ROS & RNS Production [161]
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4. Conclusions

The last decade of research has focused on exploiting molecular mechanisms involved
in the bystander response using novel pharmacologically active agents of clinical impor-
tance to ameliorate adverse effects caused by radiotherapy. Rapid technological innovation,
natural/artificial radiation exposure, nuclear accidents, treatment, and medical imaging,
among others, are all sources of radiation exposure. These planned and/or unintentional
exposures to radiation may lead toxicities and severe radiation-related diseases. Protecting
the biological system from the detrimental effects of radiation is critical. Decades of research
have resulted in the development of various synthetic and semi-synthetic chemicals to
ameliorate the dangers of radiation. However, because of their toxicity and side effects,
alternate sources are critical. Previous studies have revealed that the Indian system of
traditional medicine offers a wide range of pharmacologically active substances, including
anti-inflammatory, anti-mutagenic, antioxidant, free radical scavenging, and radiopro-
tective properties. We have highlighted the potential radioprotective properties of some
phytochemicals that exert their actions by modulating the different signaling pathways.
However, there is a translational gap in the use of this therapeutic arsenal of chemicals from
bench to bedside. Furthermore, the inability of the compounds to distinguish between nor-
mal and malignant cells renders them therapeutically unsuitable. Future research should
focus on adapting the in-silico method, utilizing high-throughput technology, developing
an acceptable study design to conduct desirable clinical trials, chemical surface modifica-
tion drug repurposing (drug repositioning), and generating a noncomplex structure. Not
only will the techniques mentioned above reduce toxicity, but they will allow to distinguish
between normal and malignant cells, allowing for improved therapeutic options.
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