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Abstract: With the improvement in automation technology, humans have now become supervisors of
the complicated control systems that monitor the informative human–machine interface. An alyzing
the visual attention allocation behaviors of supervisors is essential for the design and evaluation
of the interface. Supervisors tend to pay attention to visual sections with information with more
fuzziness, which makes themselves have a higher mental entropy. Supervisors tend to focus on
the important information in the interface. In this paper, the fuzziness tendency is described by
the probability of correct evaluation of the visual sections using hybrid entropy. The importance
tendency is defined by the proposed value priority function. The function is based on the definition
of the amount of information using the membership degrees of the importance. By combining
these two cognitive tendencies, the informative top-down visual attention allocation mechanism was
revealed, and the supervisors’ visual attention allocation model was built. The Building Automatic
System (BAS) was used to monitor the environmental equipment in a subway, which is a typical
informative human–machine interface. An experiment using the BAS simulator was conducted to
verify the model. The results showed that the supervisor’s attention behavior was in good agreement
with the proposed model. The effectiveness and comparison with the current models were also
discussed. The proposed attention allocation model is effective and reasonable, which is promising
for use in behavior analysis, cognitive optimization, and industrial design.
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1. Introduction

With the improvement in automation technology, the role of humans in complicated control
systems is changing from that of operators to supervisors [1]. More and more information is being
displayed on human–machine interfaces, but human attention ability is limited. Therefore, the limited
attention resources of supervisors are precious and important. Most system failures and operational
accidents are due to the lack of visual attention to relevant information [2]. An alyzing the visual
attention behaviors and revealing the visual attention allocation mechanism are important for the design
and evaluation of human–machine interfaces (HMIs). HMIs with an ergonomic design that align with
the attention behaviors of the supervisors are useful for system safety, error evaluation, and accident
prevention [3–5].

Attention behavior has many aspects, such as hearing, vision, and touch. Among them, vision is
important to supervisors during the task of monitoring. Humans have a complex selective visual
attention behavior that scans the scene both in a rapid, bottom-up, salience-driven manner as well
as a slower, top-down, task-dependent manner [6]. The visual attention to bottom-up salient information
is a rapid process that has limited effects on task-dependent attention allocation. Supervisory behavior

Entropy 2019, 21, 393; doi:10.3390/e21040393 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6132-1532
https://orcid.org/0000-0002-9844-0615
http://www.mdpi.com/1099-4300/21/4/393?type=check_update&version=1
http://dx.doi.org/10.3390/e21040393
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 393 2 of 16

is a long-term attention allocation mechanism for familiar scenes. The top-down task-driven factors
occupy the majority of the attention strategy during supervisory tasks.

Many factors can affect attention behaviors. Salience-driven factors depend on visual features
such as salience, blinking, shape, and colors [7–9]. The task-driven factors in the supervisory task
depend on the task features such as urgency, expectation, effort, and value [10–13]. Supervisors always
comprehensively consider the above task-factors during the task process, then establish the priority
of the information. In the task, the importance of the displayed information is mainly considered by
the supervisors. Matsuka proved that human learners do not always optimize attention; one reason
they fail to do so is that, under certain conditions, the cost of information retrieval or use may affect
the attention strategy adopted by the learners [14]. Therefore, in familiar procedural tasks, supervisors
acquire system information based on their experience and previously acquired knowledge due to
the top-down attention strategy.

The determination of information priorities is complicated and fuzzy in the cognitive process.
The uncertainty of the information may produce significant anxiety in supervisors, who tend to pay
attention to the information sections that can reduce that indeterminacy. The attention to information
is a reduction of the entropy of the HMI. This complicated cognitive behavior was described as mental
entropy processing by Wanyan [15]. Even though mental entropy theory has some limitations,
it was used successfully in modeling the cognitive process for information processing in the human
brain. Supervisors tend to pay attention to the visual section which has a higher information value.
Therefore, the membership degrees of the importance of the information sections based on fuzzy
theory could be feasibly used to quantify its value. These two selective cognitive mechanisms have
been shown to synergistically affect attention behaviors [16,17].

Efficient HMIs help their users accomplish their tasks with minimal workload and fatal errors.
The visual attention model is useful for the design and optimization of these interfaces [18,19].
The layout of a T-type HMI on aircraft was constructed by Fitts by analyzing the pilots’ visual
attention behavior [20]. The visual attention model predicted the users’ selective attention behavior in
supervisory tasks, which was beneficial in staff training [21]. One important aspect of on-the-job training
of supervisors is to make them pay attention to the right section at the right time. Using the model,
the researchers evaluated the mental workload and situation awareness of the user, which provided
information about the conditions of the user’s current mental status [22,23]. This model can also guide
task analysis and contribute to task optimization [12]. Overall, the visual attention allocation model is
useful and promising.

At present, evaluating visual attention is easily accomplished by tracking eye gaze in or after
the supervisory task [24]; however, predicting the visual attention allocation behaviors before the task
is challenging. We aimed to build an effective, accurate, and quantified model in visual attention
allocation based on the related works.

2. Related Works

In previous studies, researchers proposed many valuable attention allocation models to predict
the supervisory behavior of supervisors in informative HMIs. Based on saliency-based image
recognition, the predictive attention model was built which considered the bottom-up attention
mechanism of humans [6,9,25,26]. The observable information on the screen could be recognized
using deep learning to predict the attention behavior [27–29]. These bottom-up models help us reveal
the basic attention mechanism that how humans react to images. Wickens developed the SEEV model of
scanning behavior considering the task-driven factors [10–12]. This model considers the salience, effort,
expectancy, and value (SEEV) associated with each visual section. The model was improved to NT-SEEV,
to predict the notice ability (NT for notice) of events that occurred in the context of routine task-driven
scanning across large-scale visual environments [30]. Many researchers worked on the quantitation
and computation of multiple factors in SEEV [31–33]. SEEV and its improved models consider both
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the bottom-up and top-down attention mechanisms of humans. However, due to the different chosen
factors and computational methods, the results of the above models have varied significantly.

Some researchers computed attention allocation using gaze data based on fuzzy theory [34,35].
However, this involved a post analysis method that could not predict the attention allocation strategy.
Senders considered the human operator as a monitor and controller in the system [36]. The model
argues that humans are information processors and supervisory behavior is a data processing process.
The model describes the strategy of humans when selecting their attention focus in an informative
HMI. Sheridan distinguished the time interval of the supervisor when processing the information
and the proposed model assumed that the operator controls the most valuable information with each
sample [37]. Visual information processing is fuzzy in the human brain. Lin introduced a novel
fractional-order chaotic phase synchronization model for visual selection and shifting [38]. The model
uses two chaotic network layers to simulate the human cognitive system and solves the processing of
the natural image in the brain, which was useful for the proposed model in this article. Junshan used
multiscale entropy analysis of human operating behavior, which is a post-analysis method to determine
the human dynamics [39]. Pan extended the influence model to incorporate dynamical parameters to
a social system, which allowed us to uncover important shifts between actors. The model is instructive
in attention shift behavior [40].

Based on the above work, Matsui researched attention allocation using fuzzy theory and quantified
the selective attention mechanism of the information using hybrid entropy [41,42]. Wanyan et al. [15]
and Wu et al. [16] applied detection efficiency factors and fatigue factors to Matsui’s fuzzy model for
pilots. Considering multiple factors in the SEEV model, Wu and Wanyan developed the attention model
under multi-factor conditions [17]. This was an attempt to integrate the SEEV model and the fuzzy
model. Based on subjective expected utility theory (SEU), a human is an optimal information processing
processor [43]. The comprehensive consideration of the theory aimed to maximize the acquisition of
the important information and minimize the fuzziness of the scene. The above attention allocation
models based on fuzzy theory usually involved two main factors: information value and information
fuzziness [15–17,41,42].

The above models used the membership degrees of the importance of the information (value: 0–1)
expressing the information value. However, the drawback of the application of membership degrees
without processing was that the attention allocation ratio did not increase when the information value
increased. This means that a high information value might not lead to a high attention allocation ratio.
In this aspect, the above models based on fuzzy theory need to be improved. In this study, we tried to
solve this problem and demonstrate that our improvement is reasonable and effective.

The proposed attention allocation model was built based on the work of Matsui’s and Wanyan et
al.’s models [15,16,42]. The information value is presented by the proposed value priority function
using the membership degrees of the importance and information amounts. Using the theory of hybrid
entropy, the proposed model expresses the supervisors’ fuzzy cognition of the information processing
in the human brain. Combining these two cognitive processes, an increasing attention allocation model
was built along with the increasing information value. The BAS system is a typical interface used by
supervisors to monitor the environmental equipment in subway systems. We conducted an experiment
using a BAS simulator, which showed that the proposed model is effective. Compared with Matsui’s
and Wanyan’s model, the proposed model has several advantages and reasonable improvements.
We think that our proposed model has potential for applications in behavior analysis, cognitive
optimization, and industrial ergonomic design.



Entropy 2019, 21, 393 4 of 16

3. Methods

3.1. Value Priority Function

The supervisory task involves monitoring and controlling a large amount of system information.
The information on the monitors can be partitioned into several visual displays and independent
meaningful sections, creating Ii:

Ii = (I1, I2, . . . , In) (1)

The attention allocation model aims to predict the attention behavior of the supervisor.
The attention allocation is the ratio Ai of the virtual attention time required to focus on the information
Ii to the total virtual attention time for the whole task, as shown in Equation (2). The proposed attention
allocation model aims to build the mapping relationship between Ii and Ai before the supervisory task:

Ai = (A1, A2, . . . , An) (2)

Based on the research of Wickens, the attention behaviors of a skillful operator are rarely affected by
the bottom-up channel unless the bottom-up factors have independent meaning [11]. Subsequent research
supported this view [14]. Thus, the extension of this theory tried to consider multiple factors in
particular scenes.

During a familiar procedural task, the supervisor of the system would have previously evaluated
the information value based on their knowledge and training. However, the priority is fuzzy to
recognize. Based on fuzzy theory, the membership degree of the information importance is considered
the information value Vi to every information Ii, as shown in Equation (3). For a task, the membership
degrees of the importance for the informative sections are certain values. Usually, the values are
provided by experts in the field who are familiar with the task [15,16]:

Vi = (V1, V2, . . . , Vn) (3)

Matsui and Wanyan et al. considered these membership degrees as the information value [15,16,42].
The possible values are 0–1. In this research, we wanted to build a visual attention allocation model with
a higher attention ratio to the higher information value. Therefore, the information value, Vi, needed to
be improved to value the priority of the information, Vi’, which ranges from 0 to positive infinity.

Considering supervisors as the information processor, the information value Vi of the sections
should be converted with its information entropy. Usually, the information amount, Hi, in Equation (4),
presents the information sections when event i occurs, which is related to the probability that the certain
information Pri occurs:

Hi = − ln Pri (4)

The definition of information amounts shows:

(1) The information amount is monotonically decreases, which means that a low probabilistic event
occurs with a high amount of information.

(2) The information amount tends to be 0 when the probability of the occurrence of the event tends
to be 1, which means that the inevitable event carries no amount of information.

The improvement in the information value Vi needs to consider the following cognitive behaviors:

(1) Supervisors pay more attention to information sections with a higher information value.
This means that the ratio of the attention allocation is a monotonic increasing function of
the information value.

(2) The ratio of the attention allocation to the information (from 0 to 1) tends to be 1 when
the information value (from 0 to 1) tends to be 1. This means that the information valued at 1,
places the highest requirements on attention resources. If the supervisor transfers their attention
to other information sections, it leads to a serious failure.
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Referring to similarities to the definition of information amounts and cognitive behaviors,
we propose a value priority function F(Vi), to manage the information value Vi. The improved
information value is value priority Vi’, as shown in Equation (5), and represents the tendency where
supervisors tend to pay more attention to the more important information:

V′i = F(Vi) = − ln(1−Vi) (5)

3.2. Information Fuzziness Tendency

The psychological and physiological states of the supervisor affect attention behavior. Pi represents
the probability that the supervisor will correctly process the information (Equation (6)). When they
have a higher probability of correctly evaluating the information, the supervisor pays more attention
to this information [15,16]:

Pi = (P1, P2, . . . , Pn) (6)

This uncertain evaluation of the information Pi is caused by the fuzzy information value Vi.
Based on fuzzy theory, the ambiguities of information can be quantified by hybrid entropy. The hybrid
entropy S represents the cognition fuzzy level, which involves the informative probabilistic entropy
Hprob and the informative binary entropy Hbin:

S = Hprob + Hbin =
∑n

i=1 −Pi ln Pi +
∑n

i=1 Pih(Vi)∣∣∣h(Vi) = −VilnVi − (1−Vi)ln(1−Vi)
(7)

The supervisor is the optimal processer of the information when they have the highest attention
cognition. That is, the best cognitive state occurs when the hybrid entropy S reaches the maximum.
The supervisor can process the most amount of information they can based on SEU theory [43] and in
that case, the S will reach the Smax. On this condition, S = Smax, we calculated the probability of
the correct evaluation of Pi based on Equation (7) using the Lagrange multiplier with constraints.
Finally, the critical points Pi was calculated using Equation (8). The calculation of the critical points
can be found in the current research [15]:

Pi =
exp h(Vi)∑n

i=1 exp h(Vi)
, For S reaches the maximum|S = Smax (8)

When the hybrid entropy S reaches the maximum, humans become the best processer of
information based on the maximum entropy principle. This means that the human optimally processes
the information to decrease the uncertainty of the HMI. Smax quantifies this ability, called mental
entropy (ME).

The probability of the correct evaluation Pi presents the tendency of supervisors to pay more
attention to more fuzzy information [15,16].

3.3. Attention Allocation Model

According to the above-mentioned analysis, the cognitive process of the information in
the supervisory task involves two channels. The supervisors process the information value based
on their previous cognition and knowledge, while they process the information fuzziness based on
the psychological and physiological state of the supervisor. Combining these two channels, we can
obtain the information cognitive evaluation Ci using Equation (9). Finally, the cognitive process is
defined by the probability of the correct evaluation Pi and the information value Vi:

Ci = PiV′i = PiF(Vi) = −Pi ln(1−Vi) (9)

Kleinman defined the attention allocation Ai as the ability to process the information [44]. Based on
information science, he considered humans the optimal multiple processors to process the information
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channel Ii. The subsequent research adopted this idea as the foundation of the attention allocation model
and defined the attention allocation Ai, which showed that the information cognitive evaluation Ci
determines the final attention allocation strategy. The final attention allocation model for the supervisors
can be represented as:

Ai =
Ci∑n

i=1 Ci
=

−Pi ln(1−Vi)∑n
i=1 −Pi ln(1−Vi)

(10)

Figure 1 shows the framework of the proposed visual attention allocation model for the supervisors
and shows how to build the model and the dependent theories.Entropy 2019, 21, x FOR PEER REVIEW 6 of 15 
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4. Experiment

4.1. Apparatus

The experiment interface was a simulator running the BAS system showing the statuses of
the main air exchange fans in the subway system (Figure 2a). The system information was shown
on a 22-inch digital screen with a resolution ratio of 1680 × 1050. Based on capturing the reflected
infrared lights with the eyes, the SMI RED500 (Silicon Microstructures Inc., California, CA, USA)
tracked the participant’s eye movements with a 60Hz infrared-based camera. We used it to record
the participant’s visual behaviors including the gaze points on the screen, the fixation distribution.
The experiment environment is shown in Figure 2b.

4.2. Participants

Fourteen students from the Beijing Jiaotong University, Beijing, China participated in the study
(seven men, seven women, 25.3 ± 2.6 years old). All participants were familiar with the operation of
a computer keyboard and had background knowledge of the subway operation. All participants were
right-handed with normal vision.
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4.3. Experimental Task

The BAS interface showed four main sections for four air fans in a fire scene. During the task,
the participants needed to monitor the four speed indicators of the air fans and allocated their
attention resources based on the pre-given membership degrees of the importance of the four sections.
The speeds of the air fans continuously changed every second which was shown in the indicators.
When the indicators showed an excess speed of the fans (>80% rated), the participants had to
press the corresponding key (Insert, Delete, Home, or End for the four sections) on the keyboard to
control its speed for overload protection. The abnormal excess speed would remain for one second.
If the participants missed it or entered the wrong response to the overload air fans, they would be
considered as not having paid attention to the corresponding section on the screen. The accuracy
rates and eye behaviors were recorded during the whole task. We used the keys Insert, Delete, Home,
and End, because the layout of these four keys is similar to the HMI of the BAS simulator.

The correct response to the abnormal section results in a corresponding score point based on
the membership degrees of the importance, e.g., a correct response to areas of interest (AOI) 0.9 will
get 0.9 points. It is obvious that response to the section which has higher information value and responses
to more abnormal sections will get a higher total score point. The goal of the participants is to achieve
the highest total score points.

4.4. Experimental Procedure

The operation of the BAS interface was explained to the participants. At first, the membership
degrees of the importance of the four air fans were set based on their relative priorities in a fire
scene. The participants were instructed to remember and understand the membership degrees given
the possibility that the system would encounter a serious failure if the supervisor missed the overload
control. Participants were asked to practice task operations twice to simulate the supervisor’s
experience and previously acquired knowledge. Through practice, the participants became familiar
with the operation of the BAS and the functioning of the system. They would not need to look
at the keyboard when they pressed the keys.

During the formal experiment, the participants were asked to complete the calibration process
for the eye tracking devices first. Then, they were asked to freely allocate their attention to the four
sections. They need to try their best to response to all the abnormal sections in the HMI. The test
continued for five minutes and during the whole test eye behaviors were recorded.

4.5. Data An alysis

The experimental results of the key-press response showed that the sections had a different
correct response ratio, Oi, which was calculated by the number of correct responses and total overload
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occurrences during this section. The correct response to the overload section was considered as selective
attention to the corresponding section. Therefore, the fractional attention, Ak_i (key), was quantified by
the experimental key-press data as:

Ak_i =
Oi∑n

i=1 Oi
, (i = 1, 2, 3, 4) (11)

After the experiment, the participants’ eye tracking data were analyzed using the eye behavior
analysis software Begaze, which was developed by Silicon Microstructures Inc., California, CA, USA.
In Begaze, the four sections were identified by the four areas of interest (AOIs). The fixation behaviors
of the different AOIs were extracted from the original data, which meant that the participants paid
attention to the corresponding sections. Based on the fixation times, mi, for a certain AOI, the fractional
attention, Ae_i (eye), was quantified by the experimental eye tracking data with:

Ae_i =
mi∑n

i=1 mi
, (i = 1, 2, 3, 4) (12)

Using Equation (10), the theoretical results of the proposed supervisors’ visual attention allocation
model could be calculated as:

Ap_i =
−Pi ln(1−Vi)∑n

i=1 −Pi ln(1−Vi)
, (i = 1, 2, 3, 4) (13)

Matsui’s and Wanyan’s model was used as a comparison model; their model was used for aircraft
pilots [15,42]. The theoretical results of their model can be calculated using Equation (14). This model
is referred to as the Matsui’s Model, as he was the first to create the basic method:

Am_i =
PiVi∑n

i=1 Pi ln Vi
, (i = 1, 2, 3, 4) (14)

The experiment aimed to compare Ak_i (Key), Ae_i (Eye), and Ap_i (Proposed) and Am_i (Matsui’s).
We adopted the SPSS 25.0 statistics software (developed by IBM, California, CA, USA) to process the data.
The results are expressed as the mean ± standard deviation (m ± s). Bivariate Pearson correlation
analysis was used to analyze the relationship between the theoretical results and the experimental
models. Considering the main difference between the Matsui’s Model and the proposed model,
the one-sample T test was used to analyze the difference between the two experimental results
and the two theoretical results at the sections that had a high membership degree of importance.

5. Results

5.1. Theoretical and Experimental Results

Through the information value, Vi, pre-given by the experts for the four sections, in one scene
the section of the air intake fan in the station hall (intake@hall) had 0.1 membership degrees of
information importance, the section of the air outtake fan in the station hall (outtake@hall) had 0.3;
and the section of the air outtake fan in the platform (outtake@platform) had 0.7. The section of the air
intake fan in the platform (intake@platform) had 0.9 membership degrees of information importance.

The fractional attention, Ai (%), of each section can be predicted by both Matsui’s Model, Am_i,
and the proposed model, Ap_i. The theoretical values are shown in Table 1. There was a significant
difference between the two models in the section that had a high membership degree of importance.
The proposed model, Ap_i, monotonically increased with the information value, Vi, while Matsui’s
Model, Am_i, did not.
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Table 1. Information value Vi and theoretical values of Matsui’s model Am_i, proposed model Ap_i.

Sections on the HMI Intake@hall Outtake@hall Outtake@platform Intake@platform

Vi 0.1 0.3 0.7 0.9
Am_i 4.29 17.13 39.97 38.61
Ap_i 2.35 10.58 35.73 51.34

The experimental results of the key-press response are shown in Table 2. The key press results
showed that a higher information value, Vi, led to a higher correct response ratio, Oi. This indicted
that supervisors paid more attention to the information that had a higher information value, Vi,
and obtained a higher ratio of correct responses, Oi.

Table 2. Experimental values based on the key press response data.

Sections on the HMI Intake@hall Outtake@hall Outtake@platform Intake@platform

Vi 0.1 0.3 0.7 0.9
Oi 0.12 ± 0.08 0.23 ± 0.09 0.67 ± 0.08 0.89 ± 0.06

Ak_i 6.29 ± 3.92 11.56 ± 4.22 35.34 ± 5.23 46.81 ± 3.79

The experimental results of the eye tracking are shown in Table 3. The results showed a similar
attention tendency as the key-press results. A higher information value, Vi, led to more fixation points
on the higher-value sections.

Table 3. Experimental values based on the eye tracking data.

Sections on the HMI Intake@hall Outtake@hall Outtake@platform Intake@platform

Vi 0.1 0.3 0.7 0.9
Ae_i 5.77 ± 4.50 8.47 ± 3.91 34.78 ± 6.20 50.98 ± 7.80

The eye tracking results provided the most practical evidence of the supervisors’ attention
allocation strategy. Figure 3 shows the fixation points of one participant. The figure shows that
the participant paid more attention to the section that had a higher information value, Vi (AOI 0.9 > AOI
0.7 > AOI 0.3 > AOI 0.1).
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5.2. Comparison of Theoretical and Experimental Results

The fractional attention values of the key-press response experiment and the eye movement
tracking experiment as well as the two theoretical values are shown in Figure 4.
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At Figure 4 shows, the experimental results better supported the proposed model compared to
Matsui’s Model. The correlation analysis between the four results were processed and the results
are shown in Table 4, which shows that the proposed model was significantly associated with
the participants’ experimental behaviors in both Key Press and Eye Tracking (P < 0.01). The two
experimental behaviors, Key Press and Eye Tracking, were significantly correlated (P < 0.01), the two
experimental results showed coincident behaviors, confirming that the data analysis method is effective.
We also found that the correlation between Matsui’s Model and the proposed model was 0.939,
which means that these two models were close but different. The proposed model was more effective.

Table 4. The correlation between models.

Matsui’s Model Proposed Model Key Press Eye Tracking

Matsui’s Model
Pearson Correlation 1 0.939 0.912 0.944

Sig. (2-tailed) 0.061 0.088 0.056

Proposed Model Pearson Correlation 0.939 1 0.995 * 0.998 *
Sig. (2-tailed) 0.061 0.005 0.002

Key Press Pearson Correlation 0.912 0.995 * 1 0.996 *
Sig. (2-tailed) 0.088 0.005 0.004

Eye Tracking Pearson Correlation 0.944 0.998 * 0.996 * 1
Sig. (2-tailed) 0.056 0.002 0.004

* Correlation was significant at the 0.01 level (two-tailed).

Based on the method used in the proposed model, the significant difference between the two
theoretical models were observed for AOI 0.7 and 0.9. The T-test was used to analyze the difference.
The results of the statistics are shown in Table 5.
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Table 5. The one-sample T-test between the models at areas of interest (AOI) 0.7 and 0.9.

Models Experimental
Results

t Sig. (2-tailed) Mean
Difference

95% Confidence Interval
of the Difference

Lower Upper

Proposed Model @0.7
Test Value = 0.3573

EyeTracking@0.7 −0.551 0.592 * −0.00948 −0.0470 0.0280
KeyPress@0.7 −0.270 0.792 * −0.00392 −0.0356 0.0277

Proposed Model @0.9
Test Value = 0.5134

EyeTracking@0.9 −0.168 0.869 * −0.00365 −0.0508 0.0435
KeyPress@0.9 −4.317 0.001 −0.04534 −0.0682 −0.0225

Matsui’s Model @0.7
Test Value = 0.3997

EyeTracking@0.7 −3.015 0.011 −0.05188 −0.0894 −0.0144
KeyPress@0.7 −3.189 0.008 −0.04632 −0.0780 −0.0147

Matsui’s Model @0.9
Test Value = 0.3861

EyeTracking@0.9 5.712 0.000 0.12365 0.0765 0.1708
KeyPress@0.9 7.803 0.000 0.08196 0.0591 0.1048

* Significance level is at the 0.05 level (two-tailed).

The statistics showed that the experimental Eye Tracking and Key Press results were not
significantly different (P > 0.05) from the proposed model at AOI 0.7, but were different from
Matsui’s Model at AOI 0.7.

For AOI 0.9, the experimental Key Press result showed a significant difference with the proposed
model because the participants may not respond to the AOI 0.9 section, even if the participants focused
on the section while the overload scene for AOI 0.9 was random. However, the eye tracking results
showed no significant difference (P > 0.05) with the proposed model, which is more practical.

For Matsui’s Model, the experimental results showed a significant difference for AOI 0.7 and AOI 0.9.

6. Discussion

6.1. Discussion of the Value Priority Function

The experimental results showed that the proposed model predicts supervisors’ visual attention
allocation more accurately than Matsui’s Model. The improvement in the results from the proposed
model was in the high information value, Vi, which was due to the proposed value priority function,
F(Vi), in Equation (5). The role of this function is discussed in depth below.

The proposed value priority function, F(Vi), processes the information value, Vi, and the processed
value is Vi’. The proposed model used Vi’ to present the value priority, whereas Matsui’s Model uses
the original information value, Vi. This finally affected the information cognitive evaluation, Ci, process.
Therefore, the two theoretical models are based on a different information cognitive evaluation, Ci.
The fractional cognitive evaluation in Matsui’s Model, Cm_i, and the proposed model, Cp_i, can be
calculated using Equations (15) and (16), respectively:

Cm_i = PiVi (15)

Cp_i = PiV′i = PiF(Vi) = −Pi ln(1−Vi) (16)

Assume that the number of the independent information sections, i, reaches infinity. Assuming that
the corresponding information value, Vi (membership degree of the importance), ranges from 0 to 1,
the probability of the correct evaluation, Pi, can be calculated using Equation (17) based on Equation (8):

Pi =
exp h(Vi)∫ Vi=1,i=∞

Vi=0,i=0 exp h(Vi)
(17)

Along with the information value, Vi, the information cognitive evaluation, Ci, values based on
Matsui’s Model, Cm_i, and the proposed model, Cp_i, are shown in Figure 5.
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model, Cp_i, along with information value, Vi.

At the figure shows, the proposed model is more reasonable than Matsui’s Model in the following
aspects:

(1) The proposed Cp_i monotonically increases along with the information value, Vi, which is more
reasonable in practice. The supervisor pays more attention to the section that has a higher
information value; the supervisor is afraid of missing the most important information that may
have a great probability to cause a system failure.

(2) When the information value, Vi, tends to be 1, the information cognitive evaluation of the proposed
Cp_i tends to be infinity, but Matsui’s Cm_i showed a convergent value (Equation (18)). In practice,

the highest information value (Vi = 1) (the membership degree of the information importance is
100%) means that the model is absolutely important and the supervisor cannot miss it. For this
point, the proposed model has rationality:

Cm_∞ = limVi→1,i→∞Cmi = 0.006Cp_∞ = limVi→1,i→∞Cp_i = ∞ (18)

(3) The proposed Cp_i increases after 0.7822 along with the information value, Vi. However, Matsui’s

Cm_i decreases after 0.7822, which means that a high information value above 0.7822 will
not lead to a higher information cognitive evaluation status (Equation (19)), which is not
realistic. Therefore, our proposed value priority function, F(Vi), is an improvement that corrects
the unreasonable part of Matsui’s Model:

Cm_i
′ = exp((Vi−1) ln(1−Vi)−Viln(Vi))(ln(1− Vi) − ln(Vi))Cm_i

′ = 0
∣∣∣Vi = 0.7822 (19)

(4) At the overall curve of the proposed Cp_i becomes steeper, the attention allocation of the supervisor

tends to be more concentrated, and the adjustment of the supervisors’ attention allocation is
more reasonable.

6.2. Discussion of Attention Allocation Models

The proposed value priority function, F(Vi), affects the information cognitive evaluation,
Ci; Ci affects the whole visual attention allocation model, Ai. The difference between Matsui’s
and the proposed model in theory is discussed in depth below.

Based on the different information cognitive evaluation models, Ci, the fractional attention in
Matsui’s Model, Am_i, and the proposed allocation model, Ap_i, can be calculated using Equations (20)
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and (21) based on Equation (10), respectively:

Am_i =
Cm_i∫ Vi=1,i=∞

Vi=0,i=0 Cm_i

=
PiVi∫ Vi=1,i=∞

Vi=0,i=0 PiVi

(20)

Ap_i =
Cp_i∫ Vi=1,i=∞

Vi=0,i=0 Cp_i

=
PiV′i∫ Vi=1,i=∞

Vi=0,i=0 PiV′i
=

PiF(Vi)∫ Vi=1,i=∞
Vi=0,i=0 PiF(Vi)

=
−Pi ln(1−Vi)∫ Vi=1,i=∞

Vi=0,i=0 −Pi ln(1−Vi)
(21)

Along with the information value, Vi, the attention allocation based on Matsui’s Model, Am_i,
and the proposed model, Ap_i, is shown in Figure 6. Based on Equation (17), we added the probability
of the correct evaluation Pi into the figure. Pi is a factor of information fuzziness tendency, which affects
the model.
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Ap_i, and the probability of the correct evaluation, Pi, along with the information value, Vi.

At the figure shows, the proposed model, Ap_i, and Matsui’s Model, Am_i, are significantly
different:

(1) The proposed model, Ap_i, monotonically increased along with the information value, Vi;
but the Matsui’s model did not. The supervisor pays more attention to the section that has
a higher information value Vi;

(2) The Matsui’s attention allocation model has a critical value at 0.7822, calculated using Equation (22).
This means that a higher information value, Vi, may not lead to a higher attention allocation
ratio, Ai. The highest information value (Vi → 1) will not acquire the supervisors’ entire visual
attention (Ai → 100%):

Am_i
′ = exp((Vi−1) ln(1−Vi)−Vi ln Vi)+Viexp((Vi−1) ln(1−Vi)−Vi ln Vi)(ln(1− Vi) − lnVi)

Am_i
′ = 0|Vi = 0.7822 (22)



Entropy 2019, 21, 393 14 of 16

(3) The probability of the correct evaluation, Pi, reaches the highest value when the information value,
Vi, = 0.5 (Equation (23)), which means that the supervisor has a higher successful probability to
process the information in the visual section that has medium information value, Vi:

P0 = limVi→0,i→0Pi = 0.006Pm = limVi→0.5,i→midPi = 0.012P∞ = limVi→1,i→∞Pi = 0.006 (23)

(4) The proposed attention allocation model is not significantly different from Matsui’s Model before
the intersection near the critical point in Matsui’s Model. After the intersection, the ratio of
the attention allocation tended to be a steep curve. This means that the participants focused on
the highest value information.

In summary, the proposed model is more reasonable and effective, as shown through the above
analysis. The experimental results supported the above theoretical discussion. The proposed model
is an accurate quantitative method that can be used to analyze the attention allocation strategy
of supervisors.

The proposed model can basically quantify attention allocation using hybrid entropy. The other
current models based on Matsui’s Model, which consider the fatigue, effort, salience, and information
detection efficiency [15–17], can replace the basic Matsui Model with the proposed model to improve
results. The above factors were weakened in the experiment in this article on purpose to highlight
the research achievement that prevented it from being overwhelmed by the above factors.

7. Conclusions

By referencing the definition of the information amounts, the value priority function was proposed
in this paper. Considering supervisors as information processors, the information fuzziness was
quantified based on hybrid entropy theory. Supervisors tend to pay more attention to important
and fuzzy information. Combining these two aspects, a quantitative visual attention allocation model
for supervisors was built. The experiment showed that the proposed model was more effective than
the current model. The difference between the proposed theory and the current theory was further
discussed, which showed that the proposed model has mathematical specialties that coincide more
with practical applications and compensated for the deficiency in the current model.

Further Application: Using the proposed model, visual attention behavior can be predicted before
the task. This will help researchers analyze supervisors’ behaviors and evaluate the ergonomics of
the HMI. The risk of cognitive deficits can be detected early, and targeted attention training can help
supervisors schedule limited behavioral resources. Optimizing the HMI design with human behavior
will make the system safer and more efficient.
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