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Quantification of the mechanical behavior of normal and cancerous tissues has important implication in the diagnosis of
breast tumor. The present work extends the authors’ nonlinear elastography framework to incorporate the conventional X-ray
mammography, where the projection of displacement information is acquired instead of full three-dimensional (3D) vector. The
elastic parameters of normal and cancerous breast tissues are identified by minimizing the difference between the measurement
and the corresponding computational prediction. An adjoint method is derived to calculate the gradient of the objective function.
Simulations are conducted on a 3D breast phantom consisting of the fatty tissue, glandular tissue, and cancerous tumor, whose
mechanical responses are hyperelastic in nature. The material parameters are identified with consideration of measurement
error. The results demonstrate that the projective displacements acquired in X-ray mammography provide sufficient constitutive
information of the tumor and prove the usability and robustness of the proposed method and algorithm.

1. Introduction

Breast cancer is a major threat to public health in the
world. In USA and Europe, approximately 10% of women
develop breast cancer during the course of their lives. While
the specific causes of breast cancer are unknown, early de-
tection and characterization of breast tumors is the key to
successful treatment. Currently, X-ray mammography, a low-
dose X-ray imaging modality, is the primary diagnosis meth-
od in clinics [1]. While being more efficient in detecting
malignancies as age increases or the breast becomes fatty,
mammography fails to identify small cancers in dense
breasts. Furthermore, mammography may not be specific
in terms of tumor benignity and malignancy. About 80%
of suspicious masses referred by mammography for surgical
breast biopsy are in fact not malignant [2–4]. These false-
positive mammograms may induce patients’ anxiety, distress,
and intrusive thoughts.

A number of techniques have been attempted to address
these problems associated with mammography. From the

viewpoint of mechanics, the tissue stiffness is an important
index for diagnosis of breast cancers, as tumors are stiffer
than the surrounding breast tissues and malignant tumors
are much stiffer than benign ones [5–7]. In other words,
in vivo identification of the mechanical parameters of
normal and abnormal tissues should improve the accuracy
of cancer diagnosis. Correspondingly, elastography has been
proposed as a method to image the tissues’ elasticity in a
quantitative manner. The general basis of elastography is
to induce motion within tissue by mechanical stimulation.
Conventional medical imaging modalities are then used to
measure the spatial deformation, from which the mechanical
properties can be extracted. Based on the imaging modal-
ities used, elastography has two major classes: ultrasound
elastography (USE) and magnetic resonance elastography
(MRE). USE, developed in the 1990s, is the first modulus-
imaging modality. It computes the lap between the pre-
and postcompression radio frequency ultrasound signals to
estimate the tissue’s axial displacement and strain under
quasistatic loading [8, 9]. While providing new information
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for detecting pathological tumors, USE suffers from limited
stiffness range as imposed by the minimum resolvable
wavelength. The computed image in USE is also restricted
by the angular resolution of the transducer and its ability
to separate signals from artifacts and noise [9]. Magnetic
resonance elastography (MRE) is a second-generation elas-
tography modality that provides higher resolution images
and is capable of producing sufficient 3D spatial and
contrast resolution [10, 11]. MRE is, however, significantly
more costly as a result of the MR imaging procedure and
hence is not generally applicable for all patients. From the
viewpoint of solid mechanics, the current USE and MRE
are insufficient, because both are based on infinitesimal-
strain linear elasticity and only very few are capable of
considering anisotropic tissue properties. In other words, the
large deformation, nonlinear, and anisotropic behaviors of
breast tissues (fat and glandular tissues) and tumor have not
yet been taken into consideration by USE or MRE. Therefore,
the outcomes of USE and MRE may not be sufficiently
accurate for the diagnostic purpose.

Motivated by the significance of early detection of breast
tumors and the current limitations of mammography and
elastography modalities, we have developed a nonlinear
elasto-mammography method that takes into consideration
of the finite-strain nonlinear properties of breast tissues, in
combination with mammography visualization. The devel-
opment has experienced two stages.

First, a linear elasto-mammography framework was devel-
oped to generate the elastograms of breast tissues, by com-
bining the conventional low-dose X-ray mammography
with linear elastography framework [12]. Instead of apply-
ing ultrasound or magnetic resonance as in the previous
elastography research, elasto-mammography uses displace-
ment information extracted from mammography projec-
tions before and after breast compression. Incorporating the
displacement measurement, an elastography reconstruction
algorithm was specifically developed to estimate the elastic
moduli of heterogeneous breast tissues. Case studies with
numerical breast phantoms showed that the displacement
measurement obtained from mammography is sufficient to
identify the material parameters of breast tissues and tumors
within the framework of linear elasticity.

Then, a nonlinear elastography method was proposed
[13]. As discussed above, the current elastography (USE or
MRE) reconstruction framework is based on the assumption
of linear elasticity theory. The mechanics of biological soft
tissues, however, require nonlinear continuum mechanics
description [14, 15]. While tissue models based on linear
elasticity have been broadly used, they are reliable only when
the tissue strain is less than 5% [16], which is much lower
than the deformation of soft tissues. Thus, consideration of
nonlinearity is essential for elastography in clinical applica-
tions. Our development of nonlinear elastography method,
for the first time, enables identification of the mechanical
properties of soft breast tissues and tumor. To improve
the computational efficiency and enhance the stability, a
nonlinear adjoint method was introduced. The phantom
study demonstrated that the complex nonlinear mechanics

of soft breast tissues and tumors can be quantified from 3D
displacement and force measured on the surface of the breast.

The objective of the present study is to develop a
nonlinear elasto-mammography framework that combines
the simplicity of projective X-ray mammography mea-
surement with the accuracy of nonlinear elastography. In
Section 2, we present the mathematical derivation, where an
adjoint gradient method is modified to consider the pro-
jective displacement measurements. Finite-element- (FE-)
based numerical simulations are conducted in Section 3 to
reconstruct the material parameters of a 3D heterogeneous
breast phantom from mammography displacement. Two
types of mammography compressive loadings are applied,
and the displacements at key points on the tissue interfaces
are extracted from mammography projections before and
after deformation. In Section 4, the results are presented and
the effect of experiential error is investigated.

2. Methods

2.1. Finite-Strain Deformation Equations. Let Ω0 be a bio-
logical object subjected to body force b and surface force
t on boundary Γ0

t . Here, we consider general problems
that the body force b and surface force t are deformation
dependent. Following the standard finite-element method,
the displacement u is discretized as nodal displacement
vector {u} = {u1, u2}T , where u2 corresponds to u pre-
scribed on Γ0

u and u1 is to be solved from nonlinear
equations; that is, on surface Γ0

u (Γ0
u∪Γ0

t = ∂Ω0), as described
in [13], the FE description of the finite-strain equilibrium
equation is
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The internal nodal force f in corresponds to the stress of the
tissue; that is, it changes with u1 and material parameters
p but not u2 as it is prescribed. The external nodal force
f out
1 is due to the prescribed surface force t and body force

b in biological object Ω0. It changes with the displacement
in large deformation. The nodal force f out

2 is the unknown
constraint force on Γ0

u.
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2.2. Nonlinear Elasto-Mammography Algorithm. We consider
that the biological object Ω0 is discretized into FE mesh,
and the displacement and force are discretized consistently
into nodal displacement and nodal force. Experimental
measurement for elasto-mammography is displacement. We
catalog the measurements as the following. (i) If the force
at a node is known, it will be included into f out

1 which
is considered “prescribed” in (1). The corresponding nodal
displacement will be considered as unknown u1 in the FE
equation (1). (ii) All the other nodal displacements will be
in u2, and the corresponding unknown nodal force will be in
f out
2 . For category (ii), u2 must be considered “prescribed”

to fulfill the requirement of the well poseness of a solid
mechanics problem.

In our previous elastography method [13], displacements
are also measured at some of the nodes associated with
u1 and are denoted as UM

1 . Given material parameters p,
the unknown displacement u1 and constraint force f out

2

(which depends on p) will be solved from the FE equation
(1). The elastography method thus seeks p so that the
overall difference between measured UM

1 and computed u1

is minimum; that is, to minimize objective function:

Φ
(

p
) =

(

u1 −UM
1

)T
Λ

(

u1 −UM
1

)

, (4)

where diagonal weight matrix Λ = diag(a1, a2, . . . , aj , . . .),
with component aj = 1 when the jth component of UM

1 is
experimentally measured, or aj = 0 otherwise.

In mammography, however, the measurement of dis-
placement is limited by the projection; that is, only the
two components perpendicular to the projection direction
are obtainable. Correspondingly, the computed displace-
ment u1 should be projected in the same direction as in
mammography and then compared with the mammography
measurement UM

1 . As derived in Appendix A, the projection
can be represented by a linear translation of u1, as Ru1, where
R is a global projection matrix. The objective function for
nonlinear elasto-mammography is then

Φ
(

p
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(

Ru1 −UM
1

)T
Λ

(

Ru1 −UM
1

)

. (5)

2.3. Nonlinear Adjoint Method. Efficient and robust opti-
mization-based elastography reconstruction schemes request
user-supplied gradient ∂Φ/∂p. Direct calculation of the gra-
dients ∂Φ/∂p involved in the minimization-based parametric
identification is difficult, because u1 is an implicated function
of p. Recently, an adjoint method was introduced to com-
pute the gradient analytically [18–21]. The corresponding
nonlinear finite element formulas are shown in Appendix B.
Briefly, given a trial p,u1 will be solved from FE equations
(2) and (3), the objective function will calculated by (5),
and the material parameters p will be updated by large-scale
limited memory BFGS (L-BFGS) method with user supplied
gradients readily obtained as:

∂Φ

∂p
=

{
w1

w2

}T

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ f in
1

∂p

∂ f in
2

∂p

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (6)

where the virtual adjoint displacements w1 and w2 are solved
from linear equations:

K eff
11w1 = −2RTΛ

(

Ru1 −UM
1

)

,

w2 = 0,
(7)

with the tangent stiffness matrix K eff
11 defined in (3). The

most significant features of the adjoint method are the
analytical formulation, high accuracy, and computational
efficiency [22]. Since K eff

11 and its LU factorization have
been calculated when solving the FE equation (2), the
additional computational expense for w1 in (7) is minimal.
Furthermore, it only needs to solve one linear equation (7)
regardless of the number of unknown parameters in p.

The reconstruction procedure is illustrated in Figure 1.
We first establish a numerical FE model of the breast tissue
on which external loadings are applied. In order to measure
displacement, we compare the mammography projections
before and after the deformation. Then, initial guess of
the distribution for material parameters (λ,μ, γ) is given.
Given the external loadings and material parameters, the
displacement filed u1 is solved from (1) and is projected
to Ru1 according to the mammography direction. The
difference between prediction Ru1 and measurement UM

1 are
evaluated by the objective function (5). The adjoint field w
is calculated by (7), and gradients ∂Φ/∂p are obtained by
(6). The material parameters could be updated by limited-
memory BFGS (L-BFGS) optimization subroutine [23]. The
iteration continues until a minimization is reached.

3. Numerical Simulations

3.1. Breast Phantom and Forward Problem. We establish a
3D typical breast FE phantom, shown in Figure 2, consisting
of the fatty and glandular tissues and a ductal carcinoma
(tumor). Boundaries of these regions are described with sets
of splines. The mechanical properties of these tissues are
described with Fung-type isotropic hyperelastic model [14],
whose strain energy function reads

W(E) = γ

2

[

exp
(

λ(I : E)2 + 2μE : E
)

− 1
]

, (8)

where E is the Green strain and {λ,μ, γ} are material param-
eters. The parameters {λ,μ, γ} are previous determined [13]
from ex vivo experimental data of Samani and Plewes [24] as
λd = 80, μd = 35, γd = 1.5 (λ and μ are dimensionless, γ is in
kPa) of ductal carcinoma, λ f = 35, μ f = 12.5, γ f = 0.4 of
fatty tissue, and λg = 50, μg = 25, γg = 0.25 glandular tissue.

Motivated by the breast compression in X-ray mammog-
raphy, we designed two loadings as detailed in [13]. In the FE
model, the base of the breast phantom is fixed. Two paddles
are used to apply displacement on the upper surface of the
breast. The paddle close to tumor applies tilted compression,
and another paddle is fixed to restrict the breast.

3.2. Acquisition Projection Data. For each loading, mam-
mography projections for 3D heterogeneous breast phantom
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Figure 1: Overall flowchart for nonlinear reconstruction of material parameters of breast tissues.
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Figure 2: Mammography projections for 3D heterogeneous breast
phantom after deformation. Fatty tissue, glandular tissue, and a
tumor are shown.

are taken before and after deformation (Figure 2). To mimic
the displacement obtainable from mammography, we extract
the displacement components in the projection plane at
some discrete material points (Figure 3), denoted as UM

1 .
We select three mammography projection directions. With
each direction, one projection is made at undeformed state,
and one is made at deformed configuration (Figure 2).
Then, the displacement components on the projection plane
are extracted from a set of landmarks in the tissues by
comparison their position in undeformed and deformed
projections, as shown in Figures 3 and 4. The landmarks
include the top vertex on the upper breast surface (point A
in Figure 3), four vertexes of the tumor surface (points B–
E in Figure 3), and ten material points on the fat-glandular
interface (points A–J in Figure 4). It is noted that the surfaces
of tumor and glandular tissue are not smooth so that there
are plenty of landmarks that can be used to track the
deformation.

To explain the procedure, we use a mammography
compression as example. Figure 2 shows mammography
projection taken in the same direction with compression
applied on the breast. The boundary of the fatty tissue,
glandular tissue, and a tumor can be seen in the projection.

Undeformed
fatty tissue

Undeformed
tumor

Deformed
fatty tissue

Deformed
tumor

A A

B B

C C E E

D D

Figure 3: Overlapped mammography-type projections of the fatty
tissue and tumor in deform and undeformed configuration. In
the projections, vertexes A–E in underformed projection move to
A′–E′ in deformed projection, respectively, giving the projected
displacements of these points.

Then, displacement components on the projection plane can
be extracted by comparing the undeformed and deformed
projections (Figures 3 and 4). More specifically, the unde-
formed and deformed projections of fatty tissue and the
tumor are registered and shown together for the comparison.
The top vertex of fatty tissue, point A, moves to vertex A′

after deformation. Points B–E are vertexes of the tumor in
undeformed projection, and they move to vertexes B′–E′

after deformation (Figure 3). On the fat-glandular surface,
we select additional ten landmarks that move from A–J to
A′–J′, respectively (Figure 4). Thus, by measuring the vector
from a point to its deformed position, for example, A→
A′, the projective displacement components are obtained
and recorded as UM

1 . In addition, it is assumed that there
is no slip between the paddles and breast surface during
mammography compression. Therefore, the displacement of
the material points directly compressed by the paddles is
considered known and is added to the measurement UM

1 .
In summary, we have obtained the following displace-

ment measurements from mammography compression:
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Figure 4: Overlapped mammography-type projections of
deformed and undeformed glandular tissue. In the projections, ten
nodes A–J on the surface of glandular in underformed projection
move to A′–J′ in deformed projection, respectively, giving the
projected displacements of these nodes.

(i) the top vertex on the upper breast surface and four vertex-
es of the tumor; (ii) ten nodes on the fat-glandular interface;
(iii) material points directly compressed by the paddles.
These displacement measurements are denoted as UM

1 and
will be used to identify the material parameters of the tissues.

3.3. Identification of Material Parameters from Displace-
ment Measurements. Having obtained measurement UM

1

from mammography compression, the inverse problem will
be conducted to identify the material parameters p =
{λ f ,μ f , γ f , λg ,μg , γg , λd,μd, γd} of the breast tissues and
tumor, with use of an iterative optimization procedure
(Figure 1). A homogeneous initial guess of λ0 = 20, μ0 =
10, γ0 = 1 (λ and μ are dimensionless, γ is in kPa) is
used for all the materials. With a trial p, the displacement
field u1 is solved from the FE equation (1) and is pro-
jected to Ru1 according to the mammography direction.
The difference between prediction Ru1 and measurement
UM

1 is evaluated by the objective function Φ(p) (5). The
gradients ∂Φ/∂p are computed with the proposed nonlinear
adjoint method. Then, a modified trial p will be obtained
according to the present Φ and ∂Φ/∂p by using L-BFGS
minimization subroutine [23]. The iteration continues until
a minimization is reached, which corresponds to identified
material parameters.

4. Results and Discussion

4.1. Ideal Input. Table 1 shows the initial estimate and
reconstructed results, together with the real values for
comparison. The results in the first part are based on the
ideal input. It is demonstrated that the reconstructed results
are very close to the real values. The maximum error is 0.3%
(γ for tumor) since the effect of the tumor on surface force
measurement is the smallest. Reconstructions using different
initial estimates have been conducted and very similar results
are found, which indicates the efficiency and uniqueness of

the proposed nonlinear elasto-mammography using projec-
tive measurements. In our study, all numerical experiments
reached convergence and had similar convergent profiles.
The iteration speed is related with initial estimations. In
clinical practice, the initial estimates could be selected based
on data of previous patients and experiments. The more
reasonable the initial estimates are, the faster the solver got
convergence.

In nonlinear elastography [13] and this study, the same
nonlinear material model and properties are applied. For
ideal input, both frameworks can get convergence and the
reconstructed results are very close to the real values. For
input with noises, both frameworks could get convergence
and have the similar profiles. The parameters in fatty and
glandular tissues get convergence faster than these in tumors
because the fatty and glandular tissues have bigger impact on
surface deformation and measurement.

Convergent loci of the elastic parameters (λ,μ, γ) is
plotted in Figure 5. It is observed that elastic parameters of
fatty tissue and glandular tissue approach the real values
rapidly. After about 50 iteration steps, their relative errors
are well within the range of 5%. Then, they experience some
minor adjustment. In contrast, elastic parameters of the
tumor converge slower. They start to fall to the real values
after 300 steps. After 350 steps, all parameters are accurately
identified. Reconstructions using different initial estimates
have been conducted. Very similar convergent profiles are
found, and equally accurate results are obtained. This
indicates uniqueness of the proposed elasto-mammography
for nonlinear breast tissue properties and efficiency of the
reconstruction algorithm.

The slower convergent speed of elastic parameters of the
tumor is explained by the roles they play in the deformation
due to the applied loadings, as discussed by Liu et al. [18].
In general, parameters with the most significant influence
on the deformation are those most easy to identify. The
influence of a parameter depends on size and location of the
material region it belongs to, as well as characteristics of the
deformation. For the present simulations, elastic parameters
of fatty tissue and glandular tissue are dominant; those
of tumor are much less influential, due to the small size
and deep location of the tumor. So parameters of fatty
tissue and glandular tissue are more accurately and easily
identified than those of the tumor (Figure 5). Therefore,
for successful characterization of the tumor, it is critical
to apply deformation modes and acquire displacement
data that are most affected by the tumor. In this elasto-
mammography simulation, displacements of key points on
the tumor are extracted from mammography projections,
which increase the accuracy and efficiency to reconstruct the
elastic parameters, especially for the tumor.

4.2. Multiple Sets of Measurements. Because of the nonuni-
queness nature of most inverse problems, it is important
to obtain sufficient measurements to reduce the likelihood
of nonuniqueness. For 2D isotropic elastography, Barbone
and Bamber [25] have shown that one set of displacement
and force measurement, especially when measured only on



6 International Journal of Biomedical Imaging

Table 1: Initial guess and nonlinear elasto-mammography reconstruction results of the fatty tissue, glandular tissue, and tumor in a 3D
breast. The reconstructions are based on ideal mammography measurement, mammography measurement with ±5% and ±10% random
noise, respectively. (λ and μ are dimensionless, γ is in kPa.)

Fatty Glandular Tumor

λ f μ f γ f λg μg γg λd μd γd
Real 35 12.5 0.4 50 25 0.25 80 35 1.5

Guess 20 10 1 20 10 1 20 10 1

Ideal Input

Reconstruction 35.00 12.50 0.40 50.00 25.00 0.25 79.83 34.93 1.51

5% Noise (I)

Reconstruction 32.95 11.76 0.44 51.82 26.15 0.23 77.12 31.10 1.69

5% Noise (II)

Reconstruction 34.82 12.35 0.41 51.62 26.10 0.23 66.14 29.57 1.88

5% Noise (III)

Reconstruction 35.9 12.69 0.39 49.67 25.08 0.25 83.75 37.27 1.40

10% Noise (I)

Reconstruction 35.14 12.68 0.40 48.87 24.40 0.26 107.59 35.56 1.41

10% Noise (II)

Reconstruction 31.89 11.69 0.46 52.17 25.39 0.24 90.29 31.01 1.69

10% Noise (III)

Reconstruction 36.75 12.89 0.37 48.30 24.54 0.26 107.20 48.89 0.92
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Figure 5: Convergent loci of elasto-mammography reconstruction
for elastic parameters (λ,μ, γ) of fatty tissue, glandular tissue, and
tumor, normalized with respect to the real values correspondingly.

the boundaries, may not provide sufficient information for
reconstruction of the distribution of elastic modulus. To
enhance the uniqueness of inverse problems, Barbone and
Gokhale [26] proposed the feasibility of using multiple
displacement fields, and Liu et al. [18] further discussed
the use of multiple sets of measurements in 3D anisotropic
media. In our previous nonlinear elastography study [13],
measurements from four independent titled compression
loadings were used to insure stable and unique material

parametric reconstruction. In this work, we applied only
projective measurements from two breast compression tests
and found that the acquired displacement and force data
are sufficient for stable parametric reconstruction, even for
the small and deeply embedded tumor. This is a significant
reduction, as it increases the clinical efficiency, reduces X-ray
dose and operation cost, and benefits the patients.

The reduction of necessary loadings is possible because
mammography projection provides displacement on the
surface of the tumor, which contains direct information
of the mechanics of the tumor. Our previous nonlinear
elastography study [13] takes only measurement on the
breast surface as input. The lack of necessary constitutive
information of the tumor in the surface measurement must
be compensated by increasing the number of required load-
ings. In case that the measurement may contain experimental
errors, we must use four loadings in the elastography study,
instead of two in the present elasto-mammography.

4.3. Iteration Steps. The nonlinear elasto-mammography
reconstruction uses an iterative optimization procedure
(Figure 1), which is controlled by user-defined criteria. This
study employs more strict criteria than in our previous work
[13], and it takes about 590 steps to reach the converged
reconstruction results. To demonstrate the intermediate
results, the uniaxial tensile strain-stress curves of the tumor
predicted by the updated material parameters are plotted
in Figure 6 at the 1st, 100th, 200th, 300th, and 592nd
iterative steps and compared to the real one. It is observed
that the reconstructed strain-stress curve approaches the
real one rapidly in first 300 iterative steps. After that, the
reconstruction only applies some minor adjustment.
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In clinical practice, a more tolerable criterion may be
applied to control the iterative reconstruction procedure
to save computational expense and time. It has been
recognized that tissue stiffness plays an important role for
diagnosis of breast cancers, as tumors are stiffer than that
surrounding breast tissues, and malignant tumors are much
stiffer than benign ones [6]. In another word, the stiffness
ratio between fatty tissue and tumor, instead of real material
parameters, could be used to determine the character of
tumors. It is observed in Figure 6 that, starting from the
100th iterative step, the stiffness ratio of tumor to fatty
tissue (the lowest curve) increases rapidly, indicating that
the predicted mechanical properties of the tumor are well
distinguished from the normal tissues for characterizing the
tumor. Therefore, from clinical point of view, the iterative
reconstruction procedure could be stopped after about 100
steps.

4.4. Input with Noise. The above elasto-mammography
reconstructions are conducted using ideal inputs. However,
noise is unavoidable in experimental data. To investigate the
capability of the proposed nonlinear elasto-mammography
modality and algorithm to handle imperfect experimental
data, we conduct reconstruction using noisy input, where a
randomly selected relative error between ±5% or ±10% is
added to each displacement data in UM

1 . For each noise level,
three case studies are conducted. The results are shown as
noise 5% (I)–(III) and noise 10% (I)–(III) in Table 1, and
the reconstructed tensile strain-stress curves of the tumor are
plotted in Figure 7.

It is observed that the strain-stress curves reconstructed
with noisy input have similar shape to the ones with ideal
input. It is not surprising that curves with 5% noise are
closer to the real one than these curves with 10% noise. It
demonstrated that, in order to get robust results, we need
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Figure 7: Nonlinear tensile strain-stress curves of the tumor as
reconstructed from inputs with 5% and 10% noise.

to make effort to decrease the noise in displacement
measurements. It is noted that all the predicted strain-
stress curves of tumor, with or without measurement noise,
are well distinguished from the curve of fatty tissue (the
lowest curve in Figure 7); that is, being much stiffer. That
is, even though measurement noise exists, the tumor can be
identified by recognizing the difference of stiffness between
tumors and the surrounding tissues. This demonstrates
that the nonlinear elasto-mammography results are accurate
enough for diagnosis of tumors in clinical application.

The previous nonlinear elastography based on surface
measurement [13] fails to reconstruct material parameters
when ±5% random noise is added to the input. A reg-
ularization is required to provide additional constrain. In
comparison, the present elasto-mammography yields accu-
rate enough material parameters even with ±10% random
noise. The reason is, as mentioned in Sections 4.1 and 4.2,
that the displacements extracted on the surface of the tumor
from mammography projections contain direct information
of the mechanical properties of the tumor, which enhances
the robustness of reconstruction and increases the accuracy,
in particular of the tumor’s parameters.

4.5. Advantages of Nonlinear Elasto-Mammography. In this
study, a nonlinear elasto-mammography framework is devel-
oped to incorporate the conventional X-ray mammography
for characterization of breast tissue properties. This work
extends our previous study linear elasto-mammography [12]
and nonlinear elastography [13]. Comparing with previous
study, nonlinear elasto-mammography has the following
three major advantages.

Imaging techniques: an imaging technique should be
selected to measure deformation in elastography. In the
proposed nonlinear elasto-mammography, the deformation
is measured by conventional X-ray mammography while
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Figure 8: Illustration of global coordinate and eye coordinate. An object in global coordinates [X ,Y ,Z] is projected in eye coordinates
[x, y, z]. The relation between direction vectors is dependent on ψ, α, and θ.

USE or MRI is applied in nonlinear elastography. Traditional
X-ray has advantages of low cost and high resolution,
compared with USE and MRI.

Deformation theory: the linear elasto-mammography
framework is based on infinitesimal strain deformation the-
ory. However, it is well known that the mechanical behavior
of biological soft tissue is nonlinear. In nonlinear elasto-
mammography, nonlinear material model and deformation
theory are applied so that more accurate results could be
obtained.

Inversion techniques: once displacements are measured,
an inversion technique is applied to reconstruct elastic prop-
erties. In linear elasto-mammography, an adjoint method is
applied and then a nonlinear adjoint method is developed for
nonlinear elastography. In this study, the nonlinear adjoint
method is further improved to enhance the numerical
efficiency and stability of reconstruction of elastic properties.

Therefore, the proposed nonlinear elasto-mammography
framework has advantage of imaging techniques, defor-
mation theory, and inversion techniques. It combines the
simplicity of projective X-ray mammography measurement
with the accuracy of nonlinear elastography.

5. Summary

This study presents a nonlinear elasto-mammography meth-
od that combines elastography reconstruction and X-ray
mammography imaging for the purpose of diagnosis of
breast tumors by identification of the finite-strain mechan-
ical parameters of breast tissues and tumors. The displace-
ment information of selected material points is extracted
from mammography projections before and after breast
compression. Correspondingly, the previously developed
nonlinear elastography algorithm has been adjusted with a
revised adjoint gradient method to incorporate projection-

type displacement measurement. The simulations with het-
erogeneous breast phantom proved the feasibility of elasto-
mammography and tested the efficiency and robustness of
the reconstruction algorithm. The simulations show that
the deformation of the tumor, depicted by the projected
displacement on the surface of the tumor extracted from
mammography images, is critical for the success of elasto-
mammography reconstruction.

Appendices

A. Displacement Transition between
Coordinate Systems

This appendix presents the transition of a displacement vec-
tor between global coordinates and projection coordinates.
The outcome is the projection matrix R in formulas (5) and
(7).

To be consistent with computational geometry, we call
the projection coordinates as eye coordinates. As illustrated
in Figure 8, the global coordinates are denoted as [X ,Y ,Z]
and eye coordinates are [x, y, z]. Their direction vectors
are [eX , eY , eZ]T and [e′x, e′y , e′z]

T , respectively. As shown in
Figure 8, the eye coordinates rotate from global coordinates
by three angles: Z-axis tilt angle ψ, twist angle about
eye/original ray α, and rotation angle about Z-axis θ. It can
be shown that

⎛

⎜
⎜
⎝

e′x
e′y
e′z

⎞

⎟
⎟
⎠ = [Q]

⎛

⎜
⎜
⎝

ex

ey

ez

⎞

⎟
⎟
⎠, (A1)

where the rotation matrix Q is
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[Q] =

⎡

⎢
⎢
⎢
⎣

cosα · cos θ · cosψ − sinα · sin θ cos θ · sinα + cosα · cosψ · sin θ cosα · sinψ

− cos θ · cosψ · sinα− cosα · sin θ cosα · cos θ − cosψ · sinα · sin θ − sinα · sinψ

cos θ · sinψ sin θ · sinψ − cosψ

⎤

⎥
⎥
⎥
⎦
. (A2)

Now, consider a displacement vector u of a material point
from undeformed position to deformed position. The global
coordinates of u are {uX , vY ,wZ}, the eye coordinates are
{ux, vy ,wz}, and their relationship can be derived as

⎛

⎜
⎜
⎝

ux

vy

wz

⎞

⎟
⎟
⎠ = [Q]

⎛

⎜
⎜
⎝

uX

vY

wZ

⎞

⎟
⎟
⎠. (A3)

In mammography projection, the displacement component
in e′z direction, wz, is not obtainable, and only ux and vy are
measured. Therefore, (A3) reduces to

⎛

⎝
ux

vy

⎞

⎠ =
⎡

⎣
cosα · cos θ · cosψ − sinα · sin θ cos θ · sinα + cosα · cosψ · sin θ cosα · sinψ

− cos θ · cosψ · sinα− cosα · sin θ cosα · cos θ − cosψ · sinα · sin θ − sinα · sinψ

⎤

⎦

︸ ︷︷ ︸

[Q′]

⎛

⎜
⎜
⎝

uX

vY

wZ

⎞

⎟
⎟
⎠ = [Q′]

⎛

⎜
⎜
⎝

uX

vY

wZ

⎞

⎟
⎟
⎠. (A4)

Finally, the FE solution of displacement field u1, when
projected, becomes Ru1 where R is the assemble of [Q′]
according to the FE discretization and assembling methods.

B. Adjoint Method for Gradients of
Objective Function

Direct calculation of the gradients ∂Φ/∂p of the objective
function involved in the minimization-based parametric
identification is difficult, because u1 is an implicated function
of p. An adjoint method will be derived here for efficient and
analytical calculation of the gradients. To release the implicit
coupling between u1 and p, we introduce the constraint (1)
into the objective function (5) and obtain a Lagrangian:

L =
(

Ru1 −UM
1

)T
Λ

(

Ru1 −UM
1

)

+

{
w1

w2

}T{
f in
1 − f out

1

f in
2 − f out

2

}

,

(B1)

where w1 and w2 are arbitrary virtual displacements. In this
Lagrangian, u1 and p are explicit variables and are no longer
coupled. It is noted that Φ = L and δΦ = δL for arbitrary
w1 and w2 under the constraint (1). The variation δL can be
expressed as

δL = 2
(

Ru1 −UM
1

)T
Λ(Rδu1)

+

(

wT
1 K

in
11 −wT

1 K
out
11 +wT

2
∂ f in

2

∂u1
−wT

2
∂ f out

2

∂u1

)

δu1

+wT
1
∂ f in

1

∂p
δp +wT

2
∂ f in

2

∂p
δp−wT

2
∂ f out

2

∂p
δp

(B2)

for which the equality constraint (1) has been applied. Note
that the prescribed external force f out

1 is independent of
p. Equation (B2) can be further simplified by letting the
arbitrary virtual displacement w2 = 0, as

δL =
{

2
(

Ru1 −UM
1

)T
ΛR +wT

1 K
in
11 −wT

1 K
out
11

}

δu1

+wT
1
∂ f in

1

∂p
δp.

(B3)

If we select a w1 to let {2(Ru1 − UM
1 )TΛR + wT

1 K
in
11 −

wT
1 K

out
11 }δu1 = 0 for arbitrary δu1, we obtain a simplest form

of δL, as

δL = wT
1
∂ f in

1

∂p
δp =

(

wT
1
∂ f in

1

∂p
+wT

2
∂ f in

2

∂p

)

δp (w2 = 0).

(B4)

Consider that δΦ = δL for arbitrary w1 and w2, we obtain
(6) in the text with the following selection of w1 and w2:

(

K in
11 − Kout

11

)

w1 = K eff
11w1 = −2RTΛ

(

Ru1 −UM
1

)

,

w2 = 0
(B5)

which is (7) in the text.
By introducing the adjoint method, it seems that more

equations (B5) and variables (w1 and w2) are involved. But
the solution of (B5) is straightforward and the computa-
tional cost is minimal, because K eff

11 has been computed and
factorized when solving for the displacement u1 as in (3).

The gradients ∂Φ/∂p can also be calculated directly as

∂Φ

∂p
= 2

(

Ru1 −UM
1

)T
ΛR

∂u1

∂p
, (B6)
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in which ∂u1/∂p can be computed numerically using finite-
different method:

∂u1

∂p
≈ u1

(
p + δp

)− u1
(

p
)

δp

(
δp is a small change of p

)

(B7)

or analytically by solving linear equations:

K eff
11
∂u1

∂p
= −∂ f

in
1

∂p
. (B8)

For finite-strain nonlinear problem, the finite-different
method is unaffordable due to the high computational
expense to solve (1) for u1. Solving (B8) is straightforward
and is much less expensive for K eff

11 has been computed
and factorized. However, (B8) needs to be solved for every
material parameters involved; for example, in the exemplar
simulations in this work, it needs to be solved nine times
because each material has three parameters. In comparison,
the proposed adjoint method (B5), (B6) requires only
one solution for w1, regardless of the number of material
parameters involved.
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