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Abstract
Purpose For an in-depth analysis of the learning benefits that a stereoscopic view presents during endoscopic training,
surgeons required a custom surgical evaluation system enabling simulator independent evaluation of endoscopic skills. Auto-
mated surgical skill assessment is in dire need since supervised training sessions and video analysis of recorded endoscope
data are very time-consuming. This paper presents a first step towards a multimodal training evaluation system, which is not
restricted to certain training setups and fixed evaluation metrics.
Methods With our system we performed data fusion of motion and muscle-action measurements during multiple endo-
scopic exercises. The exercises were performed by medical experts with different surgical skill levels, using either two or
three-dimensional endoscopic imaging. Based on the multi-modal measurements, training features were calculated and their
significance assessed by distance and variance analysis. Finally, the features were used automatic classification of the used
endoscope modes.
Results During the study, 324 datasets from 12 participating volunteers were recorded, consisting of spatial information from
the participants’ joint and right forearm electromyographic information. Feature significance analysis showed distinctive
significance differences, with amplitude-related muscle information and velocity information from hand and wrist being
among the most significant ones. The analyzed and generated classification models exceeded a correct prediction rate of used
endoscope type accuracy rate of 90%.
Conclusion The results support the validity of our setup and feature calculation, while their analysis shows significant
distinctions and can be used to identify the used endoscopic view mode, something not apparent when analyzing time tables
of each exercise attempt. The presented work is therefore a first step toward future developments, with which multivariate
feature vectors can be classified automatically in real-time to evaluate endoscopic training and track learning progress.

Keywords Endoscopic training · Electromyography · Myo armband · Kinect · Endoscopy

Introduction

While endoscopic surgery has many advantages over tradi-
tional open surgery in terms of blood loss, length of stay, etc.
[1], the increased degree of complexity compels residents in
training for cardiac surgery to dedicate their free time to train-
ing and preparation. Minimal-invasive procedures can be
simulated and prepared for in mock-up operations, done with
the proper endoscopic instruments on phantoms equipped
with camera systems [2].
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With additional image depth information adjustment to the
unusual visual feedbackwould be shortened and the improve-
ment of the instrument handling settle in earlier.

To evaluate the skill improvement that trainees achieve
through multiple endoscopic training exercises and highlight
the differences caused by the additional depth information, a
system for the multivariate comparison of 2D and 3D endo-
scopic trainingwas developed.Multiple studies have focused
on the skill assessment by employing time-consuming scor-
ing systems which are dependent on additional personnel,
hence, this paper focuses on the development and utilization
of an automated skill assessment system [3–6]. The Sim-
ball Box or research and development results like TrEndo
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provide skill assessment by instrument tracking, contin-
uous attachment of instruments restrict alterations of the
training setup and can interfere training through altered
instrument handling [7–9]. Analyzing multiple motion anal-
ysis parameters (MAP) through instrument tracking with
additional sensors or colored markers and image analysis
pose smaller influences on the tools’ characteristic behav-
ior, yet, are inefficient due to instrument modification and
simulator-dependent software adjustments [10–14]. Deter-
mining instrument positions and angles by edge detection
alone forgoes the problem entirely, the necessary image pro-
cessing increases the complexity of the system, decreases
reliability in altered circumstances, and decreases portabil-
ity to different phantom trainers [15–19].

Other works focus on the analysis of the training motions
using motion data fusion of time-of-flight, inertial measure-
ment, and infrared sensor data of the upper body posture as
well as instrument movement [20, 21]. Furthermore, superfi-
cial electromyography (sEMG) concluded that [22] sEMG
frequency shifts and decreases in activation potential can
help monitor performance and skill acquisition in a mean-
ingful quantitative way [23–26]. The combination of sEMG
data with instrument tracking data was shown to be suc-
cessful for surgical instrument recognition [27, 28]. Beyond
skill assessment Siu et al. developed a method for automatic
training optimization, tailoring exercise sessions and sched-
ules according to skill level and desired development, to
improve laparoscopic training and support medical staff dur-
ing changes of operation theater, from civilian to military or
vice versa [29].

In conclusion, a multivariate measurement setup, focus-
ing on body motion and electromyography, should monitor
training progresswell enough, to detect and evaluate learning
curve progress. The contributions of this work are the pre-
sentation of a simulator-independent system for multivariate
training evaluation, processing of synchronously captured
data to extract training metrics or features, and the analysis
of features significances regarding temporal and endoscope-
dependent differences.

Methods

Study design

The study was carried out at the Leipzig Heart Center and
included15volunteeringmedical experts of different special-
izations and different levels of experience, divided into two
groups. All participants were either practicing or studying
a surgical profession. The corresponding ethics committee
approved the presented study which complies with the Dec-
laration of Helsinki (ethics approval number: EA2/064/19).
Each participant was informed about the study’s purpose

and procedure in detail. One group used the 2D endo-
scope and consisted of seven volunteers, while the other
group employed the 3D stereoscopic endoscope mode and
consisted of eight volunteers. Endoscopic exercises were
performed on a fixed piece of cloth surrounded by artificial
leather inside an endoscopic phantom, a simulator which had
to be interacted with by hand, hence no additional robotic
systems were used during this study.

An endoscopic camera image of each exercise task is pre-
sented in Fig. 1, all selected tasks of this study have been
validated on simulators forminimally invasive surgery before
[30–33]. For the first task, participants had to use endoscopic
grasping forceps and place six small plastic pegs onto six
needles fixed on a circular cloth piece inside the phantom.
Participants had to pick up and stack two pegs on three nee-
dles. Afterward, three plastic pegs were to be restacked onto
the upper three needles. The second taskwas surgical needle-
passing, which had to be repeated three times per attempt.
To complete the attempt successfully, the needle needed to
be positioned under the leather and driven through it. After-
ward, it was to be passed to a needle driver in the off-hand and
pulled through with a circular wrist movement. The third and
final exercise required two perforations with threaded suture
needles, with the addition that a thread, connected to each
needle, had to be fastened in clasps outside the phantom.

The Myo armband requires an initial maximum volun-
tary contraction for the setup, which was performed by each
participant through an initial calibration process once. The
armband was not unequipped until all exercises and attempts
were concluded. Each exercise attemptwas initiated and con-
cluded with a synchronizing gesture, i.e. an elevation of the
main hand and arm. Exercises were repeated nine times,
featuring a small break after every third attempt. For each
attempt, the time to completion of the task was measured. In
case the time of the exercise attempt reached 90 s, the attempt
was aborted.

Data collection

Data collection was done continuously for three attempts.
The authors chose a Myo armband for recording sEMG
data and the Microsoft Kinect for the tracking of body and
limb movement. For measurements, the Myo Gesture Con-
trol Armbandwas placed on the prominent bulge of the lower
arm where the main muscle mass is formed [34]. For sub-
sequent analysis, all endoscopic videos were recorded and
stored as well. The devices were used in an internet of things,
developed with the Message Queuing Telemetry Transport
(MQTT) protocol. Device communication and data process-
ing is summarized in Fig. 2.
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Fig. 1 Overview of exercises performed on the phantom module during training study; a first exercise, bimanual carrying of 2 pegs over one lower
needle each, afterwards restack one peg over one upper needle b second exercise, needle passing through the artificial leather of the phantom
c needle passing with suture thread through the artificial leather and subsequent thread mounting on the outside

Fig. 2 System design for multivariate laparoscopic training evaluation

Fig. 3 Right-Hand-Y-Position-
Curve of 3 exercise attempts,
recorded in one file; the curve
(blue) of the right hand
Y-position in the Kinect
recording shows the
synchronization gesture, i.e. hand
raises, as an increase in the
Y-position (red rectangles with
dashed lines) at the beginning
and end of each attempt (green
rectangles with straight lines)

123



1622 International Journal of Computer Assisted Radiology and Surgery (2022) 17:1619–1631

Table 1 Calculated features for exercise rating per attempt

Myo armband features per sEMG channel Description

fMax The most powerful frequency in the filtered frequency spectrum

fMin The least powerful frequency in the filtered frequency spectrum

f Range The distance between the most and the least powerful frequency of the sEMG spectrum

PMax The value of the most powerful frequency in the filtered frequency spectrum

PMin The value of the least powerful frequency in the filtered frequency spectrum

VMax The highest sEMG amplitude

VMin The lowest sEMG amplitude

VRange The difference between the highest and the lowest sEMG value

VRMS The Root-Mean-Square over the collected sEMG values

VSSC The number of Sign-Slope-Changes in the sEMG curve

VZC The number of Zero-Crossings in the sEMG curve

VWFL The sEMG Waveform-Length

VVar The variance of the sEMG signal

RollAUC The Area-Under-Curve of the Roll values

PitchAUC The Area-Under-Curve of the Pitch values

YawAUC The Area-Under-Curve of the Yaw values

FES The ratio between maximum frequency location (fMax) and the averaged Are-Under-Curve
(AUC) of Roll, Pitch and Yaw

Kinect features per body part Description

POC The number of point of view changes (POC) between up and down

Trace The distance traveled of the identified body part

Velocity The average speed of the identified body part

AngleMean The average angle between the body axis and the normal vector of the body part

AngleMax The maximum angle between the body axis and the normal vector of the body part

AngleMin The minimum angle between the body axis and the normal vector of the body part

AngleRange The span of the angle between the body axis and the normal vector of the body part

Statistical analysis

For data visualization and analysis, Matlab 2018b (Math-
Works, Natick, USA) was employed. The gathered data of
each participant was separated into nine data sequences per
exercise by manually marking the points in time during
which the arm raises occurred and extracting all measured
data between the marked timestamps, as shown in Fig. 3.
Separated Kinect and Myo measurements were used for the
calculation of features, with which each exercise attempt can
be represented. An overview of the chosen features with
respective descriptions is presented in Table 1 with bold
sEMG feature names signifying features that were averaged
by the sEMG sample number of each attempt. In total, each
attempt was represented by 160 different metrics. All sEMG
features were calculated eight times, once for each sEMG
channel, and all motion analysis parameters (MAPs) were
calculated for each body part (head, spine/shoulders, left
elbow, left wrist, left hand, right elbow, right wrist, right

hand). After feature extraction, corrupted and incomplete
data from three volunteers was excluded from further analy-
sis.

RANOVA analysis

To determine significant features for the distinction of train-
ing progress as well as possible differentiation between the
two endoscope groups, a Repeated measure ANalysis Of
VAriance (RANOVA) was used. The basis for model con-
struction were the feature tables with the attempt number
marking the columns and the participant numbers and their
endoscope type marking the rows. The participant numbers
have been omitted during the model construction. Models
for repeated measurements were constructed, focusing on
a sequence of attempts (1–3, 4–6, 7–9), termed session,
spanning over all participants and the respective attempt
numbers. The resulting models were created by combining
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three columns and all table row entries of one feature. After-
ward, the RANOVA-p-values were calculated with epsilon
correction according to Huynh–Feldt [35].

Feature distance calculation

For distance calculation between 2 and 3D feature results
all values resulting from one kind of feature calculation were
collected in onemetric-specific vector per exercise and endo-
scope type. Afterward, the elements of each metric-specific
vector with 2D values were used to calculate the median dis-
tance towards each 3D feature vector of the same exercise,
resulting in 160 × 160 distance calculations per exercise.
With i as address index for the 2Dmetric-specific vector x2D
and j as address index for the 3D metric-specific vector x3D ,
the Euclidean distance dEi j between two elements from dif-
ferent vectors was calculated accordingly to Eq. 1.

dEi j �
√
(x2D(i) − x3D( j))(x2D(i) − x3D( j))′ (1)

dMi j �
√
(x2D(i) − x3D( j))C−1(x2D(i) − x3D( j))′ (2)

Additionally, with the calculation of the covariancematrix
C between the two vectors, the Mahalanobis distance dMi j

was calculated accordingly to Eq. 2.
The distance values per comparison were accumulated

in an array with ascending value order. As a result, from
this comparison, the median value of the distance array was
selected and stored as a representative value for the dis-
tance calculation. Furthermore, for a more efficient distance
comparison, certain feature calculations were combined. To
achieve this, the results of each of the six tables (two distance
maps for each exercise) containing the comparison parame-
ters, were averaged based on their affiliation which is either
body part or sEMG feature. Comparison results based on
sEMG values were averaged over the eight channels, result-
ing in one distance value per sEMG feature calculation. As
for Kinect values, comparison results of each body part were
averaged.

Classification

For the final analysis, a classification of the feature vectors for
each attempt was performed, trainingmultiplemodels to pre-
dict the endoscope type, which was in use during the exercise
attempt of the respective feature vector. For each exercise,
feature vectors were accumulated and divided into the tar-
get groups, i.e. Ex1_2D and Ex1_3D for data recorded while
using either 2D or 3D endoscope during the first exercise.
Before classification, all features were normalized according
to the maximum and minimum overall attempts of all partic-
ipants per exercise. Concluding this calculation, models for

classification were trained with the classification toolbox,
provided by Matlab. As a first step, each table containing
the normalized features was used for the training of support
vector machine (SVM), k-nearest-neighbor (KNN), decision
tree models (DT), and multiple different ensemble variants.

Results

Study

Over two days, 15 volunteers joined the study and attempted
to complete the defined tasks. The respective times of each
attempt per volunteer and exercise are collected in the sup-
plementary material document, Table SI to Table SXV.

Data collection

Resulting from the recordings during training and the fol-
lowing data separation, the complete study yielded 402
datasets of different lengths, from which 81 datasets of three
participants (9 attempts, 3 exercises, 3 participants) were
excluded, due to transmission issues and data corruption.
Further analysis procedures were executed with 160 fea-
ture calculations for overall 324 attempts (12 volunteers, 3
exercises, 9 attempts), accumulated in 160 feature tables per
exercise type, having 9 columns and 12 rows.

Statistical analysis

RANOVA analysis

TheRANOVAanalysis resulted inmultiple p-Values describ-
ing significance in time or significance in time and between
the two groups. Figure 4 shows the resulting boxplot of
exercise 3, after the RANOVA calculation of each repeated
model, generated from the partial feature tables. Each box-
plot shows the RANOVA p-Values after epsilon correction
according to Huynh and Feldt, divided into the corre-
sponding session group the metric significance according
to time-dependent evolvement as well as time and endo-
scope differentiation [35]. Boxplot values were converted
to their negative logarithmic values (base 10) as well as
three ticks on the Y-Axis, marking significance thresholds
0.05%, 0.01% and 0.001% (the ticks value being 1.3010,
2, and 3 respectively) While most whiskers reach above it,
only the endoscope-dependent p-Values of session 1 (Ses. 1:
Time/Endo) and the time-dependent p-Values of session 3
(Ses. 3: Time) do not feature an upper whisker above 0.05%.
All boxplots show outliers far beyond 0.01% significance,
with every time-dependent calculation exceeding0.001%.As
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Fig. 4 Boxplots representing
RANOVA p-Value calculation
results for each session of
exercise 1, representing
significance depending on time
and the combination of time and
the used endoscope type; outliers
circled with dashed orange lines
represent the reoccurring high
p-Value of the feature Velocity
ElbowL

an example for repeatedly high significance, outliers belong-
ing to the featureVel_Elbow_Left have been highlightedwith
dashed circles.

RANOVA p-Value calculation of exercise 1 (Fig. S1) is
displayed in Fig. S1 as part of the supplementary material.
Only the boxplots of session 3havewhiskers above the 0.05%
significance threshold, while all RANOVA calculations of
the different sessions have outliers above 0.05% and 0.01%
with time-dependent calculations of session 1 and session 3
feature p-Values exceeding the 0.001% threshold. Results in
Fig. S2 show, that all calculations led to outliers above the
0.05% threshold and all time-dependent boxplots have out-
liers above the threshold marking 0.001% significance, yet
none of the upper whiskers exceed 0.05%. Of the endoscope-
dependent results, only the first two sessions feature outliers
above 0.01%.

Feature distance calculation

Further significance analysis was performed through the cal-
culation of distances between the metric-specific vectors,
which resulted in 25,600 comparison values per exercise for
each distance calculation algorithm. The distance calcula-
tion between metric-specific vectors resulted in six different
heatmaps, consisting of the comparison results between the

2D and 3D metric-specific vectors, simplified to visual-
ize averaged sEMG-feature-specific distances and averaged
joint-specific distances.

Figure 5 presents the distance heatmap of exercise 3, cal-
culated according to the Euclidean distance algorithm. All
rows are ordered descending in their mean value from top to
bottom, columns are ordered descending from right to left.

In Fig. 5 the features with the highest distance between
2 and 3D are VMax, followed by VMin, and the subsequent
difference between the two, VRange. The three features with
the lowest average distance per row are, in ascending order,
fMin, the FES, and ElbowR. The columns with the smallest
average value are fMin, FES and f Range. Fig. S3, located in
the supplementarymaterials, contains all heatmaps for visual
comparison of the chosen features. As is the case with exer-
cise 3, the plot of exercise 1 and exercise 2 show that the
rows and columns with the highest mean distance are VMax,
VMin, and VRange.

Figure 6 is an excerpt of Fig. S4 in the supplementary
material and showsmedian differences between eachmetric-
specific vector, calculated according to the Mahalanobis
distance. The 2D metric-specific vector with the most occur-
rences of high median distances is VSSC, followed by POC
and WristL at third place. The columns and thereby metric-
specific 3D vectors with the overall highest amount of large
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Fig. 5 Heatmap visualizing the averaged Euclidean distances between 2D values and 3D values of the features for the exercise 3 dataset; Y-Axis
contains the averaged 2D metric-specific feature vector which were used for element-wise comparison with the 3D metric-specific feature vector

median distances areElbowL ,POC, andHandL. For exercise
1 in Fig. S4 the largest row values of distant comparisons
are caused by the metric POC, V, and VRange, while VMax,
VRange, and VMin are the features with the highest mean dis-
tance column-wise. Distance calculation results of Exercise 2
have a similar distribution, withVZC,VMax, andVRange being
at the top of the 2D distance order, whileElbowL, POC,VMax

are at the top of the 3D feature order.

Classification

The accuracy rates of the classification are shown in Table
2. The most left column shows the classification learner, the
columns from 2nd to left until the far right shows the respec-
tive accuracy rate of each classification per exercise. Results
alternate column-wise between classifications made with all
available features and classifications made with only 15%
of the most distant features. The highest percentage of right
classifications of each column is highlighted grey. With all
features, the accuracy rating for correct endoscope type pre-
diction achieved 98.1% (exercise 1 with cubic SVM), 93.5%
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Fig. 6 Heatmap visualizing the averaged Mahalanobis distances between 2D values and 3D values of the features for the exercise 3 dataset; Y-Axis
contains the averaged 2D metric-specific feature vector which were used for element-wise comparison with the 3D metric-specific feature vector

(exercise 2 with quadratic SVM), and 93.5% (exercise 3 with
bagged DT ensemble).

Feature selection led to a feature space with 36 (exercise
1), 38 (exercise 2), and 39 (exercise 3) features. After leaving
out features that do not reach the upper 15% of the distance
values, the largest classification result difference was with
the dataset of exercise 2 dropping by 11.1%.

The highest rate of correct predictions with a smaller fea-
ture space is, in order of exercise number, 88.9% (SVM
Quadratic, Gaussian SVM Medium, Fine KNN), 82.4%
(bagged DT ensemble), and 92.6% (bagged DT ensemble).

Discussion

Study

The results of the study were achieved over two days with
multiple recording sessions, yet the yielded data is sparse.
The number and especially the duration of each attempt
should be increased considerably, not only to increase dataset
size but also to give volunteers a larger amount of time to
adjust to the task and allow for the training effect to settle
more properly. Theway this studywas planned and executed,
volunteers had little time to adjust to the task and enter a
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Table 2 Accuracy rates of endoscope classification models for each exercise and the used feature selections

Classification learner Exercise 1 Exercise 2 Exercise 3

All 15% All 15% All 15%

SVM Linear 91.7 77.8 84.3 73.1 84.3 88.9

SVM Quadratic 94.4 88.9 93.5 78.7 87.0 87.0

SVM Cubic 96.3 88.0 91.7 79.6 87.0 88.9

SVM Fine Gaussian 64.8 75.0 66.7 61.1 52.8 62.0

SVM Medium Gaussian 89.8 88.9 93.5 81.5 87.0 86.1

SVM Coarse Gaussian 83.3 71.3 79.6 73.1 80.6 85.2

KNN Fine 89.8 88.9 89.8 81.5 88.0 84.3

KNN Medium 89.8 82.4 82.4 79.6 83.3 84.3

KNN Coarse 49.1 49.1 49.1 49.1 49.1 49.1

KNN Cosine 88.0 74.1 85.2 77.8 81.5 81.5

KNN Cubic 84.3 77.8 82.4 79.6 77.8 81.5

KNN Weighted 88.9 83.3 88.0 79.6 85.2 85.2

Boosted Trees 49.1 49.1 49.1 49.1 49.1 49.1

Bagged Trees 98.1 86.1 93.5 82.4 93.5 92.6

Subspace Discriminant Ensemble 88.0 87.0 87.0 75.9 84.3 90.7

KNN Subspace 87.0 82.4 79.6 73.1 83.3 84.3

RUS Boosted Trees 57.4 49.1 56.5 52.8 49.1 57.4

proper training mindset. Even skilled surgeons needed time
to adjust to the exercises, a problem partly caused by the
nature of the tasks being more relevant to beginner surgeons
than already trained professionals accustomed to more com-
plex methods.

Data collection

The system provided the considerable advantage of syn-
chronizing all data in real-time automatically and during
recording. The data loss that occurred during this study was
largely due to communication problems between the devices
and the MQTT broker, a problem that needs to be addressed
through additional safety measures and more development
time.

Statistical analysis

RANOVA analysis

The results of the RANOVA analysis show that some fea-
tures exceed the chosen threshold and can be considered to
possess a high significance. This supports the hypothesis that
the proposed system and certain calculated features can be
used as means to represent and analyze the learning progress
during endoscopic training. Additionally, the results can be
used to mark a difference between the use of 2D and 3D
endoscopic view, however, looking at the measured times

throughout the recorded tables (Table SI to Table SXV), the
proposed progress does not reflect well in the actual time
records, which might be attributed to the short exercise time
and the little number of task attempts.

Analyzing the extracted, significant features and the
RANOVA-p-Value trends of every exercise, we conclude that
some features have a rising and falling significance, while
some exceed the threshold during every session. Figure 4
shows the reoccurring significance of Velocity of the left
Elbow, and the statistical impact its’ changes have on the
progress during every session of exercise 3. As a continuous
outlier of the time-dependent RANOVA, with all time-
dependent p-Values under 0.01%, it can be safely assumed,
that the feature is useful for the analysis of training progress
with the proposed setup and the used exercises, at least in
the early stages. Similar significant features exist, yet their
time- and endoscope-dependent significance rise above and
fall below the different significance thresholds. This may
be attributed to the learning process as well, causing for-
mer significant features to lose informational value once the
trainee reached a skill level. With the feature only being of
importance during the first few tries and ceasing to visual-
ize made progress once a certain degree of competence has
been reached, the acquisition of a certain skill level can be
marked with the irrelevance of the feature or, vice versa,
the increase of significance in features with no former infor-
mational value. Dependent on what features show significant
behavior during the training, it could be concluded what kind
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of skill level the trainee possesses at the start of the training
session, how it changes during the session, and that a feature
space is justified. This could allow for the interpretation of
how well a trainee progressed throughout an overall training
schedule, comparing session results, and allow for a qualified
assessment of the usefulness of exercises, similar to Siu et al.
[29].

Feature distance calculation

The results of the median calculation for the distances show,
that the systemcanbe used to evaluate combined data anddis-
tinguish between 2D-endoscopic and 3D-endoscopic vision
during endoscopic training. The repeatedly high distances
of amplitude describing sEMG features like VMax and the
continuously prominent VZC in Fig. S3 prove their signifi-
cancewhen differentiating between the two endoscope types.
The calculation algorithms result in different distance dis-
tributions, with the heatmaps based on Euclidean distance
calculation showing more prominent gradients between the
highest and the medium distances, noticeable at the border
between VRange and VSSC at the y-axis of Fig. 5. Features
with high distances are very distinctive and an analysis of the
top 15% distance comparison reveals, that no distance map
of Sig. S3 has more than 1/5th of the comparisons reaching
the 85% of the maximum distance. This emphasizes their
influence in the differentiation between the two endoscopic
view modes (2D and 3D endoscope), that while not apparent
in the time records, seem to have an influence on sEMG and
some motion-related metrics.

The distance distributions in the heatmaps in Fig. 6 and
Fig. S4 are more uniform with decreased gradients between
ordered comparison results. While favorites for analyzing
data between and the prediction of the endoscopic types are
not as distinctive as theywere in theEuclidean distancemaps,
reoccurring highdistance values for amplitude-related sEMG
features emphasize their significance and the relevance of the
different muscle activation amplitudes during the training
session.

Classification

The classification results proved, that there are distinctive
differences between the endoscopic uses, which reflect in
the measured motion- and muscle-related data. The high val-
ues of right predictions among the different classification
learners support the claim, that the proposed setup and meth-
ods enable an endoscopic training analysis, which can also
provide analysis results that do not reflect in simple time
measurements.

The highest rate of correct predictions was achieved with
the dataset of exercise 1, leading to the conclusion, that the
difference in endoscope use is more apparent in exercise 1

than in exercises 2 and 3. This might be due to the fact, that
exercises 2 and 3 resemble parts of actual surgical techniques
and provide familiar actions. Exercise 1 is more abstract with
nine depth-based stacking tasks instead of maximal 3 needle
passing procedures, making the effects of the improved view
provided by the 3D endoscopemore apparent. Another factor
for the decrease in the possible distinction between 2 and 3D,
occurring in the later exercises, could be the learning effect,
throughwhich the trainees also growmore accustomed to the
endoscopic view and the laparoscopic exercise. Volunteers
using the 2D endoscope would struggle less after their first
attempts at laparoscopic training during the first task and the
initial benefit of the stereoscopic view would decrease. It
can be argued that the trainees already made small progress
in the learning curve, had a better sense for the instrument
positions, required less focus on their depth approximation
in the 2D image, and approached efficiency they would have
had when provided with the stereoscopic view.

Conclusion

The work presented in this paper focused on the analy-
sis of data acquired with a multimodal device setup. The
results largely support the claim, that the chosen approach
and the used setup are well-suited to identify and empha-
size progress in a trainee’s surgical skill, familiarity with
the exercise, and conscious as well as subconscious control
over the endoscopic instrument. The proposed device com-
bination is a basis for a system, usable for the evaluation of
the learning progress during endoscopic surgery training at
any desired trainer. Analysis of the multimodal data enabled
the identification of features well suited for the differentia-
tion between data recorded during 2D endoscope and data
recorded during 3D endoscope training. A proof-of-concept
classification with classification learners resulted in accu-
racy results reaching up to 98.1% for 2D/3D classification.
Leaving out features, following significance analysis results,
the highest achieved classification was 92.6%. In conclusion,
results from the training measurements and the classification
of the calculated features support the claim, that the auto-
matic, multimodal observation and evaluation of endoscopic
training with the proposed setup is valid.

Yet the initial work is inconclusive, especially regarding
the evaluation of actual learning progress, largely due to the
limited size of the training data. The attempts per exercise
were too few with not enough time per attempt. The next
steps are improvement of communication stability, enabling
real-time feature analysis, and conducting a study with more
exercise attempts, larger time frames, and more volunteers.
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