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Abstract

The seasonal outbreaks of influenza infection cause globally respiratory illness, or even

death in all age groups. Given early‐warning signals preceding the influenza outbreak,

timely intervention such as vaccination and isolation management effectively decrease

the morbidity. However, it is usually a difficult task to achieve the real‐time prediction

of influenza outbreak due to its complexity intertwining both biological systems and

social systems. By exploring rich dynamical and high‐dimensional information, our

dynamic network marker/biomarker (DNM/DNB) method opens a new way to identify

the tipping point prior to the catastrophic transition into an influenza pandemics. In

order to detect the early‐warning signals before the influenza outbreak by applying

DNM method, the historical information of clinic hospitalization caused by influenza

infection between years 2009 and 2016 were extracted and assembled from public

records of Tokyo and Hokkaido, Japan. The early‐warning signal, with an average of 4‐
week window lead prior to each seasonal outbreak of influenza, was provided by

DNM‐based on the hospitalization records, providing an opportunity to apply proac-

tive strategies to prevent or delay the onset of influenza outbreak. Moreover, the

study on the dynamical changes of hospitalization in local district networks unveils the

influenza transmission dynamics or landscape in network level.
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1 | INTRODUCTION

Despite current approaches to prevention and control, seasonal

influenza remains a significant cause of morbidity and mortality

worldwide.1 Being infected by influenza virus, people especially

elderly and children are at a high‐risk for further deterioration includ-

ing circulatory diseases, severe respiratory illness, and other life

threatening complications.2,3 Influenza pandemic also causes consid-

erable economic burden including direct medical costs and indirect

loss such as substantial workplace absenteeism. The estimated aver-

age direct medical costs of influenza in the United States reaches

$10.4 billion each year,4 and the actual annual cost would be more.

Early detection and recognition of upcoming influenza outbreak,

and timely public health prevention including vaccination schedule

and control strategy, are critical in reducing the pandemic magnitude

and distribution.5,6 However, it is usually a challenging task to

achieve the real‐time prediction of influenza outbreak due to its

complex dynamics involving both biological systems and social sys-

tems. In addition, surveillance capacity for such detection can be

costly, and many countries lack the public health infrastructure to

identify outbreaks at their earliest stages. Furthermore, there may be

economic incentives for countries to not fully disclose the nature

and extent of an outbreak.7,8 Therefore, a new computational

method is required to predict the outbreak of epidemic diseases only

based on available data, thus simplifying information gathering and

monitoring processes.

The dynamic network marker/biomarker (DNM/DNB) is our

recently proposed method. It is a generalized methodology to iden-

tify the tipping point or pre‐transition state which is a critical state

before the catastrophic event,9,10 by mining the dynamical informa-

tion from both horizontal high‐dimensional data and longitudinal his-

torical records. Regarding the influenza outbreak as a tipping point

at which the system undergoes a critical transition, then there is a

common understanding that the dynamical process of the system

can generally be expressed by three states (Figure 1B), that is, a nor-

mal state with high resilience, a pre‐outbreak state (the critical state)

with low resilience, and an after‐outbreak state with possible high

resilience. The normal state is a steady stage, during which there are

no many clinic visiting patients. The pre‐outbreak state is defined as

the limit of the normal state immediately before the tipping point. In

this pre‐outbreak stage, the process is usually reversible to the nor-

mal state if appropriately treated, implying the criticality of the pre‐
outbreak state. Unlike the traditional detection of the after‐outbreak
state, the DNM enables the identification of the pre‐outbreak state

or critical state that generally has no clear abnormalities but with

future trending of deterioration or critical transition. This method

has recently been successfully applied to a variety of biological pro-

gresses to detect the early‐warning signals to an irreversible catas-

trophic stage, such as the cell differentiation process,11 the process

of cell fate decision,12 the critical transition in the immune check-

point blockade‐responsive tumour,13 the multi‐stage deteriorations

of T2D,14 acute lung injury,15 HCV induced liver cancer,16 cancer

metastasis,17 and many others.18-21 In this study, DNM method was

employed to explore the dynamical information based on a combina-

tion of city network and the high‐dimensional clinic hospitalization

records, which are from over 278 clinics distributed in 23 wards in

Tokyo, Japan, and 225 clinics distributed in 30 districts in Hokkaido,

Japan. The results show that the DNM method successfully identi-

fied the critical state just before the outbreak of influenza as a real‐
time surveillance system. Such a system may enable a rapid response

for the preventive care or the implementation of interventions to a

health epidemic. In addition, this work unveils the influenza transmis-

sion dynamics or landscape in a local district network level, based on

the measured data. The advantage and effectiveness of the DNM‐
based system is also demonstrated by the comparison between

DNM and other surveillance systems of flu pandemic.

2 | MATERIALS AND METHODS

2.1 | Dynamical network marker or dynamic
network biomarker

Influenza viruses circulate around the world every year, causing finan-

cial losses, suffering, and death. The dynamical process of flu out-

break can be modeled by three states or stages (Figure 1) similar to

disease progression9: the before‐outbreak state, which is a stable

state with high resilience or high robustness to perturbations; the

pre‐outbreak/critical state, which is the tipping point just before the

catastrophic shift into the outbreak state and is thus characterized by

low resilience or low robustness due to its critical dynamics, but is still

reversible to the before‐outbreak state with appropriate control man-

agement; and the outbreak state, which is another stable state with

high resilience or high robustness. Clearly, it is of great importance to

identify the pre‐outbreak state, which holds the key to apply effective

control management to prevent the catastrophic flu outbreak.

However, different from the outbreak state in which there are

obvious signs including huge amount of outpatient visits, it is a diffi-

cult task to identify the pre‐outbreak state because there are gener-

ally no significant signs or differences between the before‐outbreak
state and the pre‐outbreak state. On the other hand, the dynamic

network marker/biomarker (DNM/DNB) method was developed to

quantitatively identify the tipping point or the critical state during

the dynamic evolution of a complex system based on the observed

data. Theoretically, when a complex system is near the critical point,

there exists a dominant group (a dominant group of variables or

members) defined as the DNM features, which satisfy the following

three necessary conditions based on the observed data9:

• The correlation (PCCin) between any pair of members in the

DNM group rapidly increases;

• The correlation (PCCout) between one member of the DNM group

and any other non-DNM member rapidly decreases;

• The standard deviation (SDin) or coefficient of variation for any

member in the DNM group drastically increases.
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In other words, the above conditions can be approximately sta-

ted as: the appearance of a strongly fluctuating and highly correlated

group of features implies the imminent transition into the flu out-

break. Then, these three conditions are adopted to quantify the tip-

ping point as the early‐warning signals of diseases, and further, the

identified dominant group of features consists of DNM members.

The 2‐fold change threshold is usually applied to recognize the sig-

nificant changes in DNM score and obtain the warning signal. The

DNM theory has been applied to a number of analyses of disease

progression and biological processes to predict the critical states as

well as their driven factors.9-20,22 In this work, by considering the flu

outbreak process as a non‐linear dynamics process, we further

applied the DNM method to detect the tipping point or the early‐
warning signal of flu outbreak. To quantify the critical state, the

following criterion IDNM was used as the signal of the critical point

by combining the above three statistical conditions:

IDNM ¼ PCCin

PCCout
SDin:

Thus, from the observed data of a sample, whenever there is a

group of features appearing with a high IDNM score, this group of

features is the DNM group and the state of this sample is consid-

ered to be near the tipping point. Therefore, from the hospitalization

records of each sample, we can identify the DNM members and fur-

ther quantify whether or not this sample is near the critical state

using the IDNM score.

To further reliably identify the critical state of flu outbreak, we

developed a new method called the landscape DNM, which explores

F IGURE 1 Schematic illustration to detect early‐warning signals of influenza outbreak based on the DNM method. A, The historical
information of clinic hospitalization caused by influenza infection between 1 January 2009 and 31 December 2016 was extracted and
assembled from public records of Tokyo and Hokkaido, Japan. B, According to the DNM theory, the process of a time‐dependent non‐linear
system is divided into three states, including a normal state, a pre‐outbreak state and an after‐outbreak state. The abrupt increase in the DNM
score indicates the pre‐outbreak state, ie, the tipping point just before the upcoming catastrophic influenza outbreak that results in a boost of
clinic‐visiting patients. C, Based on the historical and current clinic records, and regional geographic characteristics of a city, the DNM score is
able to provide the early‐warning signals of the upcoming influenza outbreak as a real‐time indicator monitoring
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both the local and global records as well as the network structure,

and the detailed algorithm is provided below.

2.2 | Landscape DNM score

Given a network structure for the observed variables, an efficient

method to detect DNM, called the landscape dynamic network mar-

ker (or landscape dynamic network biomarker), is proposed by

employing the local‐landscape method on the basis of the three

DNM statistic properties.9 Specifically, first we mapped the historic

records of flu patients to the city network (Figure 2A). Second, the

network was partitioned into many local networks. Each local net-

work contained a centre node/ward and all of its first‐order neigh-

bours based on the network structure. The local‐network index I‐
score of a centre node at time point t for a local network with n

members (ie, one centre node with n‐1 first‐order neighbouring

nodes) was then calculated through the following definition:

It ¼ jΔSDtðinÞj½jΔPCCtðinÞj þ jΔPCCtðoutÞj�;

where

jΔSDtðinÞj ¼ ∑n
i¼1jSDtðiÞ � SDt�1ðiÞj

n

is the average differential standard deviation (in absolute value) of

the nodes inside the local network;

jΔPCCtðinÞj ¼
∑n

i¼1;j¼1jPCCtði; jÞ � PCCt�1ði; jÞj
n� n

is the average differential Pearson's correlation coefficient (in abso-

lute value) inside the local network, i.e., both nodes i and j are in the

same local network;

jΔPCCtðoutÞj ¼
∑n

i¼1;j¼1jPCCtði; jÞ � PCCt�1ði; jÞj
n� n

is the average differential Pearson's correlation coefficient (in abso-

lute value) between a member (node i) in the local network and that

(node j) outside.

Theoretically, when the system approaches the tipping point, ie,

t ∈critical state, and t-1 ∉ critical state, there are three cases for the

local network of a centre node:

• In the local network, all the nodes (or nodes) are DNM members;

• In the local network, there are DNM and non-DNM members;

• In the local network, all the nodes are non-DNM members.

According to the three cases respectively, there are critical beha-

viours for a centre node shown as in Table 1.

Thus, the network based index, It, can quantitatively characterize

the criticality of the state for each DNM member or node. Clearly,

each node has an It value, and hence those It scores for all of nodes

with the time evolution construct a landscape as shown in Figure 3.

When the system approaches the critical state, It of each DNM node

increases drastically based on the three statistic conditions of DNM,

while It of other non‐DNM node may have no significant change.

Obviously, during the critical transition, the DNM group has an abil-

ity to generate detectable early‐warning signals of the upcoming crit-

ical transition.

2.3 | Data collecting and processing

2.3.1 | Data collection

The historical raw data of Tokyo region was downloaded through

Tokyo Metropolitan Infectious Disease Surveillance Center (Link:

http://survey.tokyo-eiken.go.jp/epidinfo/weeklyhc.do). The raw data

of Hokkaido were downloaded through Hokkaido Infectious Disease

Surveillance Center (Link: http://www.iph.pref.hokkaido.jp/kansen/

501/data.html).

2.3.2 | Data normalization

For each ward or district, the raw data were averaged in terms of

the total number of clinics within the ward/district. This normaliza-

tion process is directly related to the population of each ward/dis-

trict, since the population is roughly proportional to the number of

clinics.

2.3.3 | Sliding window

The raw data were processed through window shift where window

breadth is set as 5, that is, both the standard deviation and correla-

tion coefficient are calculated based on the data within every

5 weeks.

3 | RESULTS

3.1 | Detecting the seasonal flu outbreak in Tokyo

The flu transmission dynamics before sudden outbreak is usually too

complicated to be fully expressed mathematically in high‐dimensional

spaces involving both biological systems and social systems. The

drastic or a qualitative transition in a local system or network, from

a normal state to an after‐outbreak state, corresponds to a so‐called
bifurcation point in dynamical systems theory.21,23 If the system is

approaching a bifurcation point, it will eventually be constrained to a

one‐ or two‐dimensional space (ie, the centre manifold in a generic

sense), in which a dynamical system can be expressed in a very sim-

ple form. This is the theoretical basis for developing a general indica-

tor that can detect the critical state of flu outbreak only based on

the observed data.

As shown in Figure 1, we collected the historical longitudinal

records of flu‐caused hospitalization from clinics distributed in 23

wards in Tokyo, Japan, between 1 January 2009 and 31 December

2016. The time evolution or dynamics of the hospitalization counts

spanning from January 2009 to December 2015 in Tokyo is pre-

sented in Figure S1. During each year, the flu outbreak point is

defined as the peak of the total hospitalization counts. To profile the
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F IGURE 2 The network model for Tokyo city. A, Based on the geographic distribution of 23 wards and their adjacent relationship, a 23‐
node neighboring network model is constructed. For each week, the average counts of clinic visiting within a ward were mapped to the
corresponding node, through which we obtained a data matrix with 23 rows/wards and 376 columns/weeks. The detailed corresponding list
between wards and nodes is shown in (B) (as of June 2018)

TABLE 1 Local‐network index I‐score of a center node

Case
Members/nodes

SDt |ΔSDt (in)| PCCt (in) |ΔPCCt (in)| PCCt (out) |ΔPCCout (t)| It

1. All DNM ↗ ↗ ↗ ↗ D↗ ↗ ↗

N↘

2. DNM and non‐DNM D ↗ ↗ D ↗ ↗ D ↗ ↗ ↗

N ↘ ↗ N ↘ ↗

N → 0 D ↘ ↗ D ↘ ↗

N → 0 N → 0

3. All non‐DNM → 0 → 0 D ↘ ↗ 0

N→ 0

Notation: the system is near a tipping point, ie, it moves from time point t‐1 to t, with t ∈ critical state, and t-1 ∉ critical state.

1. “↗” represents the increase of the index; “↘” represents the decrease of the index; “→” represents that there is no significant change in the index.

2. “D” stands for the DNM members, or the PCC with DNM members; “N” stands for the non‐DNM nodes, or the PCC with non‐DNM members.

3. SDt is the average standard deviation at time t; PCCt (in) is the average Pearson's correlation coefficient between two nodes inside the local network;

PCCt (out) is the average Pearson's correlation coefficient between a node inside the local network and a node outside.
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flu transmission in the city, a 23‐node network is constructed

according to the actual locations of 23 wards and their adjacent rela-

tionship (Figure 2).

Shown as in Figure 3, the early‐warning signals were detected

by DNM method for each seasonal outbreak of influenza. It can be

seen that the flu outbreaks around the early January is quite regu-

lar from years 2010 to 2015, while that in year 2009 is an excep-

tion. The novel H1N1 virus was detected in 2009 pandemic that

was reported in Mexico first and then spreading around the world,

which caused an early flu outbreak in Tokyo spanning from the

30th to 50th weeks (around October) of year 2009. Therefore, for

each flu epidemic later developing into massive outbreak, the DNM

score is sensitive and increases significantly at least 3 weeks (lead-

ing time) before the boost of hospitalization counts (Figure 3),

indicating the emergence of the critical transition into a catas-

trophic pandemic.

To better illustrate how DNM works, we show the local DNM

landscape as in Figure 4. It can be seen that the first‐found DNM

signals are about 3‐9 weeks ahead the flu outbreak point defined at

the peak of hospitalization counts. The successful prediction of each

flu outbreak suggests the robustness and effectiveness of DNM sys-

tem in detecting the upcoming influenza outbreak based on the

observed data.

Besides, we presented the dynamical evolution of local DNM

scores in respect of ward‐network. Figure 5 shows the dynamics of

the network of year 2014 in terms of local DNM scores. It can be

seen that both the local DNM for each node and the correlation

between each pair of adjacent wards are at a low‐level at the

F IGURE 3 The prediction of annual seasonal influenza outbreak in Tokyo city between the years 2009 and 2016. Based on the public
historical information of flu‐caused hospitalization between 1 March 2009 and 31 March 2016 in Tokyo, Japan, each seasonal influenza
outbreak is predicted by DNM. The DNM score was calculated based on a 5‐wk sliding window scheme. In each figure, the y‐axis is the
average number of patients in each clinic; the x‐axis represents a period spanning from the 17th week (the first week in May) to the 60th or
61st week (the last week in March). There are 52 weeks in years 2009 and 2011, and 53 wk in other years. The pink circle points to the peak
of average patient counts, ie, the flu outbreak, and the blue star mark indicates the first warning time (tipping point) signalled by the DNM
score. Clearly, DNM is able to predict the outbreak before the drastic increase of the patients
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beginning of the process (the 22nd‐34th week). When the system

approaches to the outbreak point, the signal arises to indicate the

abnormal change in the whole network, that is, both the local DNM

and the correlation between adjacent wards increases sharply, which

are the necessary conditions of the DNM. Besides, it is seen from

Figure 5E that the initial signal (the first red node) appears in Chuo

Ward (node 3) in 34th week, which is consistent with the historical

records (Table S1). The dynamical evolution of network shows that

the DNM‐based system uncovers the epidemic situation and trans-

mission trends, which better present the transmission dynamics at a

system network level.

3.2 | Application of DNM in Hokkaido region

As another DNM application to the influenza outbreak, we also

applied the DNM to detect the early‐warning signals against flu out-

break in Hokkaido region, which is shown in Figures S2-S5. It is seen

from Figure S5 that there are 30 districts in Hokkaido region. From

year 2009 to 2016, there are seven seasonal flu pandemics, among

which the DNM‐based score provides early‐warning signals to six

outbreaks (Figures S2 and S3). Figure S4 shows the dynamics of the

region network of year 2014 in terms of local DNM scores.

3.3 | Performance comparison with other methods

The performances of DNM score is compared to other systems using

machine learning algorithm (Figure 6). Specifically, a popular surveil-

lance system of flu pandemic is based on logistic regression.24-26 It is

clear from Figure 6 that given only hospitalization records, the

DNM‐based system performs better than a system based on logistic

regression.

Actually, the DNM method has natural advantage comparing

with traditional machine learning algorithm in the following aspects.

First, unlike machine learning based methods, DNM is a model free

method, which solely depends on the three statistic conditions (see

Methods section) and does not necessarily need procedures of train-

ing and testing. Second, as exhibited in the prediction of seasonal

flu outbreaks, there is no feature selection in DNM strategy, thus

avoid overfitting problem even if there are only small samples

available.

F IGURE 4 The local DNM scores or landscapes for 23 wards in Tokyo city between the years 2009 and 2015. In each landscape figure,
the local DNM scores for 23 wards in Tokyo are presented annually. The red column points to the first emergence of the warning signal, while
the pink column indicates the flu outbreak. The definition and calculation of local DNM score are shown in the Methods section. Clearly, the
warning signals are earlier than the outbreaks
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4 | DISCUSSION

The annual flu outbreak gives substantial impact to public health and

the whole economy of Japan. Those outbreaks cause sickness,

deaths, and quarantines, which are the three main factors which

would result in reduction of human wellness as well as worker pro-

ductivity. The deterioration in worker productivity would directly

lead to a substantial impact in the economy. Additionally, transporta-

tion and production industries, for instance, would be heavily

affected by the flu pandemics due to reasons such as border clo-

sures. According to ABARE, an Australian Research Agency, econ-

omy and industries in many countries will be seriously affected, for

instance, Japan was predicted to have a decrease of 6.1% in gross

domestic product (GDP) due to flu pandemic. From time to time,

F IGURE 5 The dynamical evolution of flu‐progression network in Tokyo. Based on the local DNM scores for 23 wards in Tokyo during the
year 2014, the dynamical evolution of flu‐progression network is presented, i.e., networks respectively in (A) the 22nd wk, (B) the 25th wk, (C)
the 28th wk, (D) the 31st wk, (E) the 34th wk, (F) the 37th wk, (G) the 40th wk, (H) the 43rd wk, and (I) the 46th wk. The nodes are coloured
by the scaled value of local DNM score, while the thickness of the edges represents the correlation between a pair of adjacent wards in
Tokyo. It can be seen that there is no significant changes in the network (eg, the 22nd‐34th week) far from the flu outbreak caused by
influenza A virus H3N2 in the 43rd week. However, when the system approaches the outbreak point (eg, the 40th week), there are
tremendous changes in both nodes and edges, reflecting the obvious early‐warning signals of the upcoming outbreak, provided by the DNM
system
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new strains emerge and cause global pandemics. To fight against

influenza epidemic, it is of great importance to construct a monitor-

ing system dependent solely on robust information, such as the hos-

pitalization counts. In this study, DNM method shows its potential

and power in detecting the early‐warning signals to the influenza

outbreak, which may lead a new way of public real‐time surveillance

for epidemic diseases.

Specifically, in line with our previous works on the tipping point

or critical transition analysis of complex diseases with genomic data-

sets, we identified a pre‐outbreak state of influenza epidemic

through mining the longitudinal clinic records. In particular, a major

advantage of our method is that DNM can extract the dynamic

information from high‐dimensional data, ie, simultaneously monitor-

ing hundreds of districts and evaluating the outbreak risk by the

landscape/local DNM score, as shown in Figures 4 and 5. It should

be noted that the DNM‐warning system presented in this work is

solely based on counts of hospitalization. Given more clinic informa-

tion and new discriminant input patterns, DNM‐based monitoring

system is expected to reliably predict the flu outbreak in terms of

sensitivity and accuracy. The program of this work is available on

the request, and can also be obtained from http://sysbio.sibcb.ac.cn/

flu-outbreak-prediction, a website that incorporates data gathering

and processing.
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